JPH0686928A - Method for reaction - Google Patents

Method for reaction

Info

Publication number
JPH0686928A
JPH0686928A JP24040192A JP24040192A JPH0686928A JP H0686928 A JPH0686928 A JP H0686928A JP 24040192 A JP24040192 A JP 24040192A JP 24040192 A JP24040192 A JP 24040192A JP H0686928 A JPH0686928 A JP H0686928A
Authority
JP
Japan
Prior art keywords
reaction
vessel
reaction vessel
outlet
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24040192A
Other languages
Japanese (ja)
Inventor
Masanobu Yamase
正信 山瀬
Yoshio Hashimoto
義雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP24040192A priority Critical patent/JPH0686928A/en
Publication of JPH0686928A publication Critical patent/JPH0686928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To control a reaction so as to perform always it under an optimum condition by a method wherein parameters indicating the degree of reaction promotion at the outlet part and inside of a reaction vessel are detected and ratios of feeding of a plurality of raw materials for the reaction are controlled so as to make the parameters within set ranges. CONSTITUTION:A mixture for a reaction contg. a plurality of raw materials A and B for the reaction is fed to the inlet part of a reaction vessel filled with a catalyst and the reaction is successively advanced along the inlet part of the reaction vessel to the outlet part thereof and a mixture of the reaction product is obtd. from the outlet part of the reaction vessel. In this case, a parameter P1 indicating the degree of reaction promotion at the outlet of the reaction vessel and a parameter P2 indicating the degree of reaction promotion inside of the reaction vessel are detected. The feeding ratio of the raw materials A and B for the reaction is controlled in such a way that these parameters P1 and P2 are within a preset ranges by using the parameter P2 as a target for the control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反応方法に関するもの
である。更に詳しくは、本発明は、触媒を充填した反応
容器の入口部に少なくとも二種の反応用原料を含有する
反応用混合物を供給し、反応容器の入口部から出口部に
沿って反応を漸次進行せしめ、反応容器の出口部から反
応生成混合物を取得する反応方法であって、使用中にお
ける触媒の性能変化その他の反応環境条件の変動にかか
わらず、常に最適な条件下に反応を行わせしめるように
反応を制御できる反応方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a reaction method. More specifically, the present invention supplies a reaction mixture containing at least two kinds of reaction raw materials to the inlet of a reaction vessel filled with a catalyst, and gradually advances the reaction from the inlet to the outlet of the reaction vessel. A reaction method in which the reaction product mixture is obtained from the outlet of the reaction vessel, so that the reaction is always performed under optimal conditions regardless of changes in catalyst performance during use and changes in other reaction environment conditions. The present invention relates to a reaction method capable of controlling a reaction.

【0002】[0002]

【従来の技術】触媒を充填した反応容器の入口部に少な
くとも二種の反応用原料を含有する反応用混合物を供給
し、反応容器の入口部から出口部に沿って反応を漸次進
行せしめ、反応容器の出口部から反応生成混合物を取得
する反応方法は公知である。しかしながら、該反応方法
においては、触媒が使用中に劣化することによりその性
能が変化し、かつ触媒以外の反応環境条件が経時的に変
動し、そのためかかる条件の変動にかかわらず常に最適
な条件下に反応を行わせしめるように反応を制御するこ
とは困難であり、仮にそのような制御を行おうとする場
合には、反応状態の監視及び該監視結果に基づく反応条
件の調整に多大の人手を要し、特に工業的実施の観点か
らは、極めて不都合であった。
2. Description of the Related Art A reaction mixture containing at least two kinds of reaction raw materials is supplied to an inlet of a reaction vessel filled with a catalyst, and the reaction is gradually progressed from the inlet to the outlet of the reaction vessel. The reaction method for obtaining the reaction product mixture from the outlet of the container is known. However, in the reaction method, the performance of the catalyst changes due to deterioration during use, and the reaction environment conditions other than the catalyst fluctuate with time. It is difficult to control the reaction so as to cause the reaction to occur, and if such control is to be performed, it requires a great deal of manual labor to monitor the reaction state and adjust the reaction condition based on the monitoring result. However, it was extremely inconvenient from the viewpoint of industrial implementation.

【0003】[0003]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明が解決しようとする主たる課題は、触媒を充填した
反応容器の入口部に少なくとも二種の反応用原料を含有
する反応用混合物を供給し、反応容器の入口部から出口
部に沿って反応を漸次進行せしめ、反応容器の出口部か
ら反応生成混合物を取得する反応方法であって、使用中
における触媒の性能変化その他の反応環境条件の変動に
かかわらず、常に最適な条件下に反応を行わせしめるよ
うに反応を制御できる反応方法を提供する点に存する。
In view of such circumstances, the main problem to be solved by the present invention is to supply a reaction mixture containing at least two kinds of reaction raw materials to the inlet of a reaction vessel filled with a catalyst. A reaction method in which the reaction is gradually advanced from the inlet to the outlet of the reaction vessel and the reaction product mixture is obtained from the outlet of the reaction vessel, and the performance change of the catalyst during use and other reaction environmental conditions It is to provide a reaction method capable of controlling the reaction so that the reaction is always performed under optimum conditions regardless of fluctuations.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意検討の結果、本発明に到達したもの
である。すなわち、本発明は、触媒を充填した反応容器
の入口部に少なくとも二種(A及びB)の反応用原料を
含有する反応用混合物を供給し、反応容器の入口部から
出口部に沿って反応を漸次進行せしめ、反応容器の出口
部から反応生成混合物を取得する反応方法において、反
応容器出口部における反応進行度を表わすパラメータ
(P1 )及び反応容器内部の少なくとも一点における反
応進行度を表わすパラメータ(P2 )を検出し、P1
びP2 が予め設定された範囲内に入るようにP2 を制御
目標として反応用原料AとBの供給比率を制御すること
を特徴とする反応方法に係るものである。
The present inventors have arrived at the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, a reaction mixture containing at least two kinds of reaction raw materials (A and B) is supplied to an inlet of a reaction vessel filled with a catalyst, and a reaction is performed from an inlet to an outlet of the reaction vessel. In a reaction method in which the reaction product mixture is obtained from the outlet of the reaction vessel, the parameter (P 1 ) indicating the degree of reaction progress at the outlet of the reaction vessel, and the parameter indicating the degree of reaction progress at least at one point inside the reaction vessel. (P 2 ) is detected, and the supply ratio of the reaction raw materials A and B is controlled with P 2 as a control target so that P 1 and P 2 fall within a preset range. It is related.

【0005】以下、詳細に説明する。本発明が適用でき
る反応は、触媒を充填した反応容器の入口部に少なくと
も二種の反応用原料を含有する反応用混合物を供給し、
反応容器の入口部から出口部に沿って反応を漸次進行せ
しめ、反応容器の出口部から反応生成混合物を取得する
反応方法であり、その他の条件については特に制限はな
い。
The details will be described below. The reaction to which the present invention is applicable is to supply a reaction mixture containing at least two kinds of reaction raw materials to the inlet of a reaction vessel filled with a catalyst,
This is a reaction method in which the reaction is gradually progressed from the inlet to the outlet of the reaction vessel and the reaction product mixture is obtained from the outlet of the reaction vessel. There are no particular restrictions on other conditions.

【0006】反応進行度を表わすパラメータ(P1 及び
2 )としては、たとえば反応混合物中の着目成分の濃
度を用いることができ、該着目成分としては、反応用原
料成分、生成物成分、副生物成分などをあげることがで
きる。ここで、P1 及びP2は同種のものを用いてもよ
く、又は異種のものを用いてもよい。
As the parameters (P 1 and P 2 ) representing the reaction progress degree, for example, the concentration of the target component in the reaction mixture can be used, and the target component is the reaction raw material component, the product component, and the secondary component. Biological ingredients can be mentioned. Here, P 1 and P 2 may be of the same kind or different kinds.

【0007】P2 を検出する位置は、反応容器内部の少
なくとも一点であり、反応容器の入口部から出口方向へ
向かって0.45H〜0.75H(ここで、Hは入口部
と出口部の距離を表わし、距離はいずれも触媒充填層を
基準にする。)だけ入った地点か好ましい。P2 を検出
する位置が、反応容器の入口部又は出口部に近い場合
は、目的とする反応制御が困難になる場合がある。
The position at which P 2 is detected is at least one point inside the reaction vessel, and 0.45H to 0.75H from the inlet to the outlet of the reaction vessel (where H is between the inlet and the outlet). It represents a distance, and each distance is preferably based on the catalyst packed bed.). If the position for detecting P 2 is close to the inlet or outlet of the reaction vessel, the desired reaction control may be difficult.

【0008】更に、P2 を検出する位置は、反応容器の
器壁から中心方向へ0.1L〜0.9L(ここで、Lは
器壁と器壁の間の距離を表わす。)だけ入った地点であ
ることが好ましい。P2 を検出する位置が器壁に近すぎ
る場合は、触媒の平均的性能を把握するのが困難にな
り、目的とする反応制御が困難になる場合がある。
Further, the position for detecting P 2 is only 0.1 L to 0.9 L (where L represents the distance between the vessel walls) from the vessel wall of the reaction vessel toward the center. It is preferable that it is a point. If the position for detecting P 2 is too close to the vessel wall, it may be difficult to grasp the average performance of the catalyst, and it may be difficult to control the desired reaction.

【0009】P1 及びP2 を検出する手段としては、た
とえば各パラメータ検出位置における反応中間混合物を
一部採取して分析する方法があげられる。分析手段とし
ては、たとえばプロセスガスクロマトグラフィーにより
行う方法があげられる。
Means for detecting P 1 and P 2 include, for example, a method in which a part of the reaction intermediate mixture at each parameter detection position is sampled and analyzed. Examples of the analysis means include a method performed by process gas chromatography.

【0010】AとBの供給比率を制御する方法として
は、反応容器の入口部にAとBの供給比率設定手段を設
け、P1 が予め設定された範囲に入るようなP2 を定
め、該P 2 を該供給比率設定手段に入力することにより
AとBの供給比率を自動制御する方法をあげることがで
きる。このことにより、多大な人手を要することなく、
自動的に最適な供給比率下において反応を行うことがで
きる。なお、自動制御の方法としては、たとえば通常の
サンプル値PI制御を用いることができる。
As a method of controlling the supply ratio of A and B
Is equipped with a supply ratio setting means for A and B at the inlet of the reaction vessel.
K, P1Such that P is within a preset range2Set
Therefore, the P 2By inputting to the supply ratio setting means
A method to automatically control the supply ratio of A and B is possible.
Wear. By this, without requiring a lot of manpower,
It is possible to automatically perform the reaction under the optimum supply ratio.
Wear. As an automatic control method, for example, a normal
A sampled PI control can be used.

【0011】次に、本発明を適用できる態様の一例とし
て、接触還元用触媒の存在下、1,3−ブタジエン含有
混合物を水素還元に付し、1,3−ブタジエンを1−ブ
テンに変換する方法について説明する。
Next, as an example of an embodiment to which the present invention can be applied, a 1,3-butadiene-containing mixture is subjected to hydrogen reduction in the presence of a catalyst for catalytic reduction to convert 1,3-butadiene to 1-butene. The method will be described.

【0012】ナフサを接触熱分解してエチレン、プロピ
レンなどを得るに際し、4ケの炭素を有する副生物、い
わゆるC4 留分が発生する。このC4 留分からは、ブタ
ジエンが抽出により分離回収され、その残留分として1
−ブテン、イソブテンを主成分とする抽残分が得られ
る。更に、抽残分は1−ブテン及びイソブテンの各成分
に分離回収され、各成分は各々有効利用される。このう
ち、1−ブテンは、ポリマー原料として利用され得る。
ところが、上記の方法により得られた1−ブテン中に
は、少量の1,3−ブタジエンが残留し、1−ブテンを
ポリマー原料として利用するためには1,3−ブタジエ
ン濃度を0〜50wt ppm程度に抑える必要があ
る。そのためには、1,3−ブタジエン及び1−ブテン
を含有する混合物を水素と共に接触還元反応に付し、
1,3−ブタジエンを1−ブテンに変換すればよい。し
かしながら、該反応において供給する水素が過少である
と目的とする1,3−ブタジエンの還元反応が十分に進
行せず、一方供給する水素が過多であると1−ブテンが
2−ブテンに異性化されてしまうという問題がある。す
なわち、目的とする反応を十分に進行せしめ、かつ異性
化を最小限に抑えるためには、過多でも過少でもない、
最適量の水素を供給する必要があるのである。ところ
で、反応の進行度は触媒の性能その他の反応環境条件に
依存し、かかる反応環境条件は通常変動するので、水素
の最適量も該反応環境条件の変動に伴って変化する。し
たがって、最適量の水素を供給するためには、反応環境
条件の変動を常時監視し、水素の供給量を調整する必要
があり、このためには多大の人手を要し、特に産業上実
施の観点からは、極めて不都合である。しかし、本発明
によると、かかる不都合は一挙に解決されるのである。
When naphtha is catalytically pyrolyzed to obtain ethylene, propylene and the like, a so-called C 4 fraction having 4 carbon atoms is generated. From this C 4 fraction, butadiene was separated and recovered by extraction, and the residual fraction was 1
-The extraction residue containing butene and isobutene as main components is obtained. Further, the raffinate residue is separated and recovered into each component of 1-butene and isobutene, and each component is effectively used. Of these, 1-butene can be used as a polymer raw material.
However, a small amount of 1,3-butadiene remains in 1-butene obtained by the above method, and in order to utilize 1-butene as a polymer raw material, the 1,3-butadiene concentration is 0 to 50 ppm by weight. It is necessary to suppress it to a certain degree. To that end, a mixture containing 1,3-butadiene and 1-butene is subjected to a catalytic reduction reaction with hydrogen,
It is sufficient to convert 1,3-butadiene to 1-butene. However, if the amount of hydrogen supplied in the reaction is too small, the desired reduction reaction of 1,3-butadiene does not proceed sufficiently, while if the amount of hydrogen supplied is too large, 1-butene is isomerized to 2-butene. There is a problem that it will be done. That is, in order to allow the desired reaction to proceed sufficiently and to minimize isomerization, neither too much nor too little,
It is necessary to supply the optimum amount of hydrogen. By the way, the degree of progress of the reaction depends on the performance of the catalyst and other reaction environment conditions, and such reaction environment conditions usually fluctuate. Therefore, the optimum amount of hydrogen also changes with the fluctuation of the reaction environment conditions. Therefore, in order to supply the optimum amount of hydrogen, it is necessary to constantly monitor the fluctuations in the reaction environment conditions and adjust the hydrogen supply amount. From the point of view, it is extremely inconvenient. However, according to the present invention, such inconveniences are solved all at once.

【0013】反応用混合物中の1,3−ブタジエンの濃
度は、特に制限はないが、通常500〜4000wt
ppm、好ましくは1000〜3000wt ppmで
ある。P2 を検出する位置は、反応容器の入口部から出
口方向へ向かって0.45L〜0.75H(ここで、H
は入口部と出口部の距離を表わし、距離はいずれも触媒
充填層を基準にする。)だけ入った地点が好ましい。更
に、P2 を検出する位置が、反応容器の器壁から中心方
向へ0.1L〜0.9L(ここで、Lは器壁と器壁の間
の距離を表わす。)だけ入った地点であることが好まし
い。P1 及びP 2 としては、1,3−ブタジエンの濃度
を用い、P1 の設定範囲は0〜40wtppm、好まし
くは0〜15wtppmとし、またP2 の設定範囲は0
〜60wt ppm、好ましくは1〜40wt ppm
とする。P1 及びP2 を検出する手段としては、たとえ
ば各パラメータ検出位置における反応中間混合物を一部
採取して分析する方法があげられ、分析方法としてはプ
ロセスガスクロマトグラフィーによる方法があげられ
る。更に、反応容器の入口部に1,3−ブタジエンを含
有する原料ガスと水素の供給比率設定手段を設け、P1
及びP2 が予め設定された範囲にはいるように制御目標
を定め、該P2 を該供給比率設定手段に入力し、水素の
供給量を自動調整することにより1,3−ブタジエンを
含有する原料ガスと水素の供給比率を制御することが好
ましい。接触還元用触媒としては、特に制限はないが、
たとえばその粒径が反応容器の内径の25%以下の担持
パラジウム触媒が好ましく用いられる。
Concentration of 1,3-butadiene in the reaction mixture
The degree is not particularly limited, but is usually 500 to 4000 wt.
ppm, preferably 1000-3000 wt ppm
is there. P2The position for detecting
0.45L to 0.75H toward the mouth (where H
Represents the distance between the inlet and the outlet, and all distances are catalytic
Based on packed bed. ) Only the point where it entered is preferable. Change
To P2The position to detect is centered from the reactor wall
0.1L to 0.9L (where L is between the instrument walls
Represents the distance. ) It is preferable that it is the only place
Yes. P1And P 2As the concentration of 1,3-butadiene
Using P1Setting range is 0-40wtppm, preferred
0 to 15 wtppm, P2Setting range is 0
-60 wt ppm, preferably 1-40 wt ppm
And P1And P2As a means to detect
For example, some reaction intermediate mixture at each parameter detection position
One method is to collect and analyze.
The method by process gas chromatography
It Furthermore, the inlet of the reaction vessel contains 1,3-butadiene.
A source gas and hydrogen supply ratio setting means are provided, and P1
And P2Control target so that is within the preset range
And the P2To the supply ratio setting means,
By automatically adjusting the supply amount, 1,3-butadiene
It is preferable to control the supply ratio of contained source gas and hydrogen.
Good The catalyst for catalytic reduction is not particularly limited,
For example, the particle size of which is less than 25% of the inner diameter of the reaction vessel
Palladium catalysts are preferably used.

【0014】[0014]

【実施例】次に実施例をもって本発明を説明する。 実施例1 1−ブテン 37.9wt%、2−ブテン 22.4w
t%、n−ブタン 29.7wt%、iso−ブタン
9.4wt%、1,3−ブタジエン 1570wt p
pm及びプロパジエン 1200wt ppmを含有す
る反応用混合ガス及び水素を、その粒径が反応容器の内
径の25%以下の担持パラジウム触媒を充填した反応容
器(直径0.7m×高さ1.5mの円筒状の充填層を有
する。)に供給した。反応容器の入口部から出口方向へ
向かって0.73H(ここで、Hは入口部と出口部の距
離を表わし、距離はいずれも触媒充填層を基準にす
る。)だけ入った地点で、かつ反応容器の器壁から中心
方向へ0.2L(ここで、Lは器壁と器壁の間の距離を
表わす。)だけ入った地点(P2 検出位置)、及び反応
容器出口(P1 検出位置)から反応混合ガスを一部採取
し、プロセスガスクロマトグラフィーで1,3−ブタジ
エンの濃度を分析し、該分析値を反応容器入口部に設置
された水素供給量設定装置へ入力し、P1 =0〜10w
t ppm、P2=6〜13wt ppmとなるように
水素供給量をサンプル値PI制御法により自動調整し
た。なお、反応温度60℃(入口部)〜65℃(出口
部)、反応圧力4.7kg/cm2 、空塔速度2280
hr-1(気体は標準状態に換算した。)とした。その結
果、58日間の連続反応期間を通じて、出口ガス中の
1,3−ブタジエン濃度0〜1.8wt ppm及び1
−ブテンの異性化率3〜5%の範囲で極めて安定的に制
御でき、かつ自動制御であるため、反応成績の監視及び
それに応じての水素供給量の調節を行うための所要人員
は殆ど不要であり、省力化の観点からも極めて良好であ
った。なお、供給水素量の制御は極めて精細に行われた
(図1参照)。
EXAMPLES The present invention will be described below with reference to examples. Example 1 1-butene 37.9 wt%, 2-butene 22.4w
t%, n-butane 29.7 wt%, iso-butane
9.4 wt%, 1,3-butadiene 1570 wt p
A reaction vessel containing a mixed gas for reaction containing pm and propadiene 1200 wt ppm and hydrogen, and a supported palladium catalyst having a particle size of 25% or less of the inner diameter of the reaction vessel (a cylinder having a diameter of 0.7 m and a height of 1.5 m). It has a packed bed in the form of. At a point that is 0.73H (where H is the distance between the inlet and the outlet, and the distance is based on the catalyst packed bed) from the inlet to the outlet of the reaction vessel, and A point (P 2 detection position) at which 0.2 L (where L represents the distance between the vessel walls) enters from the vessel wall of the reaction vessel toward the center, and the reaction vessel outlet (P 1 detection) Position)), a part of the reaction mixed gas is sampled, the concentration of 1,3-butadiene is analyzed by process gas chromatography, and the analysis value is input to a hydrogen supply amount setting device installed at the inlet of the reaction vessel, and P 1 = 0-10w
The hydrogen supply amount was automatically adjusted by the sample value PI control method so that t ppm and P 2 = 6 to 13 wt ppm. The reaction temperature is 60 ° C (inlet) to 65 ° C (outlet), the reaction pressure is 4.7 kg / cm 2 , and the superficial velocity is 2280.
It was set to hr −1 (gas was converted to standard state). As a result, the 1,3-butadiene concentration in the outlet gas was 0 to 1.8 wt ppm and 1 over the continuous reaction period of 58 days.
-Since the butene isomerization rate can be controlled extremely stably in the range of 3 to 5% and is automatic control, almost no personnel are required to monitor the reaction results and adjust the hydrogen supply amount accordingly. It was also very good from the viewpoint of labor saving. The amount of hydrogen supplied was controlled extremely finely (see FIG. 1).

【0015】比較例1 実施例1と同様の原料ガス、接触還元用触媒及び反応容
器を用い、反応容器出口から反応混合ガスを一部採取
し、該ガス中の1,3−ブタジエンの濃度を分析し、該
分析値が0〜15wt ppmになるように水素供給量
を手動調整した。なお、その他の反応条件は実施例1と
同様とした。その結果、61日間の連続反応期間を通じ
て、出口ガス中の1,3−ブタジエン濃度0〜10wt
ppm及び1−ブテンの異性化率4〜7%と、ともに
実施例1より劣り、かつ反応容器出口ガス中の1,3−
ブタジエン濃度の監視及びそれに応じての水素供給量の
調節を行うための所要人員として約1名が必要であっ
た。なお、供給水素量の制御は調整頻度を高めることが
困難であり、精細に実施することができなかった(図2
参照)。
Comparative Example 1 Using the same raw material gas, catalytic reduction catalyst and reaction vessel as in Example 1, a part of the reaction mixed gas was sampled from the outlet of the reaction vessel and the concentration of 1,3-butadiene in the gas was measured. Analysis was performed, and the hydrogen supply amount was manually adjusted so that the analysis value was 0 to 15 wt ppm. The other reaction conditions were the same as in Example 1. As a result, the concentration of 1,3-butadiene in the outlet gas was 0 to 10 wt throughout the continuous reaction period of 61 days.
The isomerization rate of ppm and 1-butene was 4 to 7%, both of which were inferior to those in Example 1 and 1,3-in the exit gas of the reaction vessel.
About one person was required to monitor the butadiene concentration and adjust the hydrogen supply accordingly. Note that it was difficult to control the supply amount of hydrogen precisely because it was difficult to increase the frequency of adjustment (FIG. 2).
reference).

【0016】[0016]

【発明の効果】以上説明したとおり、本発明により、触
媒を充填した反応容器の入口部に少なくとも二種の反応
用原料を含有する反応用混合物を供給し、反応容器の入
口部から出口部に沿って反応を漸次進行せしめ、反応容
器の出口部から反応生成混合物を取得する反応方法であ
って、使用中における触媒の性能変化その他の反応環境
条件の変動にかかわらず、常に最適な条件下に反応を行
わせしめるように反応を制御できる反応方法を提供する
ことができた。
As described above, according to the present invention, the reaction mixture containing at least two kinds of reaction raw materials is supplied to the inlet of the reaction vessel filled with the catalyst, and the reaction mixture is supplied from the inlet to the outlet of the reaction vessel. A reaction method in which the reaction is allowed to proceed gradually along the course of which the reaction product mixture is obtained from the outlet of the reaction vessel, regardless of changes in the performance of the catalyst during use and other changes in the reaction environmental conditions. It has been possible to provide a reaction method in which the reaction can be controlled so as to cause the reaction.

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1の水素供給量を示すチャート図
である。
FIG. 1 is a chart showing a hydrogen supply amount according to a first embodiment.

【図2】図2は比較例1の水素供給量を示すチャート図
である。
FIG. 2 is a chart showing a hydrogen supply amount of Comparative Example 1.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 触媒を充填した反応容器の入口部に少な
くとも二種(A及びB)の反応用原料を含有する反応用
混合物を供給し、反応容器の入口部から出口部に沿って
反応を漸次進行せしめ、反応容器の出口部から反応生成
混合物を取得する反応方法において、反応容器出口部に
おける反応進行度を表わすパラメータ(P1 )及び反応
容器内部の少なくとも一点における反応進行度を表わす
パラメータ(P2 )を検出し、P1 及びP2 が予め設定
された範囲内に入るようにP2を制御目標として反応用
原料AとBの供給比率を制御することを特徴とする反応
方法。
1. A reaction mixture containing at least two kinds of reaction raw materials (A and B) is supplied to the inlet of a reaction vessel filled with a catalyst, and the reaction is carried out from the inlet to the outlet of the reaction vessel. In the reaction method in which the reaction product mixture is gradually progressed and the reaction product mixture is obtained from the outlet of the reaction vessel, a parameter (P 1 ) representing the degree of reaction progress at the outlet of the reaction vessel and a parameter representing the degree of reaction progress at least at one point inside the reaction vessel ( P 2 ) is detected, and the supply ratio of the reaction raw materials A and B is controlled with P 2 as a control target so that P 1 and P 2 fall within a preset range.
【請求項2】 P2 を検出する位置が、反応容器の入口
部から出口方向へ向かって0.45H〜0.75H(こ
こで、Hは入口部と出口部の距離を表わし、距離はいず
れも触媒充填層を基準にする。)だけ入った地点である
請求項1記載の反応方法。
2. The position for detecting P 2 is 0.45H to 0.75H from the inlet to the outlet of the reaction vessel (where H represents the distance between the inlet and the outlet, and the distance is any Also on the basis of the catalyst packed bed).
【請求項3】 P2 を検出する位置が、反応容器の器壁
から中心方向へ0.1L〜0.9L(ここで、Lは器壁
と器壁の間の距離を表わす。)だけ入った地点である請
求項1記載の反応方法。
3. A position for detecting P 2 is only 0.1 L to 0.9 L (where L represents the distance between the vessel walls) from the vessel wall of the reaction vessel toward the center. The reaction method according to claim 1, wherein the reaction is at a point.
【請求項4】 P2 を検出する手段が、各パラメータ検
出位置における反応中間混合物を一部採取して分析する
ものである請求項1記載の反応方法。
4. The reaction method according to claim 1, wherein the means for detecting P 2 is one in which a part of the reaction intermediate mixture at each parameter detection position is sampled and analyzed.
【請求項5】 分析をプロセスガスクロマトグラフィー
により行う請求項4記載の反応方法。
5. The reaction method according to claim 4, wherein the analysis is performed by process gas chromatography.
【請求項6】 反応容器の入口部にAとBの供給比率設
定手段を設け、P2を該供給比率設定手段に入力するこ
とによりAとBの供給比率を自動制御し、P 1 及びP2
が予め設定された範囲内に入るようにする請求項1記載
の反応方法。
6. A supply ratio of A and B is set at the inlet of the reaction vessel.
Setting means, P2To the supply ratio setting means.
Automatically controls the supply ratio of A and B by 1And P2
2. The value is set within a preset range.
Reaction method.
【請求項7】 触媒が接触還元用触媒であり、Aが1,
3−ブタジエンであり、Bが水素である請求項1記載の
反応方法。
7. The catalyst is a catalyst for catalytic reduction, and A is 1,
The reaction method according to claim 1, which is 3-butadiene and B is hydrogen.
【請求項8】 反応用混合物中のAの濃度が500〜4
000wt ppmである請求項7記載の反応方法。
8. The concentration of A in the reaction mixture is 500-4.
The reaction method according to claim 7, which is 000 wt ppm.
【請求項9】 反応用混合物中のAの濃度が1000〜
3000wt ppmである請求項7記載の反応方法。
9. The concentration of A in the reaction mixture is from 1000 to
The reaction method according to claim 7, wherein the reaction amount is 3000 wt ppm.
【請求項10】 P1 及びP2 が1,3−ブタジエンの
濃度である請求項7記載の反応方法。
10. The reaction method according to claim 7, wherein P 1 and P 2 are concentrations of 1,3-butadiene.
【請求項11】 P1 の設定範囲を0〜40wt pp
mとし、かつP2 の設定範囲を0〜60wt ppmと
する請求項10記載の反応方法。
11. The setting range of P 1 is 0 to 40 wt pp.
The reaction method according to claim 10, wherein m is set and the setting range of P 2 is set to 0 to 60 ppm by weight.
【請求項12】 P1 の設定範囲を0〜15wtppm
とし、かつP2 の設定範囲を1〜40wt ppmとす
る請求項10記載の反応方法。
12. The setting range of P 1 is 0 to 15 wtppm.
And the setting range of P 2 is 1 to 40 ppm by weight.
【請求項13】 接触還元用触媒が、その粒径が反応容
器の内径の25%以下の担持パラジウム触媒である請求
項7記載の反応方法。
13. The reaction method according to claim 7, wherein the catalytic reduction catalyst is a supported palladium catalyst having a particle size of 25% or less of the inner diameter of the reaction vessel.
【請求項14】 水素の供給量を調製することによりA
とBの供給比率を制御する請求項7記載の反応方法。
14. By adjusting the supply amount of hydrogen, A
The reaction method according to claim 7, wherein the supply ratio of B and B is controlled.
JP24040192A 1992-09-09 1992-09-09 Method for reaction Pending JPH0686928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24040192A JPH0686928A (en) 1992-09-09 1992-09-09 Method for reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24040192A JPH0686928A (en) 1992-09-09 1992-09-09 Method for reaction

Publications (1)

Publication Number Publication Date
JPH0686928A true JPH0686928A (en) 1994-03-29

Family

ID=17058928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24040192A Pending JPH0686928A (en) 1992-09-09 1992-09-09 Method for reaction

Country Status (1)

Country Link
JP (1) JPH0686928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023000A (en) * 2005-07-21 2007-02-01 Mitsubishi Chemicals Corp Method of controlling acetylene hydrogenator
JP2016523255A (en) * 2013-06-25 2016-08-08 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Selective hydrogenation process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023000A (en) * 2005-07-21 2007-02-01 Mitsubishi Chemicals Corp Method of controlling acetylene hydrogenator
JP2016523255A (en) * 2013-06-25 2016-08-08 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Selective hydrogenation process

Similar Documents

Publication Publication Date Title
EP0027474B1 (en) Process for producing polyolefin
CA1296136C (en) Process for controlled polymerization of stereospecific alpha-olefins having preselected isotacticity
JP2003507492A (en) Method for reducing the level of organic fluorine compounds in hydrocarbons
MXPA04007238A (en) Process control in production of acetic acid via use of heavy phase density measurement.
US20110171078A1 (en) Apparatus For Humidification Of Hydrocarbon Mixtures
CN102781564B (en) Polymer powder storage and/or transport and/or degassing vessels
US2964511A (en) Control of catalytic processes
JPH0686928A (en) Method for reaction
US6384153B2 (en) Process optimization of peroxide injection during polyethylene production
CN103049011B (en) Method and system for controlling hydrogen alkyne ratio
JP2003516428A (en) Inspection of chemical reaction
EP0318609B1 (en) Polypropylene impact copolymer reactor control system
KR20160089405A (en) Method for the hydroformylation of olefins
Niu et al. Studies on deactivation kinetics of a heterogeneous catalyst using a concentration-controlled recycle reactor under supercritical conditions
Bukeikhanova et al. AMM-InxSi, a microporous catalyst for the oxidative dimerization of propene with air
JPH05140230A (en) Operation-supporting apparatus for polymerization for producing polyolefin
EP0771820A1 (en) Supported ziegler-natta catalysts for polyolefin production
JPH0649462A (en) Method of upgrading paraffinic feedstock
JPH0725830B2 (en) Method for producing polyethylene
RU2092497C1 (en) Isoprene polymerization process
JPH08301799A (en) Control of dehydrogenation reaction with near infrared rays
SU578082A1 (en) Automatic control apparatus for recirculation production process
JPH07126303A (en) Decision of disorder in polyolefin production process and operation support device wherein it is used
JPH05140229A (en) Production of polyolefin
SU1026826A1 (en) Method of automatic control of fat hydrogenization on stationary catalyst