JPH0686686A - Production of epsilon-poly-l-lysine - Google Patents

Production of epsilon-poly-l-lysine

Info

Publication number
JPH0686686A
JPH0686686A JP4570293A JP4570293A JPH0686686A JP H0686686 A JPH0686686 A JP H0686686A JP 4570293 A JP4570293 A JP 4570293A JP 4570293 A JP4570293 A JP 4570293A JP H0686686 A JPH0686686 A JP H0686686A
Authority
JP
Japan
Prior art keywords
lysine
poly
producing
culture
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4570293A
Other languages
Japanese (ja)
Other versions
JP3282271B2 (en
Inventor
Jun Hiraki
純 平木
Hideaki Fukushi
英明 福士
Eriko Suzuki
恵利子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP4570293A priority Critical patent/JP3282271B2/en
Publication of JPH0686686A publication Critical patent/JPH0686686A/en
Application granted granted Critical
Publication of JP3282271B2 publication Critical patent/JP3282271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To provide the method for efficiently producing an epsilon-poly-L-lysine, enabling the semi-continuous production or continuous production of the epsilon-poly-L- lysine without lysing the cells of a bacterium by employing the immobilized cells of the bacterium. CONSTITUTION:Immobilized cells produced by immobilizing the genus Streptomyces organism having an epsilon-poly-L-lysine-producing ability are used under an aerobic condition for the production of the epsilon-poly-L-lysine, and the produced epsilon-poly-L-lysine is recovered. The epsilon-poly-L-lysine-producing bacterium can repeatedly be used, and the bacterial cells are readily removed and recovered, thereby permitting to economically supply the epsilon-poly-L-lysine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固定化菌体を用いるε−
ポリ−L−リジンの製造法に関するものである。
FIELD OF THE INVENTION The present invention uses .epsilon.
The present invention relates to a method for producing poly-L-lysine.

【0002】[0002]

【従来の技術】ε−ポリ−L−リジンは、例えば、スト
レプトマイセス・アルブラス・サプスピーシズ・リジノ
ポリメラス(Streptomyces albulus subsp.lysinopolym
erus)No.346を培養することによって得られるこ
とは、既に知られている(特開昭53−72896
号)。当該物質は、L−リジンのホモポリマーで、L−
リジンのε−位のアミノ基が隣り合うL−リジンのカル
ボキシル基とペプチド結合で直鎖上に結合した高分子化
合物である。当該物質は必須アミノ酸であるL−リジン
のポリマーであるので安全性が高くかつカチオン含量が
高いので特異な物性を有する。従ってそれらの性質を利
用して、トイレタリー用品、化粧品、飼料添加物、農
薬、食品添加物、電子材料等の用途が開発されている。
2. Description of the Related Art ε-Poly-L-lysine is, for example, Streptomyces albulus subsp. Lysinopolym .
erus ) No. It is already known that it can be obtained by culturing 346 (JP-A-53-72896).
issue). The substance is a homopolymer of L-lysine,
It is a polymer compound in which the amino group at the ε-position of lysine is linearly bonded to the carboxyl group of the adjacent L-lysine through a peptide bond. Since the substance is a polymer of L-lysine which is an essential amino acid, it is highly safe and has a high cation content, and thus has unique physical properties. Therefore, by utilizing these properties, applications such as toiletry products, cosmetics, feed additives, agricultural chemicals, food additives, and electronic materials have been developed.

【0003】従来のε−ポリ−L−リジンの製造法は、
次のように行ってきた。すなわち、ε−ポリ−L−リジ
ン生産能を有するストレプトマイセス(Streptomyces
属の菌体を好気条件下で培養し、菌体の生育が認められ
た後pHを4付近に調整し、培養を続ける。その後ε−
ポリ−L−リジンを含む培養液について菌体を遠心分離
またはろ過により分離した後、例えば、塩基性アニオン
交換樹脂処理(特開平2−20295)又はカチオン交
換樹脂処理(特開平2−92927)等により精製する
ことにより得ていた。
The conventional method for producing ε-poly-L-lysine is as follows:
I went as follows. That is, Streptomyces having the ability to produce ε-poly-L-lysine
The cells of the genus are cultured under aerobic conditions, and after the growth of the cells is observed, the pH is adjusted to around 4 and the culture is continued. Then ε-
After separating the cells of the culture solution containing poly-L-lysine by centrifugation or filtration, for example, a basic anion exchange resin treatment (JP-A-2-20295) or a cation exchange resin treatment (JP-A-2-92927), etc. It was obtained by purification by.

【0004】[0004]

【発明が解決しようとする課題】従来法によりε−ポリ
−L−リジン生産能を有するストレプトマイセス(Stre
ptomyces)属の菌体を好気条件下で培養し、ε−ポリ−
L−リジンを培養液中に蓄積させた場合、培養液の高粘
度化および菌体が溶菌するため、菌体の再利用はできな
い。また、菌体を分離するのに遠心分離またはろ過を行
う場合、菌体が溶菌しているため長時間必要となる。例
えば、ろ過面積10m2 のろ過装置を用いて10m3
培養液より菌体を除去するのに約32時間が必要にな
り、生産上大きな障害となっている。また、菌体が溶菌
するため培養液のみの回収が困難であり、新たな培地を
添加するような半連続的な培養が困難である。上記の要
因が、ε−ポリ−L−リジンの製造コストの低下を妨げ
ている。そこで菌体による培養液の高粘度化、菌体の溶
菌を抑制することができればε−ポリ−L−リジンの製
造コストの低減が可能となる。本目的を達成する為の手
段について鋭意検討を行った結果、ε−ポリ−L−リジ
ン生産能を有する微生物を固定化することにより、上記
の課題が解決されることを見いだし、本発明を完成し
た。
[SUMMARY OF THE INVENTION Streptomyces having ε- poly -L- lysine producing ability by conventional methods (Stre
cells of the genus ptomyces ) are cultured under aerobic conditions to obtain ε-poly-
When L-lysine is accumulated in the culture medium, it cannot be reused because the culture medium becomes highly viscous and the cells lyse. Further, when centrifugation or filtration is performed to separate the cells, it takes a long time because the cells are lysed. For example, it takes about 32 hours to remove bacterial cells from a culture solution of 10 m 3 using a filtration device having a filtration area of 10 m 2 , which is a major obstacle to production. Further, since the cells are lysed, it is difficult to collect only the culture solution, and it is difficult to perform semi-continuous culture in which a new medium is added. The above factors prevent reduction of the production cost of ε-poly-L-lysine. Therefore, if it is possible to increase the viscosity of the culture solution by the bacterial cells and suppress the lysis of the bacterial cells, the production cost of ε-poly-L-lysine can be reduced. As a result of extensive studies on means for achieving this object, it was found that the above problems can be solved by immobilizing a microorganism having an ability to produce ε-poly-L-lysine, and the present invention was completed. did.

【0005】上記の記載より明らかな様に本発明の目的
は、ε−ポリ−L−リジンを微生物を用いて製造する
際、固定化菌体を用いることにより培養液の高粘度化、
菌体の溶菌を抑制し、ε−ポリ−L−リジンを含む培養
液の回収および回収後の培養液からのε−ポリ−L−リ
ジンの精製を容易にし、さらに分離された固定化菌体を
繰り返し使用し、半連続的もしくは連続的にε−ポリ−
L−リジン生産用の触媒として用いる新規で効率のよい
ε−ポリ−L−リジンの製造法を提供するものである。
なお、本発明で言うところの半連続製造とは、固定化菌
体を含むリアクターに対して基質あるいは原料を含む培
地を添加し、一定時間ごとにこの培地の全量を新たな培
地と交換することによりε−ポリ−L−リジンを繰り返
し製造することでである。
As is clear from the above description, the object of the present invention is to increase the viscosity of a culture solution by using immobilized cells when producing ε-poly-L-lysine using a microorganism.
Immobilized cells isolated by suppressing lysis of the cells, facilitating recovery of the culture solution containing ε-poly-L-lysine and purification of ε-poly-L-lysine from the recovered culture solution Is repeatedly used to semi-continuously or continuously produce ε-poly-
The present invention provides a novel and efficient method for producing ε-poly-L-lysine used as a catalyst for L-lysine production.
In the present invention, semi-continuous production means that a medium containing a substrate or a raw material is added to a reactor containing immobilized cells, and the entire amount of this medium is replaced with a new medium at regular time intervals. Is to repeatedly produce ε-poly-L-lysine.

【0006】[0006]

【課題を解決するための手段】本発明は下記(1)
(2)(3)(4)および(5)の構成を有する。 (1)ε−ポリ−L−リジン生産能を有する微生物を固
定化した固定化菌体を好気条件下で培養することを特徴
とするε−ポリ−L−リジンの製造法。 (2)前記(1)記載の固定化菌体を用いたε−ポリ−
L−リジンの製造法が半連続法または連続製造法である
事を特徴とするε−ポリ−L−リジンの製造法。 (3)ε−ポリ−L−リジン生産能を持つ微生物が、ス
トレプトマイセス属に属する菌である前記(1)および
前記(2)記載のε−ポリ−L−リジンの製造法。 (4)ε−ポリ−L−リジン生産能を持つ微生物の固定
化を吸着法、架橋法もしくは包括法で行う前記(1)お
よび前記(2)記載のε−ポリ−L−リジンの製造法。 (5)ε−ポリ−L−リジン生産能を有する微生物の固
定化を吸着法と架橋法もしくは吸着法と包括法を組み合
わせて行う前記(1)および前記(2)記載のε−ポリ
−L−リジンの製造法。
The present invention has the following (1).
(2) It has the configurations of (3), (4) and (5). (1) A method for producing ε-poly-L-lysine, which comprises culturing, under aerobic conditions, an immobilized microbial cell on which a microorganism capable of producing ε-poly-L-lysine is immobilized. (2) ε-poly-using the immobilized bacterial cell described in (1) above
A method for producing ε-poly-L-lysine, characterized in that the method for producing L-lysine is a semi-continuous method or a continuous production method. (3) The method for producing ε-poly-L-lysine according to the above (1) and (2), wherein the microorganism capable of producing ε-poly-L-lysine is a bacterium belonging to the genus Streptomyces. (4) The method for producing ε-poly-L-lysine according to the above (1) and (2), wherein the microorganism having the ability to produce ε-poly-L-lysine is immobilized by an adsorption method, a crosslinking method or an encapsulation method. . (5) The ε-poly-L according to the above (1) and (2), wherein the microorganism having the ability to produce ε-poly-L-lysine is immobilized by a combination of an adsorption method and a crosslinking method or an adsorption method and an inclusion method. -Method for producing lysine.

【0007】本発明の構成と効果につき以下に詳述す
る。本発明に用いる微生物としては、ε−ポリ−L−リ
ジン生産能を有する微生物ならばいずれも用いることが
できる。例えばストレプトマイセス・アルブラス・サブ
スピーシーズ・リジノポリメラス(Streptomyces albul
us subsp. lysinopolymerus)No.346(特開昭53
−72896号)およびε−ポリ−L−リジン著量生産
変異株No.11011A−1(特開昭63−4907
5)、ストレプトマイセス・ノールセイ(Streptomyces
noursei)(特開平1−187090)等が知られてい
る。
The structure and effects of the present invention will be described in detail below. As the microorganism used in the present invention, any microorganism can be used as long as it has the ability to produce ε-poly-L-lysine. For example, Streptomyces albulus subspecies
us subsp. lysinopolymerus ) No. 346 (JP-A-53
-72896) and [epsilon] -poly-L-lysine in significant production mutant No. 11011A-1 (Japanese Patent Laid-Open No. 63-4907)
5), Streptomyces
Noursei ) (JP-A-1-187090) and the like are known.

【0008】また、本発明に用いるε−ポリ−L−リジ
ン生産菌の固定化は、一般的手法および一般的手法の応
用によって行うことができる。例えば吸着法、架橋法、
包括法、共有結合法などを単一の固定化法として固定化
菌体を作製することもできるし、それらのうちの2種類
の方法を組み合わせた固定化法を適用することができ
る。このうち、固定化が容易で安定した活性が得られ、
さらに活性の低下時においての再活性化が行える吸着法
および包括法が好適に使用できる。包括法には、ポリア
クリルアミドゲル、ポリウレタンゲル、光架橋性樹脂等
の高分子ゲル中に菌体を包括するのが一般的である。た
だし、本発明では、製造物であるε−ポリ−L−リジン
が塩基性物質であるため、本物質を吸着するような酸性
高分子ゲル、例えばカラギーナンゲル、アルギン酸ゲル
等は用いない方が好ましい。また、吸着法としては、特
に多孔性物質や不織布に固定化する方法がよい。多孔性
物質としては、例えば多孔性セラミック、多孔性ガラ
ス、セルロース発泡体、焼結金属多孔質体やポリ塩化ビ
ニル、ポリエチレン、ポリプロピレン、ポリスチレン、
ポリウレタンなどから調整したものを用いることもでき
る。
The ε-poly-L-lysine-producing bacterium used in the present invention can be immobilized by a general method and application of a general method. For example, adsorption method, crosslinking method,
Immobilized cells can be prepared by using the entrapment method, the covalent bond method, etc. as a single immobilization method, or the immobilization method in which two kinds of these methods are combined can be applied. Of these, it is easy to immobilize and stable activity is obtained,
Furthermore, the adsorption method and entrapment method, which can reactivate when the activity decreases, can be preferably used. In the encapsulation method, it is common to enclose the bacterial cells in a polymer gel such as polyacrylamide gel, polyurethane gel, and photocrosslinkable resin. However, in the present invention, since the product ε-poly-L-lysine is a basic substance, it is preferable not to use an acidic polymer gel that adsorbs this substance, such as carrageenan gel or alginic acid gel. . As the adsorption method, a method of immobilizing it on a porous material or a non-woven fabric is particularly preferable. As the porous material, for example, porous ceramics, porous glass, cellulose foam, sintered metal porous body or polyvinyl chloride, polyethylene, polypropylene, polystyrene,
It is also possible to use one prepared from polyurethane or the like.

【0009】上記のポリアクリルアミドゲルによる包括
は、例えばアクリルアミドモノマー、架橋剤としての
N,N’−メチレンビスアクリルアミドおよび生菌体を
緩衝液に懸濁し、該緩衝液に重合開始剤としての過硫酸
アンモニウムおよび重合促進剤としてのβ−ジメチルア
ミノプロピオニトリルを加えて、室温で30分前後重合
反応を行わせると固定化菌体が得られる。
For encapsulation by the above polyacrylamide gel, for example, acrylamide monomer, N, N'-methylenebisacrylamide as a cross-linking agent and viable cells are suspended in a buffer solution, and ammonium persulfate as a polymerization initiator is suspended in the buffer solution. Then, β-dimethylaminopropionitrile as a polymerization accelerator is added, and a polymerization reaction is carried out at room temperature for about 30 minutes to obtain immobilized cells.

【0010】また、熱可塑性樹脂は、一般的に150〜
250℃の温度で0.5〜5時間加熱することにより焼
結体となり、適当な金型を使用すれば種々の形状の焼結
多孔質体が得られる。しかも、空隙率、孔の大きさ、強
度等も焼結温度、焼結時間、樹脂の充填率、増粘剤ある
いは水分添加量等の条件を変えることで望ましい多孔質
体が得られる。他の上記多孔性物質としては、一般の市
販のものおよび加工品で本生産菌が吸着できるものはす
べて使用できる。多孔性物質は、生菌体を含む緩衝液中
に浸漬させ微生物を吸着させたり、培養開始時から微生
物と多孔性物質とを接触させ、培養の進行とともに吸着
させることができ、固定化菌体が得られる。
Further, the thermoplastic resin is generally 150 to
By heating at a temperature of 250 ° C. for 0.5 to 5 hours, a sintered body is obtained, and if a suitable mold is used, sintered porous bodies having various shapes can be obtained. In addition, the desired porosity can be obtained by changing the conditions such as the porosity, the size of the pores, the strength, etc., such as the sintering temperature, the sintering time, the resin filling rate, the amount of the thickener or the amount of water added. As the above-mentioned other porous substances, all commercially available products and processed products which can adsorb the present producing bacteria can be used. The porous substance can be immersed in a buffer solution containing viable cells to adsorb the microorganisms, or the microorganisms and the porous substance can be contacted from the start of the culture and adsorbed as the culture progresses. Is obtained.

【0011】上記方法により得たε−ポリ−L−リジン
生産能を有する固定化菌体は、通常のε−ポリ−L−リ
ジン生産用培地、またはpHを適宜調整した緩衝液中に
グルコースおよび硫安または、L−リジンを加えた培地
中で好気条件下で培養することでε−ポリ−L−リジン
を含む培養液が得られる。本培養液より固定化菌体を除
去し、イオン交換樹脂をもちいてε−ポリ−L−リジン
を精製する。また、培養時のpHとしては、用いたε−
ポリ−L−リジン生産能を有する微生物が、ε−ポリ−
L−リジンを生産できる範囲であれば良く、好ましくは
pH4〜7の条件がよい。
The immobilized microbial cell having the ability to produce ε-poly-L-lysine obtained by the above-mentioned method contains glucose and glucose in a usual medium for producing ε-poly-L-lysine or a buffer solution whose pH is appropriately adjusted. A culture solution containing ε-poly-L-lysine can be obtained by culturing under aerobic conditions in a medium containing ammonium sulfate or L-lysine. The immobilized cells are removed from the main culture solution, and ε-poly-L-lysine is purified using an ion exchange resin. In addition, as the pH during culture, the used ε-
Microorganisms capable of producing poly-L-lysine are ε-poly-
It is sufficient that L-lysine can be produced, preferably pH 4 to 7.

【0012】[0012]

【発明の効果】本発明の方法によれば、培養中に菌体の
溶菌がなく、固定化菌体の除去が容易に行え、菌体を含
まないε−ポリ−L−リジン溶液が短時間に回収でき、
効率的なε−ポリ−L−リジンの生産が可能となる。ま
た、固定化菌体と培養液の分離が容易である為、ε−ポ
リ−L−リジン生産の後、培養液を回収し、新たな培地
を固定化菌体に対して加えることで繰り返しε−ポリ−
L−リジンの生産を行うといった半連続的なε−ポリ−
L−リジン生産やあるいは連続的な培養液排出と新らた
な培地添加を行うことにより連続的なε−ポリ−L−リ
ジンの生産が行える。以上のことよりε−ポリ−L−リ
ジンを低コストで長時間にわたり効率的に工業生産し、
食品添加物、農薬、医薬品等の分野に供給できるように
したという点で極めて有益である。
According to the method of the present invention, microbial cells are not lysed during culturing, immobilized cells can be easily removed, and ε-poly-L-lysine solution containing no bacterial cells can be obtained in a short time. Can be collected in
It enables efficient production of ε-poly-L-lysine. Further, since the immobilized cells and the culture solution can be easily separated, after the production of ε-poly-L-lysine, the culture solution is recovered and a new medium is added to the immobilized cells to repeatedly produce ε. -Poly-
Semi-continuous ε-poly-, such as producing L-lysine
By producing L-lysine, or continuously discharging the culture solution and adding a new medium, continuous production of ε-poly-L-lysine can be performed. From the above, ε-poly-L-lysine is efficiently industrially produced at low cost for a long time,
It is extremely useful in that it can be supplied to fields such as food additives, agricultural chemicals, and pharmaceuticals.

【0013】[0013]

【実施例】以下、本発明を実施例に基づき説明するが、
本発明はこれに限定されるものではない。 実施例1 固定化には、グルコース50g/L、硫酸アンモニウム
10g/L、酵母エキス5g/L、リン酸二水素カリウ
ム1.36g/L、リン酸一水素二ナトリウム1.58
g/L、硫酸マグネシウム0.5g/L、硫酸亜鉛0.
04g/L、硫酸第一鉄0.03g/Lからなる培地
(pH6.8)50mlを500ml容坂口フラスコに
入れ、常法により滅菌後、ストレプトマイセス・アルブ
ラス(Streptomyces albulus)を植菌し、30℃で36
時間振とう培養し、前培養液とした。培養終了後、遠心
分離して菌体を集め、滅菌水で2回洗浄した菌体(湿菌
体重量4.2g)を用いた。
EXAMPLES The present invention will be described below based on examples.
The present invention is not limited to this. Example 1 For immobilization, glucose 50 g / L, ammonium sulfate 10 g / L, yeast extract 5 g / L, potassium dihydrogen phosphate 1.36 g / L, disodium monohydrogen phosphate 1.58
g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.
A medium (pH 6.8) 50 ml consisting of 04 g / L and ferrous sulfate 0.03 g / L was placed in a 500 ml Sakaguchi flask, sterilized by a conventional method, and Streptomyces albulus was inoculated, 36 at 30 ° C
The culture was shaken for a period of time to obtain a preculture liquid. After completion of the culture, cells were collected by centrifugation and washed twice with sterilized water (wet cell weight 4.2 g).

【0014】固定化菌体の調製は、以下のように行っ
た。アクリルアミド1.68g、N,N’−メチレンビ
スアクリルアミド0.09g、L−リジン塩酸塩0.6
7gおよび上記の方法で取得した菌体を、トリス−塩酸
緩衝液(pH7.2)4.8mlに懸濁し、この混合液
に5%β−ジメチルアミノプロピオニトリル水溶液1.
1mlと1%過硫酸カリウム水溶液1.1mlを加え、
2 飽和条件下室温で30分間静置し、ゲル化した後、
このゲルを5mm角に成型し、次いでトリス−塩酸緩衝
液でゲルを十分に洗浄し、ポリアクリルアミドゲル固定
化菌体11.2gを得た。
The immobilized cells were prepared as follows. Acrylamide 1.68 g, N, N′-methylenebisacrylamide 0.09 g, L-lysine hydrochloride 0.6
7 g and the bacterial cells obtained by the above method were suspended in 4.8 ml of Tris-hydrochloric acid buffer (pH 7.2), and a 5% β-dimethylaminopropionitrile aqueous solution 1.
1 ml and 1.1 ml of 1% potassium persulfate aqueous solution were added,
After leaving it to stand at room temperature for 30 minutes under N 2 saturation condition to cause gelation,
This gel was molded into a 5 mm square, and then the gel was thoroughly washed with Tris-hydrochloric acid buffer solution to obtain 11.2 g of polyacrylamide gel-immobilized cells.

【0015】このポリアクリルアミドゲル固定化菌体を
グルコース50g/L、L−リジン10g/L、クエン
酸20g/Lの培地(pH4)40ml中に添加、30
℃で振とう培養した。2日後、培養液中のε−ポリ−L
−リジン量を定量したところ、0.23g/Lであっ
た。
The polyacrylamide gel-immobilized cells were added to 40 ml of a medium (pH 4) containing glucose 50 g / L, L-lysine 10 g / L, and citric acid 20 g / L, 30
The culture was carried out with shaking at ℃. 2 days later, ε-poly-L in the culture solution
-The amount of lysine was determined to be 0.23 g / L.

【0016】実施例2 上記実施例1と同様の方法で作製したポリアクリルアミ
ドゲル固定化菌体75gを通常のε−ポリ−L−リジン
生産菌培養用の培地グルコース50g/L、硫酸アンモ
ニウム10g/L、酵母エキス5g/L、リン酸二水素
カリウム1.36g/L、リン酸一水素二ナトリウム
1.58g/L、硫酸マグネシウム0.5g/L、硫酸
亜鉛0.04g/L、硫酸第一鉄0.03g/L(pH
4.2)50mlに添加し、30℃で振とう培養を行っ
た。2日後の培養液中のε−ポリ−L−リジン量は、
0.20g/Lであった。
Example 2 75 g of polyacrylamide gel-immobilized cells prepared by the same method as in Example 1 was used as a medium for culturing ordinary .epsilon.-poly-L-lysine-producing bacteria, glucose 50 g / L, ammonium sulfate 10 g / L. , Yeast extract 5 g / L, potassium dihydrogen phosphate 1.36 g / L, disodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L, ferrous sulfate 0.03 g / L (pH
4.2) 50 ml was added and shake culture was performed at 30 ° C. The amount of ε-poly-L-lysine in the culture medium after 2 days was
It was 0.20 g / L.

【0017】実施例3 上記実施例1と同様の方法で作製したポリアクリルアミ
ド固定化菌体100gをグルコース50g/L、L−リ
ジン10g/L、クエン酸20g/Lの培地(pH4)
1L中に添加、1.5L容ミニジャーファーメンターを
用いpH4となるように調節しつつ30℃で通気撹拌培
養を行った。培養48時間後の培養液中のε−ポリ−L
−リジンの量は、1.5g/Lであった。その後グルコ
ース、L−リジンを逐次添加し培養を続けた。125時
間後ε−ポリ−L−リジンの量は10g/Lであった。
この培養液を遠心分離(3000G、20分)により菌
体の除去を行い、遠心分離上澄の透過度を660nmで
測定した。透過度は、0.008で菌体は完全に除去さ
れた。
Example 3 100 g of polyacrylamide-immobilized cells prepared by the same method as in Example 1 above was used as a medium (pH 4) of glucose 50 g / L, L-lysine 10 g / L and citric acid 20 g / L.
The mixture was added to 1 L, and aeration stirring culture was carried out at 30 ° C. while adjusting the pH to 4 using a 1.5 L mini jar fermenter. Ε-Poly-L in the culture medium after 48 hours of culture
-The amount of lysine was 1.5 g / L. Then, glucose and L-lysine were sequentially added to continue the culture. After 125 hours, the amount of ε-poly-L-lysine was 10 g / L.
The culture solution was centrifuged (3000 G, 20 minutes) to remove bacterial cells, and the permeability of the centrifuged supernatant was measured at 660 nm. The permeability was 0.008, and the cells were completely removed.

【0018】比較例1 グルコース50g/L、硫酸アンモニウム10g/L、
酵母エキス5g/L、リン酸二水素カリウム1.36g
/L、リン酸一水素二ナトリウム1.58g/L、硫酸
マグネシウム0.5g/L、硫酸亜鉛0.04g/L、
硫酸第一鉄0.03g/Lからなる培地(pH6.8)
50mlを500ml容坂口フラスコに入れ、常法によ
り滅菌後、ストレプトマイセス・アルブラス(Streptom
yces albulus)を植菌し、30℃で36時間振とう培養
し、前培養液を調製した。この前培養液を上記と同じ培
地1Lの入った1.5L容ミニジャーファーメンターに
植菌し、30℃で通気撹拌培養を行った。培養後、培養
液がpH4程度に低下した後、水酸化ナトリウム水溶液
を用いてpH4.2に調節するとともにグルコース濃度
が50g/Lになるように逐次添加を行い、培養を続け
た。培養125時間後の培養液中のε−ポリ−L−リジ
ンの量は、12g/Lであった。この培養液を遠心分離
(3000G、20分)により菌体の除去を行い、遠心
分離上澄の透過度を660nmで測定した。透過度は、
0.282で菌体の除去は、不十分であった。以上の結
果より本発明の固定化菌体を用いることにより、菌体除
去を容易に行な得ることが認められた。
Comparative Example 1 Glucose 50 g / L, ammonium sulfate 10 g / L,
Yeast extract 5g / L, potassium dihydrogen phosphate 1.36g
/ L, disodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L,
Medium consisting of ferrous sulfate 0.03 g / L (pH 6.8)
50 ml is put in a 500 ml Sakaguchi flask, sterilized by a conventional method, and then Streptomyces albus ( Streptom)
yces albulus ) was inoculated and shake-cultured at 30 ° C. for 36 hours to prepare a preculture liquid. This preculture solution was inoculated into a 1.5-liter mini jar fermenter containing 1 liter of the same medium as described above, and aeration-agitation culture was performed at 30 ° C. After culturing, after the pH of the culture solution was lowered to about 4, the pH was adjusted to 4.2 using an aqueous sodium hydroxide solution, and the glucose concentration was sequentially added to 50 g / L, and the culture was continued. The amount of ε-poly-L-lysine in the culture medium after culturing for 125 hours was 12 g / L. The culture solution was centrifuged (3000 G, 20 minutes) to remove bacterial cells, and the permeability of the centrifuged supernatant was measured at 660 nm. The transparency is
At 0.282, the removal of bacterial cells was insufficient. From the above results, it was confirmed that bacterial cells can be easily removed by using the immobilized bacterial cells of the present invention.

【0019】実施例4 実施例1と同様の方法で培養し回収した菌体(湿菌体重
量2.0g)を0.1Mリン酸緩衝液2mlに懸濁さ
せ、[化1]に示した構造のウレタンプレポリマー(分
子量約3000)3gを撹拌下に添加混合しゲル化させ
た後、5mm角に成型し、ポリウレタンゲル固定化菌体
6.7gを得た。このポリウレタンゲル固定化菌体をグ
ルコース50g/L、L−リジン10g/L、クエン酸
20g/Lの培地(pH4)40ml中に添加、30℃
で振とう培養した。2日後および3日後に培養液中のε
−ポリ−L−リジン量を定量した。ε−ポリ−L−リジ
ン量は、それぞれ0.31g/L、0.47g/Lであ
った。
Example 4 The bacterial cells (wet bacterial cell weight: 2.0 g) that were cultured and collected in the same manner as in Example 1 were suspended in 2 ml of 0.1 M phosphate buffer solution and shown in [Chemical formula 1]. 3 g of a urethane prepolymer having a structure (a molecular weight of about 3000) was added and mixed under stirring to form a gel, which was then molded into a 5 mm square to obtain 6.7 g of a polyurethane gel-immobilized bacterium. The polyurethane gel-immobilized cells were added to 40 ml of a medium (pH 4) containing glucose 50 g / L, L-lysine 10 g / L and citric acid 20 g / L at 30 ° C.
The cells were shaken and cultured. Ε in the culture medium after 2 days and 3 days
-The amount of poly-L-lysine was quantified. The amounts of ε-poly-L-lysine were 0.31 g / L and 0.47 g / L, respectively.

【0020】[0020]

【化1】 [Chemical 1]

【0021】実施例5 実施例4と同条件で3日間培養した後、遠心分離(30
00G、20分間)により上澄を除去し、新たにグルコ
ース50g/L、L−リジン10g/L、クエン酸20
g/Lの培地(pH4)40mlを加え、30℃で振と
う培養を行った。新たな培地を添加した後2日経過後、
培養液中のε−ポリ−L−リジン量は、0.75g/L
であった。このことより、本発明の固定化菌体は、半連
続培養に用いることができることが確認された。
Example 5 After culturing for 3 days under the same conditions as in Example 4, centrifugation (30
The supernatant was removed with 20 g of 00 G), and glucose 50 g / L, L-lysine 10 g / L, and citric acid 20 were newly added.
40 ml of a g / L medium (pH 4) was added and shake culture was performed at 30 ° C. 2 days after adding new medium,
The amount of ε-poly-L-lysine in the culture solution was 0.75 g / L.
Met. From this, it was confirmed that the immobilized bacterial cell of the present invention can be used for semi-continuous culture.

【0022】実施例6 実施例1と同様の方法で培養し回収した菌体(湿重量
2.0g)を滅菌水5mlに懸濁し、オートクレーブに
より滅菌した光架橋性樹脂ENT−2000(関西ペイ
ント製)の15%水溶液40mlおよび重合開始剤0.
008gとを添加混合した。次いで該懸濁液に対して撹
拌下365nmの紫外線を30分間照射することにより
菌体固定化ゲルを作製した。この菌体固定化ゲルを5m
m角に成型し、53gの固定化菌体を得た。
Example 6 A photo-crosslinkable resin ENT-2000 (manufactured by Kansai Paint Co., Ltd.) was prepared by suspending the cells (wet weight 2.0 g) cultured and collected in the same manner as in Example 1 in 5 ml of sterilized water and sterilized by an autoclave. 40% of a 15% aqueous solution of 0.1) and a polymerization initiator of 0.
And 008 g were added and mixed. Then, the suspension was irradiated with ultraviolet rays of 365 nm for 30 minutes while stirring to prepare a cell-immobilized gel. This cell-immobilized gel is 5m
It was molded into m-square to obtain 53 g of immobilized microbial cells.

【0023】該光架橋製樹脂固定化菌体をグルコース5
0g/L、L−リジン10g/L、クエン酸20g/L
の培地(pH4)100ml中に添加し、30℃で振と
う培養した。2日後および3日後に培養液中のε−ポリ
−L−リジン量を定量した。ε−ポリ−L−リジンの量
は、各々0.44g/L、0.57g/Lであった。
The photo-crosslinked resin-immobilized bacterial cells were treated with glucose 5
0 g / L, L-lysine 10 g / L, citric acid 20 g / L
Was added to 100 ml of the medium (pH 4) and cultured at 30 ° C. with shaking. The amount of ε-poly-L-lysine in the culture solution was quantified after 2 days and 3 days. The amounts of ε-poly-L-lysine were 0.44 g / L and 0.57 g / L, respectively.

【0024】実施例7 実施例1と同様の方法で前培養した菌体を遠心分離で回
収し、滅菌水で洗浄した(湿菌体重量4.0g)。この
菌体をグルコース50g/L、硫酸アンモニウム10g
/L、酵母エキス5g/L、リン酸二水素カリウム1.
36g/L、リン酸一水素二ナトリウム1.58g/
L、硫酸マグネシウム0.5g/L、硫酸亜鉛0.04
g/L、硫酸第一鉄0.03g/Lからなる培地(pH
6.8)30ml中に入れさらに直径5mmのポリウレ
タン焼結多孔質体2gを入れ、30℃で緩やかに振とう
培養を行った。30時間後遠心分離でポリウレタン焼結
多孔質体固定化菌体を回収した。この固定化菌体をグル
コース50g/L、L−リジン10g/L、クエン酸2
0g/Lを含む培地(pH4)50mlに懸濁させ、3
0℃で振とう培養を行った。培養2日後の培養液中のε
−ポリ−L−リジンの量は、0.62g/Lであった。
また、この培養液を遠心分離(3000G、20分間)
し、上澄の透過度を660nmで測定した。透過度は、
0.009で、菌体は完全に除去された。
Example 7 Cells precultured in the same manner as in Example 1 were collected by centrifugation and washed with sterilized water (wet cell weight 4.0 g). Glucose 50g / L, ammonium sulfate 10g
/ L, yeast extract 5 g / L, potassium dihydrogen phosphate 1.
36 g / L, disodium monohydrogen phosphate 1.58 g /
L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04
medium consisting of g / L and ferrous sulfate 0.03 g / L (pH
6.8) 2 g of a polyurethane sintered porous body having a diameter of 5 mm was placed in 30 ml, and gently shake-cultured at 30 ° C. After 30 hours, the bacterial cells immobilized with the polyurethane sintered porous body were collected by centrifugation. 50 g / L glucose, 10 g / L L-lysine, and 2 citric acid
Suspend in 50 ml of medium (pH 4) containing 0 g / L, and
Shaking culture was performed at 0 ° C. Ε in the culture medium after 2 days of culture
-The amount of poly-L-lysine was 0.62 g / L.
In addition, this culture solution is centrifuged (3000 G, 20 minutes)
Then, the transmittance of the supernatant was measured at 660 nm. The transparency is
At 0.009, the cells were completely removed.

【0025】実施例8 400ml容の気泡通気型リアクターにグルコース50
g/L、硫酸アンモニウム10g/L、酵母エキス5g
/L、リン酸二水素カリウム1.36g/L、リン酸一
水素二ナトリウム1.58g/L、硫酸マグネシウム
0.5g/L、硫酸亜鉛0.04g/L、硫酸第一鉄
0.03g/Lからなる培地(pH6.8)100ml
とブロック状セラミック(日本ガイシ製)30gを入
れ、常法により滅菌後、ストレプトマイセス・アルブラ
ス(Streptomyces albulus)を菌保存用斜面培地より1
白金耳植菌し、30℃通気量0.5L/min.で50
時間通気培養を行った。50時間後の培養液中のε−ポ
リ−L−リジンの量は、0.3g/Lであった。その
後、該培養液のみを回収し、リアクター内の固定化菌体
に対して新たにグルコース50g/L、L−リジン塩酸
塩10g/L、クエン酸20g/L、リン酸二水素カリ
ウム1.36g/L、リン酸一水素ナトリウム1.58
g/L、硫酸マグネシウム0.5g/L、硫酸亜鉛0.
04g/L、硫酸第一鉄0.03g/L(pH4)の培
地100mlを添加し、30℃で48時間通気培養を行
った。48時間後の培養液中のε−ポリ−L−リジンの
量は3.7g/Lであった。さらに該培養液を回収し、
新たに培地を添加して30℃48時間の通気培養を行う
操作を3回繰り返して行った。その結果、繰り返し各回
のε−ポリ−L−リジンの生産量は、1回目4.5g/
L、2回目4.0g/L、3回目5.2g/Lであっ
た。このことより本発明の固定化菌体を用いて培地交換
を繰り返し行うことによりε−ポリ−L−リジンの半連
続生産が可能であることが確認された。
Example 8 Glucose 50 was added to a bubble aeration type reactor having a capacity of 400 ml.
g / L, ammonium sulfate 10 g / L, yeast extract 5 g
/ L, potassium dihydrogen phosphate 1.36 g / L, disodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L, ferrous sulfate 0.03 g / 100 ml of medium (pH 6.8) consisting of L
And 30 g of block-shaped ceramic (manufactured by NGK Insulators) are put in and sterilized by a standard method, and then Streptomyces albulus is taken from the slant culture medium for preserving the bacteria 1
Platinum loops were inoculated, and the air flow rate at 30 ° C was 0.5 L / min. At 50
Aeration culture was performed for an hour. The amount of ε-poly-L-lysine in the culture medium after 50 hours was 0.3 g / L. Then, only the culture solution was collected, and glucose 50 g / L, L-lysine hydrochloride 10 g / L, citric acid 20 g / L, potassium dihydrogen phosphate 1.36 g was newly added to the immobilized cells in the reactor. / L, sodium monohydrogen phosphate 1.58
g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.
100 ml of a medium containing 04 g / L and ferrous sulfate 0.03 g / L (pH 4) was added, and aeration culture was carried out at 30 ° C. for 48 hours. The amount of ε-poly-L-lysine in the culture medium after 48 hours was 3.7 g / L. Further, collecting the culture solution,
The operation of newly adding a medium and performing aeration culture at 30 ° C. for 48 hours was repeated 3 times. As a result, the production amount of ε-poly-L-lysine in each repeated cycle was 4.5 g /
L, the second time was 4.0 g / L, and the third time was 5.2 g / L. From this, it was confirmed that ε-poly-L-lysine can be semi-continuously produced by repeating the medium exchange using the immobilized bacterium of the present invention.

【0026】実施例9 400ml容の気泡通気型リアクターにグルコース50
g/L、硫酸アンモニウム10g/L、酵母エキス5g
/L、リン酸二水素カリウム1.36g/L、リン酸一
水素二ナトリウム1.58g/L、硫酸マグネシウム
0.5g/L、硫酸亜鉛0.04g/L、硫酸第一鉄
0.03g/Lからなる培地(pH6.8)100ml
とセルロース発泡体マイクロキューブFN−S03(酒
伊エンジニヤリング製)1gを入れ、常法により滅菌
後、ストレプトマイセス・アルブラス(Streptomyces a
lbulus)を菌保存用斜面培地より1白金耳植菌し、30
℃通気量0.5L/min.で50時間通気培養を行っ
た。50時間後の培養液注のε−ポリ−L−リジンの量
は0.33g/Lであった。その後、該培養液のみを回
収し、リアクター内の固定化菌体に対して新たにグルコ
ース50g/L、L−リジン塩酸塩10g/L、クエン
酸20g/L、リン酸二水素カリウム1.36g/L、
リン酸一水素ナトリウム1.58g/L、硫酸マグネシ
ウム0.5g/L、硫酸亜鉛0.04g/L、硫酸第一
鉄0.03g/L(pH4)の培地100mlを添加
し、30℃で48時間通気を行った。48時間後の培養
液中のε−ポリ−L−リジンの量は2.9g/Lであっ
た。さらに該培養液を回収し、新たに培地を添加して3
0℃48時間の通気培養を行う操作を3回繰り返して行
った。その結果、繰り返し各回のε−ポリ−L−リジン
の生産量は、1回目3.0g/L、2回目2.5g/
L、3回目2.0g/Lであった。このことより本発明
の固定化菌体を用いて培地交換を繰り返し行うことによ
りε−ポリ−L−リジンの半連続生産の可能であること
が確認された。
Example 9 Glucose 50 was added to a bubble-aeration type reactor having a capacity of 400 ml.
g / L, ammonium sulfate 10 g / L, yeast extract 5 g
/ L, potassium dihydrogen phosphate 1.36 g / L, disodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L, ferrous sulfate 0.03 g / 100 ml of medium (pH 6.8) consisting of L
And 1 g of Cellulose Foam Micro Cube FN-S03 (manufactured by Sakai Engineering Co., Ltd.) were sterilized by a conventional method, and then Streptomyces ablus ( Streptomyces a
lbulus ) is inoculated with 1 platinum loop from a slant culture medium for bacterial storage, and 30
Aeration rate of 0.5 L / min. Aeration culture was carried out for 50 hours. The amount of ε-poly-L-lysine in the culture solution injection after 50 hours was 0.33 g / L. Then, only the culture solution was collected, and glucose 50 g / L, L-lysine hydrochloride 10 g / L, citric acid 20 g / L, potassium dihydrogen phosphate 1.36 g was newly added to the immobilized cells in the reactor. / L,
Sodium monohydrogen phosphate (1.58 g / L), magnesium sulfate (0.5 g / L), zinc sulfate (0.04 g / L), ferrous sulfate (0.03 g / L, pH 4) (100 ml) was added to the medium at 48 ° C at 30 ° C. Aeration was performed for an hour. The amount of ε-poly-L-lysine in the culture medium after 48 hours was 2.9 g / L. Furthermore, the culture solution is recovered, and a new medium is added to
The operation of performing aeration culture at 0 ° C. for 48 hours was repeated 3 times. As a result, the amount of production of ε-poly-L-lysine at each repetition was 3.0 g / L at the first time and 2.5 g / L at the second time.
L was 2.0 g / L for the third time. From this, it was confirmed that semi-continuous production of ε-poly-L-lysine is possible by repeating the medium exchange using the immobilized bacterium of the present invention.

【0027】比較例2 実施例8においてセラミック担体を投入することなしに
菌の培養を行った。すなわち、400ml容の気泡通気
型リアクターにグルコース50g/L、硫酸アンモニウ
ム10g/L、酵母エキス5g/L、リン酸二水素カリ
ウム1.36g/L、リン酸一水素二ナトリウム1.5
8g/L、硫酸マグネシウム0.5g/L、硫酸亜鉛
0.04g/L、硫酸第一鉄0.03g/Lからなる培
地(pH6.8)100mlを入れ、常法により滅菌
後、ストレプトマイセス・アルブラス(Streptomyces a
lbulus)を菌保存用斜面培地より1白金耳植菌し、30
℃通気量0.5L/min.で50時間通気培養を行っ
た。50時間後の培養液中のε−ポリ−L−リジンの量
は、0.25g/Lであった。ついで該培養液を遠心分
離(6000G、15分間)により菌体を回収し、回収
した菌体に対して新たにグルコース50g/L、L−リ
ジン塩酸塩10g/L、クエン酸20g/L、リン酸二
水素カリウム1.36g/L、リン酸一水素ナトリウム
1.58g/L、硫酸マグネシウム0.5g/L、硫酸
亜鉛0.04g/L、硫酸第一鉄0.03g/L(pH
4)の培地100mlを添加し、30℃で48時間通気
を行った。48時間後の培養液中のε−ポリ−L−リジ
ンの量は1.3g/Lであった。さらに該培養液を遠心
分離(6000G、15分間)により菌体を回収し、再
び前述の新たな培地を添加して30℃48時間の通気培
養を行った。48時間後の培養液注のε−ポリ−L−リ
ジンの量は、0.7g/Lであった。この結果より固定
化菌体を用いずに菌体を回収し、培養を行うε−ポリ−
L−リジンの半連続生産では、回を重ねるごとにε−ポ
リ−L−リジンの生産性が低下し、半連続生産は困難で
あることが認められた。
Comparative Example 2 Bacteria were cultured in Example 8 without adding a ceramic carrier. That is, glucose of 50 g / L, ammonium sulfate of 10 g / L, yeast extract of 5 g / L, potassium dihydrogen phosphate of 1.36 g / L, and disodium monohydrogen phosphate of 1.5 were added to a 400-mL volume bubble-reacting reactor.
Put 100 ml of medium (pH 6.8) consisting of 8 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L, and ferrous sulfate 0.03 g / L, and sterilize by a conventional method, and then streptomyces.・ Albrus ( Streptomyces a
lbulus ) is inoculated with 1 platinum loop from a slant culture medium for bacterial storage, and 30
Aeration rate of 0.5 L / min. Aeration culture was carried out for 50 hours. The amount of ε-poly-L-lysine in the culture medium after 50 hours was 0.25 g / L. Then, the culture solution is centrifuged (6000 G, 15 minutes) to collect bacterial cells, and 50 g / L of glucose, 10 g / L of L-lysine hydrochloride, 20 g / L of citric acid, and phosphorus are newly collected from the collected bacterial cells. Potassium dihydrogen acid 1.36 g / L, sodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L, ferrous sulfate 0.03 g / L (pH
100 ml of the medium of 4) was added, and the mixture was aerated at 30 ° C. for 48 hours. The amount of ε-poly-L-lysine in the culture medium after 48 hours was 1.3 g / L. Further, the culture solution was centrifuged (6000 G, 15 minutes) to collect the bacterial cells, the above-mentioned new medium was added again, and aeration culture was carried out at 30 ° C. for 48 hours. The amount of ε-poly-L-lysine in the culture solution injection after 48 hours was 0.7 g / L. From this result, the ε-poly-
In the semi-continuous production of L-lysine, it was confirmed that the productivity of ε-poly-L-lysine decreases as the number of times is repeated, and the semi-continuous production is difficult.

【0028】実施例10 400ml容の気泡通気型リアクターにグルコース50
g/L、硫酸アンモニウム10g/L、酵母エキス5g
/L、リン酸二水素カリウム1.36g/L、リン酸一
水素二ナトリウム1.58g/L、硫酸マグネシウム
0.5g/L、硫酸亜鉛0.04g/L、硫酸第一鉄
0.03g/Lからなる培地(pH6.8)100ml
とブロック状セラミック(日本ガイシ製)30gを入
れ、常法により滅菌後、ストレプトマイセス・アルブラ
ス(Streptomyces albulus) を菌保存用斜面培地より1
白金耳植菌し、30℃通気量0.5L/min.で50
時間通気培養を行った。50時間後の培養液中のε−ポ
リ−L−リジンの量は、0.3g/Lであった。その
後、リアクター内へ新たにグルコース50g/L、L−
リジン塩酸塩10g/L、クエン酸20g/L、リン酸
二水素カリウム1.36g/L、リン酸酸一水素ナトリ
ウム1.58g/L、硫酸マグネシウム0.5g/L、
硫酸亜鉛0.04g/L、硫酸第一鉄0.03g/L
(pH4)の培地の添加と培養液の抜き出しを2ml/
hrの速度で行う、ε−ポリ−L−リジンの連続的生産
を300時間行った。300時間でのε−ポリ−L−リ
ジンの総生産量は、2.2gであった。このことより本
発明の固定化菌体を用いて培地交換を連続的に行うこと
によりε−ポリ−L−リジンの連続生産が容易に行える
ことが確認された。
Example 10 Glucose 50 was added to a bubble aeration type reactor having a capacity of 400 ml.
g / L, ammonium sulfate 10 g / L, yeast extract 5 g
/ L, potassium dihydrogen phosphate 1.36 g / L, disodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L, zinc sulfate 0.04 g / L, ferrous sulfate 0.03 g / 100 ml of medium (pH 6.8) consisting of L
And 30g of block-shaped ceramic (manufactured by NGK Insulators) are added and sterilized by a conventional method, and then Streptomyces albulus ( Streptomyces albulus ) is added from a slant culture medium for bacterial preservation 1
Platinum loops were inoculated, and the air flow rate at 30 ° C was 0.5 L / min. At 50
Aeration culture was performed for an hour. The amount of ε-poly-L-lysine in the culture medium after 50 hours was 0.3 g / L. Then, glucose 50 g / L, L- was newly added into the reactor.
Lysine hydrochloride 10 g / L, citric acid 20 g / L, potassium dihydrogen phosphate 1.36 g / L, sodium monohydrogen phosphate 1.58 g / L, magnesium sulfate 0.5 g / L,
Zinc sulfate 0.04 g / L, ferrous sulfate 0.03 g / L
Add 2 ml of (pH 4) medium and remove the culture solution.
Continuous production of ε-poly-L-lysine was carried out at a rate of hr for 300 hours. The total amount of ε-poly-L-lysine produced in 300 hours was 2.2 g. From this, it was confirmed that continuous production of ε-poly-L-lysine can be easily performed by continuously exchanging the medium using the immobilized bacterium of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ε−ポリ−L−リジン生産能を持つ微生
物を固定化した固定化菌体を好気的条件下で培養するこ
とを特徴とするε−ポリ−L−リジンの製造法。
1. A method for producing ε-poly-L-lysine, which comprises culturing an immobilized microbial cell on which a microorganism capable of producing ε-poly-L-lysine is immobilized under aerobic conditions.
【請求項2】 請求項1記載の固定化菌体を用いたε−
ポリ−L−リジンの製造法が半連続法または連続製造法
である事を特徴とするε−ポリ−L−リジンの製造法。
2. An ε-using the immobilized bacterial cell according to claim 1.
A method for producing ε-poly-L-lysine, wherein the method for producing poly-L-lysine is a semi-continuous method or a continuous production method.
【請求項3】 ε−ポリ−L−リジン生産能を持つ微生
物が、ストレプトマイセス属に属する菌である請求項1
及び請求項2記載のε−ポリ−L−リジンの製造法。
3. The microorganism capable of producing ε-poly-L-lysine is a bacterium belonging to the genus Streptomyces.
And the method for producing ε-poly-L-lysine according to claim 2.
【請求項4】 ε−ポリ−L−リジン生産能を持つ微生
物の固定化を吸着法、架橋法もしくは包括法で行う請求
項1及び請求項2記載のε−ポリ−L−リジンの製造
法。
4. The method for producing ε-poly-L-lysine according to claim 1 or 2, wherein immobilization of a microorganism having an ability to produce ε-poly-L-lysine is carried out by an adsorption method, a crosslinking method or an inclusion method. .
【請求項5】 ε−ポリ−L−リジン生産能を有する微
生物の固定化を吸着法と架橋法もしくは吸着法と包括法
を組み合わせて行う請求項1及び請求項2記載のε−ポ
リ−L−リジンの製造法。
5. The ε-poly-L according to claim 1 or 2, wherein immobilization of a microorganism having the ability to produce ε-poly-L-lysine is carried out by a combination of an adsorption method and a crosslinking method or an adsorption method and an inclusion method. -Method for producing lysine.
JP4570293A 1992-02-26 1993-02-10 Method for producing ε-poly-L-lysine Expired - Lifetime JP3282271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4570293A JP3282271B2 (en) 1992-02-26 1993-02-10 Method for producing ε-poly-L-lysine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7548492 1992-02-26
JP4-75484 1992-02-26
JP4570293A JP3282271B2 (en) 1992-02-26 1993-02-10 Method for producing ε-poly-L-lysine

Publications (2)

Publication Number Publication Date
JPH0686686A true JPH0686686A (en) 1994-03-29
JP3282271B2 JP3282271B2 (en) 2002-05-13

Family

ID=26385756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4570293A Expired - Lifetime JP3282271B2 (en) 1992-02-26 1993-02-10 Method for producing ε-poly-L-lysine

Country Status (1)

Country Link
JP (1) JP3282271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330797A (en) * 2001-05-08 2002-11-19 Chisso Corp METHOD FOR PRODUCING epsi-POLY-L-LYSINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330797A (en) * 2001-05-08 2002-11-19 Chisso Corp METHOD FOR PRODUCING epsi-POLY-L-LYSINE

Also Published As

Publication number Publication date
JP3282271B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
EP0048109B1 (en) Improvements in or relating to composite materials
EP0054800B1 (en) Process for the production of immobilized microorganisms
JPS6321474B2 (en)
US4287305A (en) Microorganism immobilization
NL8103838A (en) THE PREPARATION OF MICROBIOLOGICAL POLYSACCHARIDES.
WO1997044478A1 (en) Process and carrier for the production of isomaltulose by immobilized micro-organisms
US5900363A (en) Process for producing ε-poly-L-lysine with immobilized Streptomyces albulus
EP0022434B1 (en) Catalysts for the production and transformation of natural products having their origin in higher plants, process for production of the catalysts, and use thereof
JP3282271B2 (en) Method for producing ε-poly-L-lysine
EP0557954B1 (en) A process for producing epsilon-poly-L-lysine
JP4217046B2 (en) Immobilization of bacterial cells on hydrophobic carrier
Dobreva et al. Immobilization of Bacillus licheniformis cells, producers of thermostable α-amylase, on polymer membranes
DE2331295A1 (en) PROCESS FOR THE PREPARATION OF 7-AMINODESACETOXY-CEPHALOSPORANIC ACID
EP0368808A2 (en) Immobilized enzyme and a method for application thereof
JPH05123694A (en) Treatment of organic waste water with nitrogen fixation bacterial
JPS6131085A (en) Preparation of immobilized microbial cell
JP2537355B2 (en) Method for producing sugar alcohol
KR20210052102A (en) Bead immobilized microbial cell soaked with metal ion and method of preparing the same
JPS6043957B2 (en) Method for producing gluconic acid using immobilized microorganisms
JPS5915629B2 (en) Antibiotic manufacturing method
Bastos et al. Heterotrophic growth of Aphanothece microscopica Nägeli in calcium alginate beads from BG11 medium and vinasse
GB2082189A (en) Production of microbial polysaccharides
JPH10296295A (en) Waste water treating method
JPH02227077A (en) Immobilized enzyme and utilizing method of the enzyme
JPS6250114B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080301

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110301

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120301

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130301

EXPY Cancellation because of completion of term