JPH0687964A - Method for improving surface of resin and method for forming electroless metal plating and small electronic circuit board produced by the methods - Google Patents
Method for improving surface of resin and method for forming electroless metal plating and small electronic circuit board produced by the methodsInfo
- Publication number
- JPH0687964A JPH0687964A JP4240189A JP24018992A JPH0687964A JP H0687964 A JPH0687964 A JP H0687964A JP 4240189 A JP4240189 A JP 4240189A JP 24018992 A JP24018992 A JP 24018992A JP H0687964 A JPH0687964 A JP H0687964A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- resin
- plating
- chamber
- test piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/381—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、樹脂表面の改質方法お
よびこの方法を用いた無電解メッキ形成方法、さらに前
記無電解メッキ形成方法を用いて製造された小型電子回
路基板に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying a resin surface, a method for forming electroless plating using this method, and a small electronic circuit board manufactured by using the method for forming electroless plating. .
【0002】[0002]
【従来の技術】現在では、電子回路基板材料として、有
機基板や有機層間絶縁材料を用いることにより、加工性
を生かした回路設計が可能となった。一方、電子回路基
板の小型化、高集積化により基板材料の耐熱性が要求さ
れるようになった。また高周波化や無線の汎用化により
高周波誘電物性に関する要求も厳しくなり、とくに誘電
損失の低い基板が要求されている。このような基板とし
ては、例えばポリイミドや、ポリテトラフルオロエチレ
ン(PTFE)等のフッ素系樹脂が用いられている。前
者は誘電物性、耐熱性、溶剤可溶性、エッチング性に優
れ、後者は誘電物性、耐薬品性、耐湿性、耐水性におい
て優れている。フッ素系樹脂では、充填材を混ぜて誘電
率を制御したものがよく用いられる。しかしながら、こ
れらの基板材料には難接着性材料が多く、メッキ、レジ
スト、コーティング材、接着剤等の密着性が悪いため、
適用に制限を受けていた。これらの基盤材料の密着性向
上の手段として、表面改質がよく用いられる。表面改質
は、主としてアンカー効果を狙った物理的なものと、表
面の化学構造を変性する化学的なものとにわかれる。2. Description of the Related Art At the present time, it has become possible to design circuits by taking advantage of workability by using an organic substrate or an organic interlayer insulating material as an electronic circuit substrate material. On the other hand, the heat resistance of the substrate material has been required due to the miniaturization and high integration of the electronic circuit substrate. In addition, the demand for high-frequency dielectric properties has become stricter due to the use of higher frequencies and the widespread use of radio, and a substrate with a low dielectric loss is particularly required. As such a substrate, for example, polyimide or a fluorine resin such as polytetrafluoroethylene (PTFE) is used. The former is excellent in dielectric properties, heat resistance, solvent solubility and etching properties, and the latter is excellent in dielectric properties, chemical resistance, moisture resistance and water resistance. As the fluorine-based resin, a resin having a dielectric constant controlled by mixing a filler is often used. However, many of these substrate materials are difficult to adhere to, and the adhesion of plating, resist, coating materials, adhesives, etc. is poor,
The application was limited. Surface modification is often used as a means for improving the adhesion of these base materials. The surface modification is mainly divided into a physical one aiming at an anchor effect and a chemical one modifying a surface chemical structure.
【0003】物理的な表面改質としては、サンドブラス
ト、ワイヤブラシ等を用いた表面荒らしがある。これら
の方法はアンカー効果を利用したもので、ポリイミドに
は多少の効果があるものの十分ではなく、PTFE等の
撥水・撥油性の強いフッ素系樹脂には効果がない。Physical surface modification includes surface roughening using a sandblast, a wire brush or the like. These methods utilize the anchor effect, and although they have some effect on polyimide, they are not sufficient, and they are not effective on fluorine-based resins having strong water and oil repellency such as PTFE.
【0004】化学的な表面改質としては、アルカリ処
理、酸処理、紫外線処理、コロナ放電処理、プラズマ処
理等があり、ポリイミドに関しては用途によって大きな
効果が期待できる。フッ素系樹脂の場合は、工業的には
アルカリ処理の一種であるテトラエッチング処理が用い
られている。また、研究段階ではあるが、特公平4-4117
9号公報や、雑誌(例えばインターナショナル・ジャー
ナル・オブ・アドヘッション・アンド・アドヘッシブズ
(INT. J. ADHESION AND ADHESIVES、11巻、4号、24
7〜254頁、1991年10月)に記載されているような、様
々なガス雰囲気下でのプラズマ処理がある。さらに、別
の技術として、本発明者らは、グリシジルメタクリレー
トガス雰囲気下で、PTFE表面にKrFエキシマレー
ザーを照射し、エポキシ系接着剤とのピール強度を向上
させることを提案した(1992年高分子学会年次大会で発
表)が、実用的には不十分であった。As chemical surface modification, there are alkali treatment, acid treatment, ultraviolet treatment, corona discharge treatment, plasma treatment and the like, and polyimide can be expected to have a great effect depending on its use. In the case of a fluorine-based resin, industrially, a tetra-etching treatment, which is a kind of alkali treatment, is used. Also, although it is in the research stage,
No. 9 bulletins and magazines (eg, International Journal of Adhesion and Adhesives (INT. J. ADHESION AND ADHESIVES, Vol. 11, No. 4, No. 24)
Plasma treatments under various gas atmospheres, as described in pp. 7-254, October 1991). Furthermore, as another technique, the present inventors proposed to irradiate a KrF excimer laser on the PTFE surface in a glycidyl methacrylate gas atmosphere to improve the peel strength with an epoxy adhesive (1992 Polymer Presented at the annual conference), but was not practically sufficient.
【0005】また、その他の方法では、フッ素系樹脂の
表面エネルギーを向上させることは可能であっても、接
着剤、コーティング、メッキ等の密着性を向上するには
至っていない。Further, although other methods can improve the surface energy of the fluororesin, they have not yet improved the adhesiveness of the adhesive, coating, plating and the like.
【0006】PTFE等の難接着性の基板に無電解メッ
キを施す場合、メッキ核を付着させるために表面処理を
行わなければならない。工業的には、例えば上記のよう
なアルカリ溶液に基板を浸漬するテトラエッチング処理
等が行われている。この方法は、基板表面を加水分解す
ることにより表面エネルギーの極性成分を増大させ、メ
ッキ核の付着性を向上させるものである。When electroless plating is applied to a substrate having poor adhesion such as PTFE, a surface treatment must be performed to attach plating nuclei. Industrially, for example, a tetra-etching treatment of immersing a substrate in the above alkaline solution is performed. This method increases the polar component of the surface energy by hydrolyzing the surface of the substrate and improves the adhesion of the plating nuclei.
【0007】しかしながら、これらの方法はウエット式
なので、品質のばらつきが大きく、また選択的に必要な
箇所だけを処理することが困難である。例えばフルアデ
ティブ法の場合、核付けのあとレジスト塗布、パターニ
ングし、無電解メッキ形成を行うが、全面に核付けする
ためパターン間に残った核が絶縁性に悪影響を及ぼす。However, since these methods are of the wet type, variations in quality are large, and it is difficult to selectively process only necessary portions. In the case of the full additive method, for example, resist coating, patterning, and electroless plating are performed after nucleation, but since nucleation is performed on the entire surface, the nuclei remaining between the patterns adversely affect the insulating property.
【0008】[0008]
【発明が解決しようとする課題】従って、樹脂基材の形
状に左右されずに必要箇所のみ選択的に表面改質するこ
とができ、且つ接着剤、コーティング剤、メッキ等に対
する密着性に優れた樹脂表面の改質方法が望まれてい
る。また、無電解メッキを行う場合に、メッキ核がパタ
ーン間に残らず、絶縁性に影響を及ぼさない無電解メッ
キ形成方法が望まれている。本発明は上記のような従来
の課題を解決することを目的とするものである。Therefore, it is possible to selectively modify the surface of a required portion without being influenced by the shape of the resin base material, and it is excellent in the adhesiveness to the adhesive, the coating agent, the plating and the like. A method of modifying the resin surface is desired. Further, there is a demand for a method of forming electroless plating that does not leave plating nuclei between patterns and does not affect insulation when electroless plating is performed. The present invention aims to solve the above-mentioned conventional problems.
【0009】[0009]
【課題を解決するための手段】本発明者らは鋭意検討の
結果、上記のような従来の課題を解決することができ
た。すなわち本発明の第1は、樹脂基材をアミン化合物
ガスおよび/またはアミド化合物ガス雰囲気下におき、
その状態で該樹脂基材表面に主波長成分が360nm以
下である紫外線レーザーを照射することを特徴とする、
樹脂表面の改質方法を提供するものである。As a result of earnest studies, the present inventors were able to solve the above-mentioned conventional problems. That is, the first aspect of the present invention is to place the resin base material in an amine compound gas and / or amide compound gas atmosphere,
In that state, the surface of the resin substrate is irradiated with an ultraviolet laser having a main wavelength component of 360 nm or less,
A method for modifying a resin surface is provided.
【0010】また、本発明の第2は、前記に記載された
方法で樹脂表面の必要な部分のみ表面改質を行い、この
表面改質された部分のみ選択的にメッキ核を付着させて
無電解メッキの生成、パターニングを同時に行う、無電
解メッキ形成方法を提供するものである。In a second aspect of the present invention, only the required portion of the resin surface is surface-modified by the method described above, and plating nuclei are selectively adhered only to the surface-modified portion. The present invention provides a method for forming electroless plating, in which generation and patterning of electrolytic plating are performed simultaneously.
【0011】また、本発明の第3は、前記本発明の第2
に記載された方法の無電解メッキ形成プロセスを含む製
造プロセスにより製造された、小型電子回路基板を提供
するものである。The third aspect of the present invention is the second aspect of the present invention.
A small electronic circuit board manufactured by a manufacturing process including the electroless plating forming process of the method described in 1.
【0012】以下に本発明をさらに詳細に説明する。本
発明の樹脂表面改質法は、アミン化合物ガスおよび/ま
たはアミド化合物ガス雰囲気下で、樹脂基材表面にエキ
シマレーザー光を照射し、照射した部分のみ樹脂表面を
改質し、接着剤、コーティング材、メッキ等に対する密
着性を著しく向上させるものである。さらにこの手法で
必要部分のみ表面改質し、無電解メッキを施すと、表面
改質された部分のみ核付けされ、無電解メッキパターン
が直接形成されるため、残存メッキ核に起因するパター
ン間の絶縁性低下をなくすことができる。The present invention will be described in more detail below. The resin surface modification method of the present invention comprises irradiating an excimer laser beam on the surface of a resin substrate under an atmosphere of an amine compound gas and / or an amide compound gas to modify the resin surface only on the irradiated portion, and to form an adhesive or coating. It significantly improves the adhesion to materials, plating and the like. Further, by surface-modifying only the necessary part by this method and applying electroless plating, only the surface-modified part is nucleated and the electroless plating pattern is directly formed. Insulation deterioration can be eliminated.
【0013】本発明で使用することができる樹脂基材
は、有機高分子化合物であればとくに限定されるもので
はない。とくにPTFEやポリフッ化ビニリデン等のよ
うなフッ素系ポリマー、液晶ポリマー、ポリエチレン等
のポリオレフィン系ポリマー、ポリイミドは従来の方法
では十分な表面改質効果が得られなかったにもかかわら
ず、本発明の方法を施すことによって接着剤やメッキ等
に対し実用的な密着性が得られる。なお、例えばポリエ
チレンテレフタレートやポリパラフェニルスルフォン等
は、低圧水銀灯の低波長成分を用いても実用的な効果を
有する表面改質が可能であり、光源としてレーザーを用
いるメリットは少ない。The resin base material that can be used in the present invention is not particularly limited as long as it is an organic polymer compound. In particular, although fluorine-based polymers such as PTFE and polyvinylidene fluoride, liquid crystal polymers, polyolefin-based polymers such as polyethylene, and polyimides have not been able to obtain a sufficient surface-modifying effect by conventional methods, the method of the present invention By applying the above, practical adhesion to an adhesive or plating can be obtained. Note that, for example, polyethylene terephthalate, polyparaphenylsulfone, and the like can be surface-modified with a practical effect even when using a low wavelength component of a low pressure mercury lamp, and there is little merit in using a laser as a light source.
【0014】本発明で使用されるアミン化合物またはア
ミド化合物は、分子量500以下のものが好ましい。分
子量が500を超えるとガス化しにくい。また、分子内
に光重合性の不飽和基を有するアミンまたはアミド化合
物は、効率的に樹脂表面にグラフトするので効果が大き
く好ましい。具体的にはアクリルアミド、ジメチルアミ
ノエチル(メタ)アクリレート、ジエチルアミノエチル
(メタ)アクリレート、N,N−ジメチルアミノプロピ
ルアクリルアミド、N,N−イソプロピルアクリルアミ
ド、アクリロイルモリフォリン、ビニルピロリドン、ビ
ニルピリジン、ビニルアニリン、ビニルイミダゾール、
ビニルピラジンが好ましい。The amine compound or amide compound used in the present invention preferably has a molecular weight of 500 or less. If the molecular weight exceeds 500, it is difficult to gasify. In addition, an amine or amide compound having a photopolymerizable unsaturated group in the molecule is preferable because it effectively grafts on the resin surface. Specifically, acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropylacrylamide, N, N-isopropylacrylamide, acryloylmorpholin, vinylpyrrolidone, vinylpyridine, vinylaniline, Vinyl imidazole,
Vinylpyrazine is preferred.
【0015】本発明に係る主波長成分が360nm以下
の紫外線レーザーは、具体的には、F2(157n
m)、ArF(193nm)、KrCl(222n
m)、KrF(248nm)、XeCl(308n
m)、XeF(351nm)のエキシマレーザが好まし
い。とくにArFとKrFは、光源の安定性がよく、し
かも表面改質効果が大きいので好ましい。また1パルス
当たりのエネルギーは1J/cm2ないし1mJ/cm2が好
ましく、これを超えるとアブレーションの効果が強す
ぎ、樹脂にダメージを与えたり、樹脂表面に付着あるい
は共有結合したアミン系化合物まで除去してしまう。ま
たこれ未満だとエネルギーが足りないため、樹脂表面を
改質することができない。The ultraviolet laser having a dominant wavelength component of 360 nm or less according to the present invention is specifically F 2 (157n
m), ArF (193 nm), KrCl (222n)
m), KrF (248 nm), XeCl (308n
m) and XeF (351 nm) excimer lasers are preferred. In particular, ArF and KrF are preferable because they have good light source stability and a large surface modification effect. In addition, the energy per pulse is preferably 1 J / cm 2 to 1 mJ / cm 2 , and if it exceeds this, the effect of ablation is too strong and damages the resin, or even removes amine compounds attached or covalently bonded to the resin surface. Resulting in. If it is less than this range, the resin surface cannot be modified because the energy is insufficient.
【0016】本発明に使用されるアミド化合物ガスおよ
び/またはアミン化合物ガスは、レーザー光を照射する
チャンバー内の真空度が1mTorr〜常圧までの適当な範
囲となるように導入することができる。つまり、使用す
るアミド化合物ガスまたはアミン化合物ガスのそれぞれ
の沸点に応じて選択すればよい。しかし1mTorr未満の
高い真空度では、アミド化合物ガスやアミン化合物ガス
と樹脂との接触の度合が悪くなり好ましくない。また、
このガス導入は、例えばアルゴンガス等の不活性ガス
で、チャンバー内に強制的に導入することが好ましい。
アミド化合物ガスとアミン化合物ガスを混合して用いる
場合、両者の割合はとくに限定されず、自由に選択する
ことができる。The amide compound gas and / or amine compound gas used in the present invention can be introduced so that the degree of vacuum in the chamber irradiated with the laser beam is within a suitable range from 1 mTorr to normal pressure. That is, the selection may be made according to the respective boiling points of the amide compound gas or the amine compound gas used. However, a high degree of vacuum of less than 1 mTorr is not preferable because the degree of contact between the amide compound gas or the amine compound gas and the resin deteriorates. Also,
This gas is preferably introduced by forcibly introducing into the chamber with an inert gas such as argon gas.
When the amide compound gas and the amine compound gas are mixed and used, the ratio of the two is not particularly limited and can be freely selected.
【0017】上記のように、樹脂基材は減圧下または不
活性ガス雰囲気下におかれることが好ましい。これは樹
脂とアミド化合物ガスおよび/またはアミン化合物ガス
にレーザーを照射した際に発生するラジカルを安定に
し、アミドまたはアミン化合物ガスと樹脂間との共有結
合を促すためである。また減圧下では常温液体の化合物
もガス化しやすくなり好ましい。As described above, the resin substrate is preferably placed under reduced pressure or in an inert gas atmosphere. This is to stabilize radicals generated when the resin and the amide compound gas and / or the amine compound gas are irradiated with a laser, and to promote a covalent bond between the amide or amine compound gas and the resin. Further, under reduced pressure, compounds that are liquid at room temperature are easily gasified, which is preferable.
【0018】本発明の樹脂表面の改質方法を用いて、樹
脂基材に無電解メッキを形成させ、同時にパターニング
を形成させる場合は、基材を表面改質する際、レーザー
光源と樹脂の間にマスクを挿入し、必要部分のみ改質を
行い、次に従来技術の無電解メッキを適用することがで
きる。メッキ核は、基材の改質された表面にのみ付着
し、その結果メッキがパターン化して析出することにな
る。この際、マスク基材としてレーザー光の透過性のよ
いものを選択する必要があり、合成石英等が好ましい。When electroless plating is formed on a resin substrate and patterning is simultaneously performed by using the method for modifying a resin surface of the present invention, when the surface of the substrate is modified, a space between the laser light source and the resin is used. It is possible to insert a mask into the substrate, modify only necessary portions, and then apply the conventional electroless plating. The plating nuclei adhere only to the modified surface of the substrate, resulting in the plating being patterned and deposited. At this time, it is necessary to select a mask substrate having a high laser beam transmission property, and synthetic quartz or the like is preferable.
【0019】本発明方法を適用する樹脂基材は、例えば
1つのユニットの大きさが1000cm2以下の小型基板
であることが好ましい。本来レーザー光は10mm×50
mm角程度であるが、本発明の樹脂表面改質法で用いるレ
ーザー光は比較的エネルギーの低いものの使用が可能で
あることから、レンズによりレーザー光の照射面積を拡
大して使用することが可能である。しかしながら、あま
り大きい基板はレーザーの照射面積を考慮すると、効果
的ではない。The resin base material to which the method of the present invention is applied is preferably a small substrate in which the size of one unit is 1000 cm 2 or less. Originally the laser light is 10mm x 50
Although it is about mm square, since the laser light used in the resin surface modification method of the present invention has relatively low energy, it is possible to use by expanding the irradiation area of the laser light with a lens. Is. However, a too large substrate is not effective in view of the irradiation area of the laser.
【0020】本発明方法を行うための装置の一例を図1
に示す。チャンバー3が真空ポンプ5により1mTorr〜
常圧に調節される。また、アミドまたはアミン化合物8
が容器7に充填されている。不活性ガスとしてArボン
ベ11からArガスがマスフローメーター10により調
節されながら容器7に入る。アミドまたはアミン化合物
は、必要ならば加熱手段(図示せず)を併用することに
より、開けられたコック4を通じてArガスとともにチ
ャンバー3に入る。樹脂基材は、アミドまたはアミン化
合物ガス雰囲気下、チャンバー3上の石英窓2を通じて
レーザー光1が照射される。なお、図示してないが、ア
ミン化合物とアミド化合物の混合ガスを用いる場合は、
例えば容器7を並列に並べてそれぞれArガスを注入し
て同時にチャンバー3内に充填することができる。沸点
の高いアミドまたはアミン化合物を用いる場合は、容器
7からチャンバー3までを加熱するとよい。An example of an apparatus for carrying out the method of the present invention is shown in FIG.
Shown in. The chamber 3 is moved by the vacuum pump 5 from 1 mTorr
Adjusted to normal pressure. In addition, amide or amine compound 8
Is filled in the container 7. Ar gas as an inert gas enters the container 7 while being regulated by the mass flow meter 10 from the Ar cylinder 11. The amide or amine compound enters the chamber 3 together with Ar gas through the opened cock 4 by using a heating means (not shown) if necessary. The resin substrate is irradiated with laser light 1 through a quartz window 2 on a chamber 3 under an amide or amine compound gas atmosphere. Although not shown, when using a mixed gas of an amine compound and an amide compound,
For example, it is possible to arrange the containers 7 in parallel and inject Ar gas into each container to fill the chamber 3 at the same time. When an amide or amine compound having a high boiling point is used, the container 7 to the chamber 3 may be heated.
【0021】[0021]
【作用】本発明の樹脂表面の改質方法は、特定波長のレ
ーザー光を照射することにより、樹脂表面と、アミドま
たはアミン化合物ガスとの間に共有結合が形成され、樹
脂表面と接着剤やメッキ等との密着性が良好となる。こ
の樹脂表面の改質方法は、レーザー光を用いるため、樹
脂基材の形状に左右されずに必要部分のみ表面改質が行
える。従って、特別な前処理を行うことなく、良好な密
着性を有する無電解メッキが形成され得る。In the method for modifying the resin surface of the present invention, a covalent bond is formed between the resin surface and the amide or amine compound gas by irradiating with a laser beam of a specific wavelength, and the resin surface and adhesive or Good adhesion to plating and the like. Since the method of modifying the resin surface uses laser light, the surface modification can be performed only on a necessary portion regardless of the shape of the resin substrate. Therefore, electroless plating having good adhesion can be formed without performing special pretreatment.
【0022】[0022]
【実施例】以下、本発明を実施例によって説明する。 実施例1.図1に示される装置のチャンバー3内に、試
料として、厚さ200μm、50×50mm角のPTFE
フィルムを入れ、中を10mTorrまで減圧した。次にジ
メチルアミノエチルアクリレートが入った容器7のコッ
クを開き、キャリアーガスとしてArガス100sccmを
容器内に流した。そのときのチャンバー内の圧力は10
0mTorrであった。次にKrFエキシマレーザーを1cm
×3cm角の形状で、62mJ/cm2・パルス、パルス幅
10ns、周波数10Hzの条件で、7分間、試料表面
に石英窓を通して照射した後、容器7のコックを閉じ、
窒素ガスでチャンバー内をリークした後、試料を取り出
した。取り出した試料表面のうち、照射した箇所だけ、
やや黄色を帯びて薄く黒ずんでいた。この試料を2つ作
り、剥離試験用として、照射面を含む1cm×10cmの短
冊試験片を作成し、照射面をエポキシ系接着剤アラルダ
イドスタンダード(チバガイギー社製)で貼りあわせ
た。このときの硬化条件は、室温で2日間であった。こ
うして得られた剥離試験片を試験片1とする。EXAMPLES The present invention will be described below with reference to examples. Example 1. In the chamber 3 of the apparatus shown in FIG. 1, as a sample, a PTFE having a thickness of 200 μm and a size of 50 × 50 mm square is used.
The film was put in, and the inside pressure was reduced to 10 mTorr. Next, the cock of the container 7 containing dimethylaminoethyl acrylate was opened, and 100 sccm of Ar gas was flown into the container as a carrier gas. The pressure in the chamber at that time was 10
It was 0 mTorr. Next, use a KrF excimer laser 1 cm
After irradiating the sample surface through the quartz window for 7 minutes under the condition of × 3 cm square shape, 62 mJ / cm 2 · pulse, pulse width 10 ns and frequency 10 Hz, close the cock of the container 7,
After leaking the inside of the chamber with nitrogen gas, the sample was taken out. Of the sample surface taken out, only the irradiated part,
It was slightly yellowish and darkened. Two pieces of this sample were prepared, and a strip test piece of 1 cm × 10 cm including an irradiation surface was prepared for a peeling test, and the irradiation surface was bonded with an epoxy adhesive Araldide Standard (manufactured by Ciba Geigy). The curing condition at this time was room temperature for 2 days. The peel test piece thus obtained is referred to as test piece 1.
【0023】上記で得られた試料を、メッキ核付け処理
剤アクチベーターネオガント(日本シェーリング社製)
に室温で5分間浸漬し、水洗した後、活性化剤リデュー
サーネオガント(日本シェーリング社製)に5分間浸漬
し、無電解銅メッキ液エンプレートCu704(メルテ
ックス社製)に45℃、エアー撹拌下で4時間浸漬した
ところ、レーザー光の当たった箇所のみ約18μm厚の
銅メッキが形成された。この試料を同様に1cm×10cm
の短冊状に切り、銅/PTFE剥離試験片とした。こう
して得られた試験片を試験片2とする。The sample obtained above was used as a plating nucleating agent activator Neogant (manufactured by Japan Schering Co.).
After immersing in water for 5 minutes at room temperature and rinsing with water, immerse in activator reducer Neogant (manufactured by Japan Schering Co.) for 5 minutes, and stir in electroless copper plating solution Enplate Cu704 (manufactured by Meltex) at 45 ° C. with air stirring. After immersion for 4 hours under this condition, copper plating having a thickness of about 18 μm was formed only on the portion exposed to the laser beam. This sample is also 1 cm x 10 cm
Was cut into strips to obtain copper / PTFE peel test pieces. The test piece thus obtained is referred to as test piece 2.
【0024】また、30mm×80mm角、厚さ1mmのPT
FE基板を、上記と同条件下のチャンバーに入れ、50
mJ/cm2・パルス、10ns、10Hz、照射面積2.
5cm×7.5cm角のKrFエキシマレーザー光を、10
分間、100μmラインアンドスペースの石英/クロム
マスクを介してPTFE表面に照射した。得られた試料
をメッキ核付け処理剤アクチベーターネオガント(日本
シェーリング社製)に室温で5分間浸漬し、水洗した
後、活性化剤リデューサーネオガント(日本シェーリン
グ社製)に5分間浸漬し、無電解銅メッキ液エンプレー
トCu704(メルテックス社製)に45℃、エアー撹
拌下で4時間浸漬したところ、レーザー光の当たった箇
所のみ約18μm厚のCuメッキが形成された。このと
き得られたパターン幅は約110μmであった。また同
じプロセスで図2に示した櫛形テストパターンを形成し
た。この櫛形テストパターンを試験片3とする。Also, a PT of 30 mm × 80 mm square and 1 mm thick
Place the FE substrate in the chamber under the same conditions as above, and
mJ / cm 2 · pulse, 10 ns, 10 Hz, irradiation area 2.
A 5 cm x 7.5 cm square KrF excimer laser beam is used for 10 times.
The PTFE surface was illuminated through a 100 μm line and space quartz / chrome mask for 1 minute. The obtained sample is immersed in a plating nucleation treatment agent activator Neogant (manufactured by Japan Schering Co.) at room temperature for 5 minutes, washed with water, and then immersed in an activator reducer Neogant (manufactured by Japan Schering Co.) for 5 minutes. When immersed in an electroless copper plating solution Enplate Cu704 (manufactured by Meltex Co.) at 45 ° C. under air stirring for 4 hours, a Cu plating having a thickness of about 18 μm was formed only on the portion exposed to the laser beam. The pattern width obtained at this time was about 110 μm. The comb-shaped test pattern shown in FIG. 2 was formed by the same process. This comb-shaped test pattern is called a test piece 3.
【0025】実施例2.図1に示される装置のチャンバ
ー内に厚さ50μm、50×50mm角のポリイミドフィ
ルム・カプトン(デュポン社製)を入れ、中を10mTo
rrまで減圧した。次にジメチルアミノエチルアクリレー
トを入れた容器のコックを開き、キャリアーガスとして
Arガス100sccmを前記容器内に流した。そのときの
チャンバー内の圧力は100mTorrであった。次にKr
Fエキシマレーザーを1cm×3cm角の形状で、40mJ
/cm2・パルス、パルス幅10ns、周波数10Hz
で、7分間、試料表面に石英窓を通して照射した後、容
器のコックを閉じ、窒素ガスでチャンバー内をリークし
た後、試料を取り出した。取り出した試料表面のうち、
照射した箇所だけ薄く黒ずんでいた。この試料を2つ作
り、照射面含めて剥離試験用に1cm×10cmの短冊試験
片を切り取り、照射面をエポキシ系接着剤アラルダイド
スタンダード(チバガイギー社製)で貼りあわせた。こ
のときの硬化条件は、室温で2日間であった。こうして
得られた剥離試験片を試験片4とする。Example 2. A polyimide film Kapton (manufactured by DuPont) having a thickness of 50 μm and a size of 50 × 50 mm is put in the chamber of the apparatus shown in FIG.
The pressure was reduced to rr. Next, the cock of the container containing dimethylaminoethyl acrylate was opened, and 100 sccm of Ar gas as a carrier gas was flown into the container. The pressure in the chamber at that time was 100 mTorr. Then Kr
F excimer laser with 1cm x 3cm square shape, 40mJ
/ Cm 2 · pulse, pulse width 10 ns, frequency 10 Hz
After irradiating the sample surface through the quartz window for 7 minutes, the cock of the container was closed, the inside of the chamber was leaked with nitrogen gas, and then the sample was taken out. Of the sample surface taken out,
Only the irradiated area was darkened. Two pieces of this sample were prepared, and a strip test piece of 1 cm × 10 cm was cut out for the peeling test including the irradiation surface, and the irradiation surface was bonded with an epoxy adhesive Araldide Standard (manufactured by Ciba Geigy). The curing condition at this time was room temperature for 2 days. The peel test piece thus obtained is referred to as test piece 4.
【0026】次に厚さ50μm、5.0×7.5cm角、ポ
リイミドフィルム・カプトン(デュポン社製)を30m
J/cm2・パルス、パルス幅10ns、周波数10H
z、照射面積2.5cm×7.5cm角のKrFエキシマレー
ザー光を用い、上記と同じチャンバー条件で表面改質し
た試料を、メッキ核付け処理剤アクチベーターネオガン
ト(日本シェーリング社製)に室温で5分間浸漬し、水
洗した後、活性化剤リデューサーネオガント(日本シェ
ーリング社製)に5分間浸漬し、無電解銅メッキ液エン
プレートCu704(メルテックス社製)に45℃、エ
アー撹拌下で4時間浸漬したところ、レーザー光の当た
った箇所のみ約18μm厚の銅メッキが形成された。こ
の試料を同様に1cm×10cmの短冊状に切り、銅/カプ
トン剥離試験片とした。こうして得られた試験片を試験
片5とする。Next, a thickness of 50 μm, a 5.0 × 7.5 cm square, and a polyimide film Kapton (made by DuPont) 30 m
J / cm 2 · pulse, pulse width 10 ns, frequency 10 H
z, irradiation area 2.5 cm x 7.5 cm square, using KrF excimer laser light, surface-modified sample under the same chamber conditions as above, at room temperature in activator Neogant (Nippon Schering Co.) After immersing in water for 5 minutes and rinsing with water, immerse in Activator Reducer Neogant (made by Nippon Schering Co., Ltd.) for 5 minutes, and then in electroless copper plating solution Enplate Cu704 (made by Meltex Co., Ltd.) at 45 ° C. under air stirring. When immersed for 4 hours, copper plating having a thickness of about 18 μm was formed only on the portion exposed to the laser beam. This sample was similarly cut into 1 cm × 10 cm strips to obtain copper / Kapton peel test pieces. The test piece thus obtained is referred to as test piece 5.
【0027】また、30mm×80mm角、厚さ100μm
のポリイミドフィルム・カプトンを、上記と同条件下の
チャンバーに入れ、30mJ/cm2・パルス、パルス幅
10ns、周波数10Hz、照射面積2.5cm×7.5cm
角のKrFエキシマレーザー光を、10分間、100μ
mラインアンドスペースの石英/クロムマスクを介して
PTFE表面に照射した。得られた試料をメッキ核付け
処理剤アクチベーターネオガント(日本シェーリング社
製)に室温で5分間浸漬し、水洗した後、活性化剤リデ
ューサーネオガント(日本シェーリング社製)に5分間
浸漬し、無電解銅メッキ液エンプレートCu704(メ
ルテックス社製)に45℃、エアー撹拌下で4時間浸漬
したところ、レーザー光の当たった箇所のみ約18μm
厚の銅メッキが形成された。このとき得られたパターン
幅は約115μmであった。また同じプロセスで図2に
示した櫛形テストパターンを形成した。この櫛形テスト
パターンを試験片6とする。Also, 30 mm × 80 mm square, thickness 100 μm
Put the Polyimide film Kapton of No.3 into the chamber under the same conditions as above, and apply 30 mJ / cm 2 pulse, pulse width 10 ns, frequency 10 Hz, irradiation area 2.5 cm x 7.5 cm.
KrF excimer laser light at the corner is 100μ for 10 minutes
The PTFE surface was illuminated through a quartz / chrome mask of m lines and spaces. The obtained sample is immersed in a plating nucleation treatment agent activator Neogant (manufactured by Japan Schering Co.) at room temperature for 5 minutes, washed with water, and then immersed in an activator reducer Neogant (manufactured by Japan Schering Co.) for 5 minutes. Immersed in electroless copper plating solution Enplate Cu704 (made by Meltex Co.) at 45 ° C under air stirring for 4 hours, only about 18 μm where laser light hits
A thick copper plating was formed. The pattern width obtained at this time was about 115 μm. The comb-shaped test pattern shown in FIG. 2 was formed by the same process. This comb-shaped test pattern is referred to as a test piece 6.
【0028】実施例3.チャンバー内に、試料として、
厚さ0.635mm、50mm×75mm角のGTL−800
0基板(ゴアテックスジャパン社製高周波用基板(フッ
素系基板))の銅貼りなしものを入れ、中を10mTorr
まで減圧した。次にジメチルアミノエチルアクリレート
が入った容器のコックを開き、キャリアーガスとしてA
rガス100sccmを容器内に流し、チャンバー内の圧力
を100mTorrとした。次にKrFエキシマレーザー
を、62mJ/cm2・パルス、パルス幅10ns、周波
数10Hzの条件で、7分間、試料表面に石英窓を通し
て照射し、全面を表面改質した。続いて、得られた試料
を、接着剤を用いて5.5cm×8.0cm角、厚さ2mmの銅
貼り積層板エポキシ樹脂基板FR−4の中心に貼りつけ
た。次に貼り付け側とは反対面のGTL−8000表面
に、上記と同様な表面処理を石英/クロムマスクを介し
て行い、次にはみ出している銅部分をテープでマスキン
グし、実施例1に記載したプロセスで無電解メッキ処理
を行ったところ、エッチングすることなしに18μm厚
の銅メッキ回路パターンが形成された。続いて、この銅
メッキ回路パターン面全面に上記の表面改質を行った。Example 3. As a sample in the chamber,
GTL-800 with a thickness of 0.635 mm and 50 mm x 75 mm square
0 board (Gore-Tex Japan high-frequency board (fluorine board)) with no copper attached, put 10mTorr
The pressure was reduced to. Next, open the cock of the container containing dimethylaminoethyl acrylate and use A as the carrier gas.
100 sccm of r gas was flown into the container, and the pressure in the chamber was set to 100 mTorr. Next, a KrF excimer laser was irradiated on the sample surface through a quartz window for 7 minutes under the conditions of 62 mJ / cm 2 · pulse, pulse width 10 ns and frequency 10 Hz, and the entire surface was surface-modified. Then, the obtained sample was attached to the center of a copper-clad laminate epoxy resin substrate FR-4 of 5.5 cm × 8.0 cm square and 2 mm thick using an adhesive. Next, the same surface treatment as above was applied to the surface of the GTL-8000 opposite to the sticking side through a quartz / chrome mask, and then the protruding copper portion was masked with a tape. When electroless plating was performed by the above process, a copper-plated circuit pattern having a thickness of 18 μm was formed without etching. Subsequently, the above surface modification was performed on the entire surface of the copper-plated circuit pattern.
【0029】別のGTL−8000シートの所定の位置
にポンチで直径0.5mmのバイヤーホール孔をあけ、シ
ート片面をすべて上記と同様の表面改質を行い、さらに
位置合わせして上記で形成した銅パターンの上に接着し
た。次に上記と同様にマスクを通して表面改質を行い、
無電解銅メッキパターンを形成させて2層基板を得た。
こうして得られた基板を150℃/1時間〜30℃/1
時間のヒートショック試験を100サイクル行ったが、
導体や層間の剥がれ、バイヤーホール接続不良、基板割
れ等の不良は見られなかった。Another GTL-8000 sheet was punched to form a bayer hole having a diameter of 0.5 mm at a predetermined position, and one surface of the sheet was subjected to the same surface modification as above, and further aligned to form the sheet. Adhered on the copper pattern. Next, perform surface modification through a mask as above,
An electroless copper plating pattern was formed to obtain a two-layer board.
The substrate thus obtained is 150 ° C./1 hour to 30 ° C./1
I did a heat shock test for 100 cycles,
There were no defects such as peeling between conductors or layers, poor buyer hole connection, and substrate cracking.
【0030】実施例4.チャンバー内に、試料として、
BTレジン基板(銅貼りなし)を入れ、中を10mTorr
まで減圧した。次にジメチルアミノエチルアクリレート
が入った容器のコックを開き、キャリアーガスとしてA
rガス100sccmを容器内に流した。そのときのチャン
バー内の圧力は100mTorrであった。次にKrFエキ
シマレーザーを、62mJ/cm2・パルス、パルス幅1
0ns、周波数10Hzで、7分間、マスクを通してK
rFレーザーを照射し、メッキが必要な部分に表面改質
を行った。次にアクチベーターネオガントに室温で5分
浸漬し、改質部分にメッキ核を付着させた。この試料の
処理面側に感光性永久レジストドライフィルム・フォテ
ックを貼り、表面処理した部分が露出するようにパター
ニングした。この試料をメッキ核活性剤、リデューサー
ネオガントに室温5分間浸漬し、メッキ核を活性化し、
水洗後エンプレートCu704Dに45℃、エアー撹拌
で5時間浸漬し、約18μmの銅メッキパターンを得
た。またテストパターンとして図2に示す2mmスペース
の櫛形電極パターンを同様のプロセスで作製した。これ
を試験片7とする。Example 4. As a sample in the chamber,
Put a BT resin substrate (without copper) and put 10mTorr inside
The pressure was reduced to. Next, open the cock of the container containing dimethylaminoethyl acrylate and use A as the carrier gas.
100 sccm of r gas was flown into the container. The pressure in the chamber at that time was 100 mTorr. Next, use KrF excimer laser with 62 mJ / cm 2 · pulse and pulse width 1
K through the mask for 7 minutes at 0 ns and frequency of 10 Hz
Irradiation with an rF laser was performed to modify the surface of the area where plating was required. Next, it was immersed in an activator Neogant at room temperature for 5 minutes to attach plating nuclei to the modified portion. A photosensitive permanent resist dry film photech was attached to the treated surface of this sample, and patterning was performed so that the surface-treated portion was exposed. This sample is immersed in a plating nucleus activator, reducer neogant for 5 minutes at room temperature to activate the plating nucleus,
After washing with water, it was immersed in an enplate Cu704D at 45 ° C. for 5 hours with air stirring to obtain a copper plating pattern of about 18 μm. As a test pattern, a comb-shaped electrode pattern having a space of 2 mm shown in FIG. 2 was manufactured by the same process. This is designated as test piece 7.
【0031】評価結果 試験片1(PTFE)、試験片4(ポリイミドフィル
ム)および実施例1と同じ接着剤を用いた比較試験片同
士の剥離強度結果を以下に示す。なお、比較試験片は、
未処理PTFE(比較試験片1)、テトラエッチ処理
(比較試験片2)、未処理カプトンフィルム(比較試験
片3)、650W低圧水銀灯30秒照射カプトンフィル
ム(比較試験片4)とし、それぞれ同時に試験した。ク
ロスヘッドスピード(剥離スピード)は、10cm/分と
した。その結果を表1に示す。Evaluation Results The peel strength results of the test piece 1 (PTFE), the test piece 4 (polyimide film) and the comparative test piece using the same adhesive as in Example 1 are shown below. In addition, the comparative test piece,
Untreated PTFE (Comparative Specimen 1), Tetra Etch Treatment (Comparative Specimen 2), Untreated Kapton Film (Comparative Specimen 3), 650W Low Pressure Mercury Lamp 30 Seconds Irradiated Kapton Film (Comparative Specimen 4), and tested simultaneously did. The crosshead speed (peeling speed) was set to 10 cm / min. The results are shown in Table 1.
【0032】[0032]
【表1】 [Table 1]
【0033】試験片2(PTFE)、試験片5(ポリイ
ミドフィルム)および比較試験片と無電解銅メッキとの
剥離試験結果を以下に示す。なお、比較試験片は、未処
理PTFE(比較試験片5)、テトラエッチ処理(比較
試験片6)、未処理カプトンフィルム(比較試験片
7)、650W低圧水銀灯30秒照射カプトンフィルム
(比較試験片8)とし、それぞれ同時に試験した。ただ
し、比較試験片7についてはそのままではメッキ核が付
着しないので、一般的な前処理としてセキュリガント9
02(日本シェーリング社製脱脂洗浄剤)に室温5分間
浸漬、湯洗、ニュートラガント(日本シェーリング社製
表面粗面化剤)に室温5分間浸漬、湯洗、プリディップ
ネオガント(日本シェーリング社製中和処理剤)に室温
1分間浸漬、湯洗のプロセスを経たものを用いた。剥離
試験条件は、上記と同様とした。得られた結果を表2に
示す。The results of peeling test between the test piece 2 (PTFE), the test piece 5 (polyimide film) and the comparative test piece and the electroless copper plating are shown below. The comparative test pieces were untreated PTFE (comparative test piece 5), tetraetch treatment (comparative test piece 6), untreated Kapton film (comparative test piece 7), 650 W low-pressure mercury lamp for 30 seconds irradiation Kapton film (comparative test piece). 8) and tested simultaneously. However, since the plating nuclei do not adhere to the comparative test piece 7 as it is, a general pretreatment is performed using a securigant 9
02 (Nippon Schering's degreaser) at room temperature for 5 minutes, hot water rinse, Neutragant (Nippon Schering's surface roughening agent) at room temperature for 5 minutes, hot water rinse, Pre-dip Neogant (Nippon Schering) It was used after being subjected to a process of immersion in a neutralizing agent) at room temperature for 1 minute and washing with hot water. The peel test conditions were the same as above. The obtained results are shown in Table 2.
【0034】[0034]
【表2】 [Table 2]
【0035】表1および表2の結果より、本発明方法の
有効性が明確に現れている。From the results shown in Tables 1 and 2, the effectiveness of the method of the present invention is clearly shown.
【0036】次に、試験片3、試験片6、試験片7およ
び比較試験片の銅メッキパターン間の絶縁性評価を行っ
た。それぞれの試験片の櫛形電極を50℃、90%相対
湿度環境下におき、両端にDC45Vを印加し24時間
後の電流値を測定した。なお、比較試験片は、テトラエ
ッチ処理した1mm厚PTFE基板全面に無電解銅メッキ
を18μm形成し、試験片3と同様のパターンをエッチ
ングレジストおよび塩化第二鉄を用いてエッチングにて
形成した試料(比較試験片9)、同様な手法で50μm
厚カプトンフィルムにパターンを形成した試料(比較試
験片10)、BTレジン基板(銅貼りなし)に前処理と
してセキュリガント902(日本シェーリング社製脱脂
洗浄剤)に室温5分間浸漬、湯洗、ニュートラガント
(日本シェーリング社製表面粗面化剤)に室温5分間浸
漬、湯洗、プリディップネオガント(日本シェーリング
社製中和処理剤)に室温1分間浸漬、湯洗を行い、続い
てアクチベーターネオガントに室温で5分浸漬し改質部
分にメッキ核を付着させ、この試料の処理面側に感光性
永久レジストドライフィルム・フォテックを貼り、試料
片7と同様なパターニングを行い、リデューサーネオガ
ントに室温5分間浸漬し、メッキ核を活性化した後、水
洗後エンプレートCu704Dに45℃、エアー撹拌で
5時間浸漬し、約18μmの銅メッキパターンを得たも
の(比較試験片11)とした。得られた結果を表3に示
す。Next, the insulation properties between the copper plating patterns of the test piece 3, the test piece 6, the test piece 7 and the comparative test piece were evaluated. The comb-shaped electrode of each test piece was placed in an environment of 50 ° C. and 90% relative humidity, DC 45 V was applied to both ends, and the current value after 24 hours was measured. The comparative test piece was a sample in which electroless copper plating was formed on the entire surface of a tetra-etched 1 mm thick PTFE substrate to a thickness of 18 μm and the same pattern as test piece 3 was formed by etching using an etching resist and ferric chloride. (Comparative test piece 9), 50 μm with the same method
A sample (comparative test piece 10) having a pattern formed on a thick Kapton film and a BT resin substrate (without copper attachment) were pre-treated by dipping in Securligant 902 (a degreasing detergent manufactured by Nippon Schering Co., Ltd.) at room temperature for 5 minutes, washing with water, and neutral. Immerse in Gantt (a surface roughening agent made by Nippon Schering Co., Ltd.) at room temperature for 5 minutes, and then wash with hot water. Predip Neo Gantt (neutralization treatment agent made by Nippon Schering Co., Ltd.) at room temperature for 1 minute and then wash with hot water, and then activator. Immerse in Neogant at room temperature for 5 minutes to attach the plating nuclei to the modified part, attach a photosensitive permanent resist dry film / fotech to the treated surface of this sample, perform the same patterning as sample piece 7, and reducer neogant After activating the plating nuclei for 5 minutes at room temperature, rinse with water and soak in Enplate Cu704D for 5 hours at 45 ° C. with air stirring, Those obtained copper plating pattern of μm was (comparative test piece 11). The results obtained are shown in Table 3.
【0037】[0037]
【表3】 [Table 3]
【0038】以上のように、試験片3、比較試験片9、
試験片6と比較試験片10でほとんど差がなく、本発明
方法で作製した銅配線は従来のものとほぼ同じ性能を有
することが分かる。さらにフルアディティブ法に適用し
た場合は、試験片7と比較試験片11では試験片7のほ
うが配線間絶縁特性に優れていることがわかる。これは
試験片7では配線間にメッキ核がついていないことに起
因していると考えられる。As described above, the test piece 3, the comparative test piece 9,
There is almost no difference between the test piece 6 and the comparative test piece 10, and it can be seen that the copper wiring manufactured by the method of the present invention has almost the same performance as the conventional one. Further, when applied to the full-additive method, it is found that the test piece 7 of the test piece 7 and the comparative test piece 11 is superior in the inter-wiring insulation characteristic. It is considered that this is because the test piece 7 has no plating nucleus between the wirings.
【0039】[0039]
【発明の効果】本発明によって、樹脂基材の形状に左右
されずに必要箇所のみ選択的に表面改質することがで
き、且つ接着剤やメッキ等に対する密着性に優れた樹脂
表面の改質方法が提供される。さらに本発明によって、
メッキ核がパターン間に残らず、絶縁性に影響を及ぼさ
ない無電解メッキ形成方法が提供される。本発明方法を
メッキパターニングプロセスに適用すると、基板に直接
パターン状に無電解メッキを析出することができ、電子
回路基板作製に応用することによりエッチングプロセス
なしに多層基板を作製することができる。EFFECTS OF THE INVENTION According to the present invention, the surface of a resin can be selectively modified on a required portion without being influenced by the shape of the resin substrate, and the surface of the resin is excellent in adhesion to an adhesive or plating. A method is provided. Further according to the present invention,
Provided is a method for forming electroless plating in which plating nuclei do not remain between patterns and the insulating property is not affected. When the method of the present invention is applied to a plating patterning process, electroless plating can be directly deposited on a substrate in a pattern, and by applying it to an electronic circuit board fabrication, a multilayer board can be fabricated without an etching process.
【図1】本発明に用いられる表面改質装置の一例の概略
図である。FIG. 1 is a schematic view of an example of a surface modification device used in the present invention.
【図2】櫛形テストパターンの概略図である。FIG. 2 is a schematic view of a comb-shaped test pattern.
1 レーザー光 2 石英窓 3 チャンバー 4 コック 5 真空ポンプ 6 真空計 7 容器 8 アミドまたはアミン化合物 9 フローメーター 10 マスフローメーター 11 Arボンベ 1 Laser Light 2 Quartz Window 3 Chamber 4 Cock 5 Vacuum Pump 6 Vacuum Gauge 7 Vessel 8 Amide or Amine Compound 9 Flow Meter 10 Mass Flow Meter 11 Ar Cylinder
Claims (3)
化合物ガス雰囲気下で、樹脂基材に主波長成分が360
nm以下である紫外線レーザーを照射することを特徴と
する、樹脂表面の改質方法。1. A resin substrate containing a main wavelength component of 360 in an amine compound gas and / or amide compound gas atmosphere.
A method for modifying a resin surface, which comprises irradiating an ultraviolet laser having a wavelength of nm or less.
必要な部分のみ表面改質を行い、この表面改質された部
分のみ選択的にメッキ核を付着させて無電解メッキの生
成、パターニングを同時に行う、無電解メッキ形成方
法。2. The method according to claim 1, wherein only a necessary portion of the resin surface is surface-modified, and plating nuclei are selectively attached only to the surface-modified portion to generate electroless plating. A method for forming electroless plating, in which patterning is performed simultaneously.
キ形成プロセスを含む製造プロセスにより製造された、
小型電子回路基板。3. Manufactured by a manufacturing process including the electroless plating forming process of the method according to claim 2,
Small electronic circuit board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04240189A JP3098869B2 (en) | 1992-09-09 | 1992-09-09 | Method for modifying resin surface, method for forming electroless plating, and small electronic circuit board manufactured using the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04240189A JP3098869B2 (en) | 1992-09-09 | 1992-09-09 | Method for modifying resin surface, method for forming electroless plating, and small electronic circuit board manufactured using the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0687964A true JPH0687964A (en) | 1994-03-29 |
JP3098869B2 JP3098869B2 (en) | 2000-10-16 |
Family
ID=17055791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04240189A Expired - Fee Related JP3098869B2 (en) | 1992-09-09 | 1992-09-09 | Method for modifying resin surface, method for forming electroless plating, and small electronic circuit board manufactured using the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3098869B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126776A (en) * | 1996-06-28 | 2000-10-03 | Nkt Research Center A/S | Method of modifying the surface of a solid polymer substrate and the product obtained |
JP2003027250A (en) * | 2001-07-18 | 2003-01-29 | Toyota Motor Corp | Method for forming electroless plating film of resin |
US6560863B2 (en) | 2000-08-11 | 2003-05-13 | Shinko Electric Industries, Co., Ltd. | Method of producing wiring board |
JP2005290454A (en) * | 2004-03-31 | 2005-10-20 | Advanced Materials Processing Inst Kinki Japan | Method for forming thin film circuit |
US7078789B2 (en) | 2002-12-12 | 2006-07-18 | Shinko Electric Industries Co., Ltd. | Method of forming a metal film, semiconductor device and wiring board |
US7758923B2 (en) | 2005-08-18 | 2010-07-20 | Hitachi Maxell Ltd. | Method of producing a metallized molded article utilizing a pressurized fluid containing a metal complex |
CN102177276A (en) * | 2008-08-12 | 2011-09-07 | 喷射金属技术公司 | Process for the optophysical surface treatment of polymer substrates and device for implementing the process |
JP5654154B1 (en) * | 2013-08-09 | 2015-01-14 | キヤノン・コンポーネンツ株式会社 | RESIN PRODUCT AND METHOD FOR PRODUCING RESIN PRODUCT WITH METAL COATING, RESIN PRODUCT WITH METAL COATING, AND WIRING BOARD |
JP5856278B1 (en) * | 2014-12-17 | 2016-02-09 | キヤノン・コンポーネンツ株式会社 | MODIFICATION METHOD, RESIN PRODUCT WITH PLATING FILM, AND METHOD FOR PRODUCING SAME |
JP2017534747A (en) * | 2015-07-29 | 2017-11-24 | 蘇州衛鵬機電科技有限公司 | Method for producing polyimide non-adhesive flexible printed circuit board |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003072851A1 (en) * | 2002-02-28 | 2003-09-04 | Zeon Corporation | Partial plating method, partially-plated resin base, method for manufacturing multilayer circuit board |
-
1992
- 1992-09-09 JP JP04240189A patent/JP3098869B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126776A (en) * | 1996-06-28 | 2000-10-03 | Nkt Research Center A/S | Method of modifying the surface of a solid polymer substrate and the product obtained |
USRE39000E1 (en) * | 1996-06-28 | 2006-03-07 | Nkt Research A/S | Method of modifying the surface of a solid polymer substrate and the product obtained |
US6560863B2 (en) | 2000-08-11 | 2003-05-13 | Shinko Electric Industries, Co., Ltd. | Method of producing wiring board |
JP2003027250A (en) * | 2001-07-18 | 2003-01-29 | Toyota Motor Corp | Method for forming electroless plating film of resin |
US7078789B2 (en) | 2002-12-12 | 2006-07-18 | Shinko Electric Industries Co., Ltd. | Method of forming a metal film, semiconductor device and wiring board |
JP2005290454A (en) * | 2004-03-31 | 2005-10-20 | Advanced Materials Processing Inst Kinki Japan | Method for forming thin film circuit |
US7758923B2 (en) | 2005-08-18 | 2010-07-20 | Hitachi Maxell Ltd. | Method of producing a metallized molded article utilizing a pressurized fluid containing a metal complex |
US8911828B2 (en) | 2005-08-18 | 2014-12-16 | Hitachi Maxell, Ltd. | Method of producing molded article |
CN102177276A (en) * | 2008-08-12 | 2011-09-07 | 喷射金属技术公司 | Process for the optophysical surface treatment of polymer substrates and device for implementing the process |
JP5654154B1 (en) * | 2013-08-09 | 2015-01-14 | キヤノン・コンポーネンツ株式会社 | RESIN PRODUCT AND METHOD FOR PRODUCING RESIN PRODUCT WITH METAL COATING, RESIN PRODUCT WITH METAL COATING, AND WIRING BOARD |
JP2015057457A (en) * | 2013-08-09 | 2015-03-26 | キヤノン・コンポーネンツ株式会社 | Method for producing resin product and metal film-fitted resin product, metal film-fitted resin product and wiring board |
US9745428B2 (en) | 2013-08-09 | 2017-08-29 | Canon Components, Inc. | Method for processing resin product and resin product |
JP5856278B1 (en) * | 2014-12-17 | 2016-02-09 | キヤノン・コンポーネンツ株式会社 | MODIFICATION METHOD, RESIN PRODUCT WITH PLATING FILM, AND METHOD FOR PRODUCING SAME |
JP2017534747A (en) * | 2015-07-29 | 2017-11-24 | 蘇州衛鵬機電科技有限公司 | Method for producing polyimide non-adhesive flexible printed circuit board |
Also Published As
Publication number | Publication date |
---|---|
JP3098869B2 (en) | 2000-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4528634B2 (en) | Method for forming metal film | |
JP2005502196A (en) | Liquid crystal polymer for flexible circuit | |
CA2405830C (en) | Process for the manufacture of printed circuit boards with plated resistors | |
JP5360963B2 (en) | Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film | |
JPH04211192A (en) | Method of pretreating surface for plating polyimide surface | |
US4568562A (en) | Method of electroless plating employing plasma treatment | |
JP3098869B2 (en) | Method for modifying resin surface, method for forming electroless plating, and small electronic circuit board manufactured using the method | |
JP2005307140A (en) | Surface graft formation, formation method for conductive film, metallic pattern formation, formation method for multilayer printed circuit board, surface grafting material and electroconductive material | |
Siau et al. | Influence of chemical pretreatment of epoxy polymers on the adhesion strength of electrochemically deposited Cu for use in electronic interconnections | |
MXPA05003831A (en) | Pretreatment method for electroless plating material and method for producing member having plated coating. | |
EP1241209A2 (en) | Solvent swell containing heterocyclic nitrogen compounds and glycols for texturing resinous material and desmearing and removing resinous material | |
EP1973670A1 (en) | Method of using ultrasonics to plate silver | |
AU580433B2 (en) | Process for conditioning the surface of plastic substrates prior to metal plating | |
Yang et al. | Excimer laser-induced formation of metallic microstructures by electroless copper plating | |
JP2002192648A (en) | Composite material improved in junction strength and method for forming the same | |
JPH10245444A (en) | Formation of electoconductive film on polyimide resin surface | |
JP2007165931A (en) | Substrate for electronic parts using polyimide resin precursor solution, and manufacturing method of substrate | |
JPH09157417A (en) | Surface modification of polyimide resin | |
US6023842A (en) | Process for the manufacture of printed circuit boards | |
JPH0222477A (en) | Pretreatment for electroless plating | |
Hayden | Enhanced adhesion between electroless copper and advanced substrates | |
JP2003029401A (en) | Photosensitive high molecular metallic complex dry film and method for forming metallic circuit using the same | |
JP2002290014A (en) | Method of forming metallic circuit pattern | |
Karas et al. | The Nature of the Metal/Polyetherimide Chemical Bond | |
JPS60109298A (en) | Method of producing printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |