JPH0686628B2 - Manufacturing method of low-loss directional silicon steel ultra-thin ribbon - Google Patents

Manufacturing method of low-loss directional silicon steel ultra-thin ribbon

Info

Publication number
JPH0686628B2
JPH0686628B2 JP62003270A JP327087A JPH0686628B2 JP H0686628 B2 JPH0686628 B2 JP H0686628B2 JP 62003270 A JP62003270 A JP 62003270A JP 327087 A JP327087 A JP 327087A JP H0686628 B2 JPH0686628 B2 JP H0686628B2
Authority
JP
Japan
Prior art keywords
silicon steel
ultra
low
heat treatment
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62003270A
Other languages
Japanese (ja)
Other versions
JPS63171827A (en
Inventor
賢一 荒井
賢次 大森
一夫 三浦
清司 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62003270A priority Critical patent/JPH0686628B2/en
Publication of JPS63171827A publication Critical patent/JPS63171827A/en
Publication of JPH0686628B2 publication Critical patent/JPH0686628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼帯の圧延方向に磁化容易軸〔001〕を有す
る所謂、方向性ケイ素鋼帯の製造法に係るものである。
特に極薄鋼帯で、かつ高磁束密度、超低鉄損の配向性の
高い(高配向性)方向性ケイ素鋼帯の製造法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a so-called directional silicon steel strip having an easy axis of magnetization [001] in the rolling direction of the steel strip.
In particular, the present invention relates to a method for producing an ultrathin steel strip having a high magnetic flux density and a very low iron loss and high orientation (high orientation) oriented silicon steel strip.

〔従来の技術〕[Conventional technology]

ケイ素の含有率が4重量%以下のケイ素鋼帯では、圧延
と熱処理の組合せによりゴス(Goss)方位、すなわち
(110)〔001〕方位の結晶粒集合組織を有する方向性ケ
イ素鋼帯が、現在、例えば電力用変圧器、発電機、可飽
和リアクトルなどに広く使用されている。
For silicon steel strips with a silicon content of 4% by weight or less, a directional silicon steel strip having a Goss orientation, that is, a (110) [001] -oriented crystal grain texture, is currently produced by a combination of rolling and heat treatment. Widely used in power transformers, generators, saturable reactors, etc.

この方向性ケイ素鋼帯は、板面が(110)結晶面と平行
であり、かつ圧延方向が〔001〕方向であることから、
圧延方向が磁化容易な軸方向と一致して、圧延方向に対
する励磁特性が極めて優れ、しかもその鉄損も少い。ま
た表面に酸化物の被膜を形成し、鋼帯を圧延方向に引張
ることにより、鉄損をさらに減少させると同時に低磁歪
化が実現できる。特に(110)〔001〕方位の集合組織に
おいて、板面および圧延方向に対する〔001〕軸の平均
ずれ角度が3度程度に抑えられた方向性ケイ素鋼帯はハ
イ・ビーと呼ばれ、低損失トランス材と知られている。
This directional silicon steel strip has a plate surface parallel to the (110) crystal plane and a rolling direction of [001],
Since the rolling direction coincides with the axial direction in which the magnetization is easy, the excitation characteristics in the rolling direction are extremely excellent and the iron loss is small. Further, by forming an oxide film on the surface and pulling the steel strip in the rolling direction, iron loss can be further reduced and at the same time low magnetostriction can be realized. Especially in the texture of (110) [001] orientation, the directional silicon steel strip in which the average deviation angle of the [001] axis with respect to the plate surface and rolling direction is suppressed to about 3 degrees is called high bee and has low loss. Known as transformer material.

現在、方向性ケイ素鋼帯の製法には、二回圧延法と一回
圧延法とがある。二回圧延法は、鋼塊を熱間圧延により
板厚2〜3mm程度まで薄くし、ノルマライジング、一次
冷間圧延、中間焼鈍、二次冷間圧延、脱炭焼鈍、仕上焼
鈍により最終厚さが0.3mm程度の鋼帯を作る方法であ
る。また前記一回圧延法は、鋼塊を熱間圧延、強冷間圧
延、脱炭、仕上焼鈍することによつて前述と同程度の最
終厚さを有する鋼帯を得る方法である。
At present, there are a double rolling method and a single rolling method as a method for producing the grain-oriented silicon steel strip. In the double rolling method, the steel ingot is thinned to a thickness of about 2 to 3 mm by hot rolling, and the final thickness is obtained by normalizing, primary cold rolling, intermediate annealing, secondary cold rolling, decarburizing annealing, and finishing annealing. Is a method of making a steel strip of about 0.3 mm. The single rolling method is a method of obtaining a steel strip having a final thickness similar to the above by subjecting a steel ingot to hot rolling, strong cold rolling, decarburization, and finish annealing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしこれらの方法では、最終板厚が0.2mm以下のもの
を工業的に生産することは困難である。すなわち、冷間
圧延時の板厚を0.2mm以下にすることは、現在使用され
ている圧延機の機械的ならびに材料的な制限などからき
わめて困難である。また0.2mm以下の過度の圧延は、二
次再結晶時におけるゴス(Goss)集合組織の集積度を低
下させ,逆に鉄損値を増大させるという結果になる。す
なわち、一般にゴス(Goss)集合組織を実現する際、1
次再結晶粒の成長を抑制するため、微量のAlN、MnS、Mn
Se/Sbなどの抑制剤(インヒビター)をケイ素鋼を溶融
させた所謂、溶湯中に添加するが、このインヒビターは
板厚が薄い場合にはその効果が極端に薄れてしまうため
である。
However, with these methods, it is difficult to industrially produce a sheet having a final thickness of 0.2 mm or less. That is, it is extremely difficult to reduce the plate thickness during cold rolling to 0.2 mm or less due to mechanical and material restrictions of the rolling mill currently used. Further, excessive rolling of 0.2 mm or less results in a decrease in the degree of integration of Goss texture during secondary recrystallization and, conversely, an increase in iron loss value. That is, in general, when realizing a Goss texture, 1
In order to suppress the growth of secondary recrystallized grains, trace amounts of AlN, MnS, Mn
An inhibitor such as Se / Sb is added to the so-called molten metal in which silicon steel is melted, but the effect of this inhibitor becomes extremely weak when the plate thickness is thin.

一方、ゴス(Goss)方位を有する方向性ケイ素鋼帯の鉄
損は、板厚の減少とともに渦電流効果が小さくなること
から、板厚をさらに薄くして鉄損を可及的に小さくする
ことが望まれる。しかし現在の方向性ケイ素鋼帯では、
前述のようなことにより板厚を0.2mm以下に薄くするこ
とが困難であることから、鉄損や磁束密度などにおいて
十分に満足する磁気特性を得ることができない。
On the other hand, the iron loss of grain-oriented silicon steel strip having Goss orientation decreases the eddy current effect as the sheet thickness decreases. Therefore, further reduce the sheet thickness to reduce the iron loss as much as possible. Is desired. However, in the current oriented silicon steel strip,
Since it is difficult to reduce the plate thickness to 0.2 mm or less as described above, it is not possible to obtain sufficiently satisfactory magnetic properties in terms of iron loss and magnetic flux density.

この方向性ケイ素鋼帯よりもさらに優れた磁気特性を有
するケイ素鋼帯を得る方法として、急速冷却凝固法が開
発されつつある。
A rapid cooling solidification method is being developed as a method for obtaining a silicon steel strip having magnetic properties superior to those of the grain-oriented silicon steel strip.

この方法は、ケイ素の含有率が例えば6重量%の高濃度
の鉄溶湯,または、ケイ素とホウ素を添加した鉄の溶湯
を水冷された双ロール法あるいは単ロール法によつて薄
く引き延ばしながら極めて短時間で冷却、凝固して、無
方向の結晶質や非晶質の極薄帯(0.04〜0.08mm程度)を
得る方法である。
This method is a very short method in which a high-concentration iron melt having a silicon content of, for example, 6% by weight or a melt of iron containing silicon and boron is thinly drawn by a water-cooled twin roll method or a single roll method. This is a method of cooling and solidifying in a time period to obtain a non-oriented crystalline or amorphous ultrathin band (about 0.04 to 0.08 mm).

しかしこの急速冷却凝固法は、高度な制御技術を必要と
し結局は生産コストが高くなるばかりでなく、溶湯を急
冷却するためにロールの周速度を12〜20m/秒程度にする
必要があり、そのためにロールから高速で剥離されてく
る極薄帯を処理するための設備やスペースが問題となる
などの欠点を有している。
However, this rapid cooling solidification method not only requires high control technology and eventually raises the production cost, but also requires the peripheral speed of the roll to be about 12 to 20 m / sec in order to rapidly cool the molten metal, For this reason, there are drawbacks such as equipment and space for processing the ultra-thin strip that is peeled off from the roll at high speed.

従来、特開昭55-131128号公報に記載されているような
ゴス組織を有する鋼板の製造方法が提案されている。
Conventionally, a method of manufacturing a steel sheet having a Goss structure as described in JP-A-55-131128 has been proposed.

この製造方法は、ゴス組織を有する鋼板を一次結晶を発
生させるために冷間圧延し、その後の加熱によつて三次
再結晶を発生させるために焼なましを行う方法におい
て、前記冷間圧延で40〜85%減厚し、700〜900℃に加熱
した後、さらに1300〜1500℃で焼なましを行う方法であ
る。
This manufacturing method is a method of cold rolling a steel sheet having a Goss structure to generate primary crystals, and a method of performing annealing to generate tertiary recrystallization by subsequent heating, in the cold rolling. This is a method of reducing the thickness by 40 to 85%, heating to 700 to 900 ° C, and then annealing at 1300 to 1500 ° C.

この方法は具体的には、ゴス組織を有する鋼板を冷間圧
延後に900℃で1〜3分間保持し、次に100℃/時間(0.
08℃/秒)という非常にゆっくりとした昇温速度で数時
間かけて焼なまし温度(1300〜1500℃)まで昇温し、そ
の焼なまし温度で0.5〜1時間保持される。
Specifically, this method holds a steel sheet having a goth structure at 900 ° C. for 1 to 3 minutes after cold rolling, and then 100 ° C./hour (0.
The temperature is raised up to the annealing temperature (1300 to 1500 ° C.) over a few hours at a very slow heating rate (08 ° C./sec), and the annealing temperature is maintained for 0.5 to 1 hour.

ところが本発明者らの実験等による知見によれば、前記
冷間圧延後の700〜900℃での加熱により(110)〔001〕
集合組織を有する1次再結晶が成長し、次に非常にゆっ
くりと昇温するので2次再結晶粒が大きく成長して、13
00〜1500℃の高温では(110)〔001〕集合組織を有する
3次再結晶粒が成長するが、前述のようにすでに2次再
結晶粒が大きく成長しており、しかも焼なまし時間が短
いため、全て(110)〔001〕集合組織を有する3次再結
晶粒になれず、その結果、〔001〕方位が圧延方位から
外れた結晶粒が多くなり、配向性の悪く、磁束密度の低
いケイ素鋼板となると推定される。
However, according to the findings of the experiments conducted by the present inventors, heating at 700 to 900 ° C. after the cold rolling (110) [001]
The primary recrystallization having a texture grows, and then the temperature rises very slowly, so that the secondary recrystallized grains grow large.
At a high temperature of 00 to 1500 ° C, the tertiary recrystallized grains having (110) [001] texture grow, but as described above, the secondary recrystallized grains have already grown largely, and the annealing time Since they are short, they cannot all become tertiary recrystallized grains having a (110) [001] texture, and as a result, there are many crystal grains whose [001] orientation deviates from the rolling orientation, resulting in poor orientation and magnetic flux density. It is estimated to be a low silicon steel sheet.

本発明の目的は、前述したような従来技術の問題点を解
消し、鋼帯厚を薄くして、かつ(110)〔001〕方位集積
度を高め、低損失特性を有し、しかも生産性が良く処理
コストの安価な低損失方向性ケイ素鋼極薄帯の製造法を
提供するにある。〔問題点を解決するための手段〕 前述の目的を達成するため、本発明は、結晶の集合組織
が(110)〔001〕方位を有する、例えば市販の方向性ケ
イ素鋼帯の表面被膜を除去した方向性ケイ素鋼帯素材
を、冷間圧延することにより(111)〔112〕方位を有す
る中間極薄鋼帯を作る第1工程と、その第1工程の後に
前記中間極薄鋼帯を、例えば減圧下や不活性ガス雰囲気
などの非酸化雰囲気中において、1.5℃/秒以上の昇温
速度で昇温して1000〜1400℃の温度領域で3時間以上保
持する高温熱処理することによつて、出発素材よりさら
に高度に集積された(110)〔001〕方位を有する3次再
結晶の集合組織からなる低損失方向性ケイ素鋼極薄帯を
得る第2工程とを経由することを特徴とするものであ
る。
The object of the present invention is to solve the above-mentioned problems of the prior art, to reduce the thickness of the steel strip, to increase the degree of (110) [001] orientation integration, to have low loss characteristics, and to improve productivity. It is an object of the present invention to provide a method for producing an ultra-thin ribbon of low-loss directional silicon steel, which has good processing cost and low cost. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention is directed to removing the surface coating of, for example, a commercially available grain-oriented silicon steel strip in which the texture of the crystal has a (110) [001] orientation. The first step of forming an intermediate ultra-thin steel strip having a (111) [112] orientation by cold rolling the oriented silicon steel strip material, and the intermediate ultra-thin steel strip after the first step, For example, by performing a high-temperature heat treatment in which the temperature is raised at a heating rate of 1.5 ° C / sec or more and kept in a temperature range of 1000 to 1400 ° C for 3 hours or more in a non-oxidizing atmosphere such as a reduced pressure or an inert gas atmosphere, , A second step of obtaining a low-loss directional silicon steel ultra-thin ribbon consisting of a texture of tertiary recrystallization having a (110) [001] orientation that is more highly integrated than the starting material. To do.

〔実施例〕〔Example〕

本発明で使用するケイ素鋼帯中のケイ素含有率は、2〜
8重量%の範囲に規制されたものを用いるとよい。ケイ
素を約2重量%以上含有するケイ素鋼帯はγ変態がない
ので高温焼鈍によつて結晶粒を大きくしたり、2次なら
びに3次の再結晶を生じさせて好ましい集合組織を形成
させることができるが、ケイ素の含有率が2重量%未満
では前述のような特長が発揮されない。一方、ケイ素の
含有率が8重量%を超えると飽和磁束密度が約1.7T以下
になつて磁性材料としては不適当であるばかりでなく、
機械的に著しく脆弱になるので好ましくない。特にケイ
素の含有率が2.5〜4.0重量%のものは、圧延等の機械的
特性に優れ、飽和磁束密度も1.95T以上であるため好適
である。
The silicon content in the silicon steel strip used in the present invention is 2 to
It is advisable to use those regulated in the range of 8% by weight. Since a silicon steel strip containing silicon in an amount of about 2% by weight or more does not have a γ-transformation, it is possible to increase the grain size by high temperature annealing and to cause secondary and tertiary recrystallization to form a preferable texture. However, if the silicon content is less than 2% by weight, the above-mentioned features are not exhibited. On the other hand, when the content of silicon exceeds 8% by weight, the saturation magnetic flux density is about 1.7 T or less, which is not suitable as a magnetic material.
It is mechanically extremely fragile, which is not preferable. In particular, a silicon content of 2.5 to 4.0% by weight is preferable because it has excellent mechanical properties such as rolling and a saturation magnetic flux density of 1.95 T or more.

ケイ素鋼帯中に、例えばMn、Al、S、Se、Sn、Sb、Mn
S、MnSe/Sb、AlNなどを必要に応じて総量で0.5重量%ま
で添加することができる。また、不可避混入元素として
例えばNi、Cu、Mo、W、Co、Crなどを少量含有すること
もある。さらに例えばO、N、Cなどの不可避不純物の
含有量は、最終的に目的とする薄帯の品質に応じて制限
されなればならない。
In silicon steel strip, for example, Mn, Al, S, Se, Sn, Sb, Mn
If necessary, S, MnSe / Sb, AlN and the like can be added in a total amount of up to 0.5% by weight. In addition, a small amount of Ni, Cu, Mo, W, Co, Cr or the like may be contained as an inevitable mixed element. Furthermore, the content of unavoidable impurities such as O, N, and C must be limited in accordance with the final quality of the desired ribbon.

なお、本発明で使用する素材としての方向性ケイ素鋼帯
としては、市販の方向性ケイ素鋼帯を使用することがで
きる。市販の方向性ケイ素鋼帯としては、例えば次の表
1ならびに表2のようなものが使用できる。
As the grain-oriented silicon steel strip used in the present invention, a commercially available grain-oriented silicon steel strip can be used. As commercially available grain-oriented silicon steel strips, for example, those shown in Tables 1 and 2 below can be used.

例えば表1では鉄損(W17/50)が1.33〜2.00W/kg以下、磁
束密度(B8)が1.68〜1.79T以上のもの、あるいは表2の
ように鉄損(W17/50)が1.05〜1.37W/kg以下、磁束密度(B
8)が1.89以上のように特性の異なるものも使用でき、本
発明によりさらに一層磁気特性が改善されたものとな
る。
For example, in Table 1, iron loss (W 17/50 ) is 1.33 to 2.00 W / kg or less and magnetic flux density (B 8 ) is 1.68 to 1.79 T or more, or iron loss (W 17/50 ) is as shown in Table 2. Is 1.05 to 1.37 W / kg or less, magnetic flux density (B
Those having different characteristics such as 8 ) of 1.89 or more can be used, and the magnetic characteristics are further improved by the present invention.

市販の方向性ケイ素鋼帯では、前述の表に示されている
ように板厚が0.30mm(300μm)と0.35mm(350μm)の
ものがある。これらのケイ素鋼帯を素材として用い、冷
間圧延によつて板厚が150μm以下に圧延される。この
圧延率は50%以上であれば十分で、冷間圧延の本来の主
旨は、(110)〔001〕方位の方向性ケイ素鋼帯から、圧
延方向に対してずれ角度の大きい、換言すれば結晶歪の
ある(111)〔112〕方位を有する極薄の中間体を得るこ
とにある。
Commercially available grain-oriented silicon steel strips have sheet thicknesses of 0.30 mm (300 μm) and 0.35 mm (350 μm), as shown in the above table. Using these silicon steel strips as a raw material, the plate thickness is rolled to 150 μm or less by cold rolling. It suffices if this rolling rate is 50% or more, and the original purpose of cold rolling is that the deviation angle is large with respect to the rolling direction from the (110) [001] oriented directional silicon steel strip. It is to obtain an ultrathin intermediate having a (111) [112] orientation with crystal strain.

また本発明では、150μmを超える板厚では(110)〔00
1〕方位の再結晶粒成長が生じにくいことが確められ
た。この理由は、150μmを超える板厚では、表面エネ
ルギーが駆動力となつて、表面エネルギーの一番低い
(110)面が成長するには板厚が厚すぎるためと考えら
れる。
Further, according to the present invention, when the plate thickness exceeds 150 μm, (110) [00
It was confirmed that recrystallized grain growth in the 1] orientation is unlikely to occur. The reason for this is considered to be that if the plate thickness exceeds 150 μm, the surface energy becomes a driving force, and the plate thickness is too large for the (110) plane having the lowest surface energy to grow.

冷間圧延後の熱処理は、熱処理中に金属が酸化されて磁
気特性が低下するのを防止するために、例えば窒素ガ
ス,アルゴンガスの如き不活性雰囲気,水素ガス雰囲
気,不活性ガスと水素ガスの混合ガス雰囲気あるいは前
記のような各種ガスの減圧雰囲気、または単なる減圧雰
囲気などの非酸化雰囲気中で行なわれる。前述の単なる
減圧の場合は、例えば2×10-4〜5×10-6トール程度の
真空度にすればよい。
In order to prevent the metal from being oxidized during the heat treatment and deteriorating the magnetic properties, the heat treatment after cold rolling may be performed in an inert atmosphere such as nitrogen gas or argon gas, a hydrogen gas atmosphere, an inert gas and a hydrogen gas. Is performed in a mixed gas atmosphere, a reduced pressure atmosphere of various gases as described above, or a non-oxidizing atmosphere such as a simple reduced pressure atmosphere. In the case of the aforementioned simple decompression, the degree of vacuum may be, for example, about 2 × 10 −4 to 5 × 10 −6 Torr.

熱処理用の加熱炉は、連続タイプのものでもバツチタイ
プのものでもよい。
The heating furnace for heat treatment may be a continuous type or a batch type.

熱処理温度は約1000〜1400℃とし、熱処理時間は約3〜
24時間、好ましくは結晶成長に必要な時間を確保するた
めに約7時間以上とし、熱処理昇温速度を約1.5℃/秒
以上、好ましくは約3℃/秒以上とする。
Heat treatment temperature is about 1000-1400 ℃, heat treatment time is about 3〜
24 hours, preferably about 7 hours or more to secure the time required for crystal growth, and the heat treatment temperature rising rate is about 1.5 ° C./second or more, preferably about 3 ° C./second or more.

熱処理後は、機械的性質や磁気特性の低下を招かないよ
うにするため、前記第2工程の熱処理中と同様の非酸化
雰囲気で冷却すれば、高温で得られた好ましい集合組織
を維持することができる。
After the heat treatment, in order to prevent deterioration of mechanical properties and magnetic properties, cooling in the same non-oxidizing atmosphere as in the heat treatment of the second step can maintain the preferable texture obtained at high temperature. You can

次に本発明に係る処理方法の具体例について説明する。Next, a specific example of the processing method according to the present invention will be described.

素材として方向性ケイ素鋼帯(新日本製鐵社製Z6H)を
用いた。この方向性ケイ素鋼帯の特性等は下記の通りで
ある。
Directional silicon steel strip (Z6H manufactured by Nippon Steel) was used as a material. The characteristics and the like of this grain-oriented silicon steel strip are as follows.

まずこのケイ素鋼帯を濃硫酸と弗酸との混合溶液(濃硫
酸3対弗酸1)に30分間浸漬し、その後水洗して、さら
に10%の硝酸水溶液で酸洗い、水洗して、鋼帯の表面に
形成されている絶縁被膜や酸化物被膜を除去する。この
被膜の付着は、冷間圧延後の焼鈍において(110)〔00
1〕方位の再結晶粒の成長を阻害する。
First, this silicon steel strip is dipped in a mixed solution of concentrated sulfuric acid and hydrofluoric acid (concentrated sulfuric acid 3 to hydrofluoric acid 1) for 30 minutes, then washed with water, further pickled with a 10% nitric acid aqueous solution, and washed with water. The insulating film and oxide film formed on the surface of the strip are removed. This coating adheres to (110) [00] during annealing after cold rolling.
1] Inhibits the growth of recrystallized grains in the orientation.

次に直径が50mmの2段ロール圧延機を用いて80μmまで
圧延し、その後に各端部を除いて幅20mm、長さ100mmの
大きさに切断してサンプルとする。前述のように板厚が
300μmのものを80μmまで圧延してサンプルとしたも
のであるから、このサンプルの圧延率は73%となる。
Next, it is rolled to a size of 80 μm using a two-roll rolling mill with a diameter of 50 mm, and thereafter, each end is removed to cut it into a size of 20 mm in width and 100 mm in length to obtain a sample. As mentioned above,
Since a sample of 300 μm was rolled to 80 μm to make a sample, the rolling ratio of this sample is 73%.

ついでこのサンプルを石英管に入れ、1.3×10-3Pa(9.7
5×10-6トール)の高真空下において、赤外線集中加熱
炉を用い、昇温速度を3℃/秒の条件で熱処理した。こ
の熱処理後の結晶粒の観察はX線ラウエ写真、X線極点
観測および光学顕微鏡を用いて行い、磁気特性はB-Hル
ープトレーサを用いて測定した。
The sample was then placed in a quartz tube and 1.3 × 10 -3 Pa (9.7
Heat treatment was performed under a high vacuum of 5 × 10 −6 Torr) using an infrared concentrated heating furnace at a heating rate of 3 ° C./sec. Observation of the crystal grains after this heat treatment was performed using an X-ray Laue photograph, X-ray pole observation and an optical microscope, and magnetic characteristics were measured using a BH loop tracer.

前述のように80μmまで冷間圧延することによつて結晶
粒の集合組織は、圧延方向に対する方位のずれ角度が3
5.3度と大きいほぼ(111)〔112〕方位であることがX
線極点図で確認された。
As described above, by cold rolling to 80 μm, the texture of the crystal grains has a misorientation angle of 3 with respect to the rolling direction.
X is approximately (111) [112] azimuth, which is as large as 5.3 degrees.
It was confirmed by the line pole figure.

冷間圧延後の熱処理条件が300℃、1時間程度では加工
時に受けた内部歪が開放されずに残つているため、第1
図に示すように磁気特性が悪い。熱処理温度をさらに高
めていくと内部歪が開放され、500℃付近から再結晶が
始まる。この再結晶粒(1次再結晶粒)は(110)〔00
1〕方位の集合組織をもつため磁束密度は高くなるが、
平均の結晶粒径は板厚とほぼ同程度(約80μm)しか発
達しておらず、保磁力(Hc)は十分に下がり切つていな
い。そのため50Hzにおける鉄損値(1.7T)は約2W/kgと
大きく、板厚が300μmの方向性ケイ素鋼帯の鉄損値の
約2倍に相当する。第2図は500℃で1時間熱処理した
場合のB-Hループ特性図で、前述のようにこの程度の熱
処理ではHcが十分に小さくなつていないことが分かる。
When the heat treatment condition after cold rolling is 300 ° C. for about 1 hour, the internal strain received during processing remains without being released.
As shown in the figure, the magnetic characteristics are poor. When the heat treatment temperature is further raised, the internal strain is released and recrystallization starts at around 500 ° C. These recrystallized grains (primary recrystallized grains) are (110) [00
1) The magnetic flux density is high because it has a texture of orientation,
The average crystal grain size has developed almost the same as the plate thickness (about 80 μm), and the coercive force (Hc) has not fallen sufficiently. Therefore, the iron loss value (1.7T) at 50 Hz is as large as about 2 W / kg, which is about twice the iron loss value of the grain-oriented silicon steel strip with a plate thickness of 300 μm. FIG. 2 is a BH loop characteristic diagram when heat-treated at 500 ° C. for 1 hour, and as described above, it can be seen that Hc is not sufficiently reduced by this heat-treatment.

第3図は鉄損特性図で、同図の曲線Aは700℃で1時間
ほど熱処理したものの特性曲線、曲線Bは熱処理を施こ
さない方向性ケイ素鋼帯の特性曲線である。この図から
明らかなように、1次再結晶の集合組織からなるものは
鉄損値が高い。
FIG. 3 is an iron loss characteristic diagram. In FIG. 3, a curve A is a characteristic curve of a heat-treated piece at 700 ° C. for about 1 hour, and a curve B is a characteristic curve of a grain-oriented silicon steel strip that is not heat-treated. As is clear from this figure, those having a texture of primary recrystallization have a high iron loss value.

第4図は熱処理温度(熱処理時間1時間)と磁気特性と
の関係を示す図で、図中の曲線Cは熱処理温度と保磁力
との関係を示す特性曲線、曲線Dは熱処理温度と磁束密
度との関係を示す特性曲線である。この図から明らかな
ように、1次再結晶粒が出現する500℃付近から保磁力
(Hc)が急激に低下するとともに、磁束密度(B8)が急激
に高くなつている。
FIG. 4 is a diagram showing the relationship between heat treatment temperature (heat treatment time of 1 hour) and magnetic properties. In the figure, curve C is a characteristic curve showing the relation between heat treatment temperature and coercive force, and curve D is the heat treatment temperature and magnetic flux density. It is a characteristic curve showing a relation with. As is clear from this figure, the coercive force (Hc) sharply decreases and the magnetic flux density (B 8 ) sharply increases from around 500 ° C. where primary recrystallized grains appear.

さらに磁気特性を向上するためには、(110)〔001〕方
位の結晶組織における圧延方向への集積度を高めるとと
もに、結晶粒を大きくして保磁力(Hc)を下げることが
必要である。
In order to further improve the magnetic properties, it is necessary to increase the degree of integration in the rolling direction in the crystal structure of (110) [001] orientation and to increase the crystal grains to reduce the coercive force (Hc).

前述のように1次再結晶により(110)〔001〕集合組織
が出現したので、その結晶粒径を大きくすることを考え
た。ところが結晶粒を成長させるために熱処理温度を上
げてゆくと2次再結晶が起こり、1次再結晶粒の約10倍
の0.5〜0.7mmの粒径をもつ2次再結晶粒で覆われてしま
い、非ゴス(非Goss)組織となつてしまう。第5図は熱
処理温度(熱処理時間1時間)と結晶粒の粒径との関係
を示す特性図で、この図から明らかなように特に熱処理
温度が約1000〜1100℃の範囲で粒径が急激に大きくなつ
ていることが分かる。
Since the (110) [001] texture appeared due to the primary recrystallization as described above, it was considered to increase the crystal grain size. However, when the heat treatment temperature is raised to grow the crystal grains, secondary recrystallization occurs and the secondary recrystallized grains having a grain size of 0.5 to 0.7 mm, which is about 10 times the primary recrystallized grains, are covered. It ends up becoming a non-Goss organization. Fig. 5 is a characteristic diagram showing the relationship between the heat treatment temperature (heat treatment time of 1 hour) and the grain size of the crystal grains. As is clear from this figure, the grain size is sharp when the heat treatment temperature is in the range of about 1000 to 1100 ℃. You can see that it is getting bigger.

この2次再結晶粒の集合組織は(110)〔001〕方位だけ
の集合組織ではなく、(110)〔001〕の他に(120)〔0
01〕方位、(111)〔110〕方位ならびに(111)〔100〕
方位などの様々な結晶方位のものが混在している。これ
の磁気特性は1次再結晶粒の集合組織のものに比較する
と、結晶粒径が大きいため保磁力(Hc)の値は小さくな
るが、サンプルの圧延方向と磁化容易軸とのずれが大き
いから磁束密度が低下してしまう。(110)〔001〕単結
晶を圧延し熱処理したDunnの論文〔Acta.Met.;,(19
53),163.〕によれば、2次再結晶粒は(120)〔00
1〕,(111)〔110〕および(100)と(111)の中間面
の3種類が出現すると報告されている。本発明とDunnの
論文とが異なるのは、(110)〔001〕の2次再結晶粒の
存在が認められたことで、これが3次再結晶の核となる
もので、本発明の重要なポイントである。
The texture of the secondary recrystallized grains is not only the texture of (110) [001] orientation, but (110) [001] and (120) [0]
01] direction, (111) [110] direction and (111) [100]
Various crystal orientations such as orientations are mixed. The magnetic characteristics of this are smaller than those of the primary recrystallized grain structure because the crystal grain size is large, but the coercive force (Hc) value is small, but the deviation between the rolling direction of the sample and the easy axis of magnetization is large. Therefore, the magnetic flux density is reduced. Dunn's paper [Acta. Met .; 1 , (19)
53), 163.], the secondary recrystallized grains are (120) [00
It has been reported that three types of 1], (111) [110], and (100) and (111) intermediate planes appear. The difference between the present invention and Dunn's paper is that the presence of secondary recrystallized grains of (110) [001] is recognized, and this is the nucleus of the third recrystallization, which is important in the present invention. It is a point.

熱処理の際の昇温速度は、1次および2次再結晶過程で
得られた結晶粒の成長を抑制し、粒径をなるべく小さく
抑え次の3次再結晶成長過程で高度に集積された(11
0)〔001〕方位の結晶粒の生成を促進させるために、昇
温速度をなるべく大きくとるのが望ましい。
The rate of temperature rise during the heat treatment suppresses the growth of crystal grains obtained in the primary and secondary recrystallization processes, keeps the grain size as small as possible, and is highly integrated in the subsequent tertiary recrystallization growth process ( 11
0) In order to promote generation of [001] -oriented crystal grains, it is desirable to increase the temperature rising rate as much as possible.

第6図は、昇温速度と3次再結晶組織の出現率との関係
を示す特性図である。この図から明らかなように、昇温
速度が約1.5℃/秒以上であると3次再結晶組織の出現
率が高く、特に昇温速度が約3℃/秒以上では(110)
〔001〕方位のものが圧延方向に対して2.5度以内に集積
し、ほぼ100%の3次再結晶組織となつていることが、
X線ラウエ写真および光学顕微鏡観測で確かめられた。
またこの結果は雰囲気が水素、または水素と窒素、水素
とアルゴンの混合雰囲気においても確認された。
FIG. 6 is a characteristic diagram showing the relationship between the temperature rising rate and the appearance rate of the third-order recrystallized structure. As is clear from this figure, when the heating rate is about 1.5 ° C / sec or more, the appearance rate of the third-order recrystallized structure is high, and especially when the heating rate is about 3 ° C / sec or more (110)
The fact that the [001] orientation is accumulated within 2.5 degrees with respect to the rolling direction and forms a nearly 100% tertiary recrystallized structure,
It was confirmed by X-ray Laue photograph and optical microscope observation.
This result was also confirmed when the atmosphere was hydrogen, or a mixed atmosphere of hydrogen and nitrogen, or hydrogen and argon.

第7図は熱処理温度(熱処理時間1時間)と磁気特性と
の関係を示す特性図で、曲線Eは熱処理温度と保磁力
(Hc)との関係を示す特性曲線、曲線Fは熱処理温度と
磁束密度(B8)との関係を示す特性曲線である。この図か
ら明らかなように高温になるほど(例えば1000〜1350
℃)保磁力(Hc)は低下するが、磁束密度(B8)も徐々に
低下する傾向にある。
FIG. 7 is a characteristic diagram showing the relationship between heat treatment temperature (heat treatment time of 1 hour) and magnetic characteristics. Curve E is a characteristic curve showing the relation between heat treatment temperature and coercive force (Hc), and curve F is the heat treatment temperature and magnetic flux. 6 is a characteristic curve showing a relationship with the density (B 8 ). As is clear from this figure, the higher the temperature (for example, 1000 to 1350
℃) Coercive force (Hc) decreases, but magnetic flux density (B 8 ) also tends to decrease gradually.

このように2次再結晶の集合組織では良好な磁気特性が
得られないことから、さらに2次再結晶の集合組織に対
する熱処理条件を検討した。まず熱処理温度であるが、
1000〜1400℃程度の高温であると、第5図から明らかな
ように結晶粒が得られることと、第7図から明らかなよ
うに保磁力(Hc)が低下することから、熱処理温度を10
00〜1400℃程度とした。次に熱処理時間であるが、今ま
での熱処理時間は1時間程度の短時間であつたから結晶
粒の成長が不十分であると考え、それよりも長時間(例
えば3〜24時間)の熱処理を検討した。このように高温
(約1000〜1400℃)でしかも長時間(約3〜24時間)熱
処理することによって、様々な結晶方位のものが混在し
ている2次再結晶粒中の(110)〔001〕方位の結晶粒が
周囲の他の2次再結晶粒を食つて成長し、ついには(11
0)〔001〕方位の結晶粒で全面を覆うようになつた。こ
のように高温で長時間にわたつて熱処理することによつ
て3次再結晶組織の集合組織ができ、結晶粒の大きさが
約5〜20mmにも達した大きなものとなり、圧延方向に対
する〔001〕軸のずれ角度が2.5度以内になる。
Since good magnetic properties cannot be obtained with the secondary recrystallization texture, the heat treatment conditions for the secondary recrystallization texture were further investigated. First is the heat treatment temperature,
At a high temperature of about 1000 to 1400 ° C., crystal grains are obtained as shown in FIG. 5 and coercive force (Hc) is reduced as shown in FIG.
It was set to about 00 to 1400 ° C. Next, regarding the heat treatment time, since the heat treatment time up to now was a short time of about 1 hour, it is considered that the growth of crystal grains is insufficient, and heat treatment for a longer time (for example, 3 to 24 hours) is performed. investigated. By heat-treating at such a high temperature (about 1000 to 1400 ° C) for a long time (about 3 to 24 hours), (110) [001] in secondary recrystallized grains in which various crystal orientations are mixed. ] The crystal grains of the direction grow by eating other secondary recrystallized grains around, and finally (11
0) The entire surface was covered with [001] crystal grains. By heat-treating at high temperature for a long time in this way, a texture of a tertiary recrystallized structure is formed, and the size of the crystal grain reaches a large size of about 5 to 20 mm. ] The axis deviation angle is within 2.5 degrees.

この3次再結晶組織の成長時の様子を磁気特性上から観
察してみると、第8図のように変化する。この実験は熱
処理温度を1200℃として、熱処理時間を種々変えたもの
で、同図の曲線Gは熱処理時間と保磁力(Hc)との関係
を示す特性曲線、曲線Hは熱処理時間と磁束密度(B8)と
の関係を示す特性曲線である。
When observing the state of the growth of the third-order recrystallized structure from the viewpoint of magnetic characteristics, it changes as shown in FIG. In this experiment, the heat treatment temperature was set to 1200 ° C. and the heat treatment time was variously changed. The curve G in the figure shows a characteristic curve showing the relationship between the heat treatment time and the coercive force (Hc), and the curve H shows the heat treatment time and the magnetic flux density ( It is a characteristic curve showing a relationship with B 8 ).

この図から明らかなように、高温による熱処理開始後約
2時間までは熱処理時間とともに保磁力(Hc)が大とな
り、2時間付近でピークを迎え、その後下降し始めると
いう注目すべき変化が現われる。ちようどその頃から
(110)〔001〕方位の3次再結晶組織の成長が始まり、
3時間を経過した頃から磁束密度(B8)が急激に上昇し、
良好な磁気特性が得られる。同図に示していないが最終
的には1200℃で8時間熱処理したものは、Hcが1.6A/m
(=20mOe)でB8が1.95Tとなり、良好な磁気特性を有す
る配向性の高い方向性ケイ素鋼極薄帯が得られる。
As is clear from this figure, a remarkable change appears that the coercive force (Hc) increases with the heat treatment time up to about 2 hours after the start of heat treatment at a high temperature, reaches a peak around 2 hours, and then begins to decline. From around that time, the growth of the third recrystallized structure in the (110) [001] orientation began,
The magnetic flux density (B 8 ) rises sharply after 3 hours,
Good magnetic properties can be obtained. Although not shown in the figure, Hc of 1.6 A / m was finally obtained after heat treatment at 1200 ° C for 8 hours.
At (= 20 mOe), B 8 is 1.95 T, and a highly oriented grain oriented silicon steel ultra-thin strip with good magnetic properties can be obtained.

第9図は1200℃で8時間熱処理したもののB-Hループ特
性で、(110)〔001〕方位を有する3次再結晶粒が十分
に発達しているため、第1図ならびに第2図に示したも
のに比較して非常にシヤープなB-Hループ特性を有して
いる。
Fig. 9 shows the BH loop characteristics of the sample that was heat-treated at 1200 ° C for 8 hours, and it was shown in Figs. 1 and 2 because the third-order recrystallized grains having the (110) [001] orientation were sufficiently developed. It has a very sharp BH loop characteristic compared to the one.

このように高温で長時間熱処理して3次再結晶組織を形
成した後は、非酸化雰囲気中での放冷によつて結晶組織
を変更することなく冷却される。
After the heat treatment at a high temperature for a long time to form the third recrystallized structure, the third structure is cooled in the non-oxidizing atmosphere without changing the crystal structure.

また第10図は、この3次再結晶組織をもつ配向性の高い
方向性ケイ素鋼極薄帯の各磁束密度に対する鉄損値を示
す特性図である。図中の曲線Iは前述のような熱処理に
よつて3次再結晶組織を形成したものの鉄損値曲線、曲
線Jはその3次再結晶組織を形成した方向性ケイ素鋼極
薄帯を冷却した後に、その鋼帯の表面に例えば塩化マグ
ネシウムなどのマグネシウム塩やケイ素の酸化物などの
塗膜形成剤を塗布した後、約1000℃に加熱して、結果的
には鋼帯に1〜4kg/mm2の張力を与えた場合の鉄損値曲
線である。
Further, FIG. 10 is a characteristic diagram showing the iron loss value with respect to each magnetic flux density of the highly oriented grain-oriented silicon steel ultrathin ribbon having the third-order recrystallized structure. A curve I in the figure is an iron loss value curve of the third recrystallized structure formed by the heat treatment as described above, and a curve J is a directional silicon steel ultrathin ribbon having the third recrystallized structure. After that, after applying a film forming agent such as a magnesium salt such as magnesium chloride or an oxide of silicon to the surface of the steel strip, it is heated to about 1000 ° C, and as a result, the steel strip is 1 to 4 kg /. It is an iron loss value curve when a tension of mm 2 is applied.

この図から明らかなように、本発明の実施例に係る3次
再結晶組織を形成した配向性の高い方向性ケイ素鋼極薄
帯は、第3図に示すものに比較して鉄損値を極端に低下
することができた。またこの配向性の高い方向性ケイ素
鋼極薄帯を圧延方向に張力をかけることにより、鉄損値
を前述した急速冷却凝固法で得られた非晶質のものとほ
ぼ同程度まで下げることができる。
As is clear from this figure, the highly oriented grain-oriented silicon steel ultra-thin ribbons having a tertiary recrystallized structure according to the example of the present invention have an iron loss value lower than that shown in FIG. It was able to drop extremely. By applying tension to this highly oriented grain-oriented silicon steel ultra-thin strip in the rolling direction, the iron loss value can be reduced to almost the same level as the amorphous one obtained by the rapid cooling solidification method described above. it can.

前記実施例では1200℃で7〜8時間熱処理した場合につ
いて説明したが、例えば1150℃で9〜24時間熱処理して
も同様な磁気特性が得られることが実験で確認されてい
る。
In the above embodiment, the case where the heat treatment is performed at 1200 ° C. for 7 to 8 hours has been described, but it has been confirmed by experiments that similar magnetic characteristics can be obtained even if the heat treatment is performed at 1150 ° C. for 9 to 24 hours.

〔発明の効果〕〔The invention's effect〕

次の表3は、本発明に係る作製法で得られた低損失で配
向性の高い方向性ケイ素鋼極薄帯、ならびに従来法によ
つて得られた方向性ケイ素鋼帯の製品の性状ならびに磁
気特性を比較して示す表である。
The following Table 3 shows the properties of the low loss and highly oriented oriented silicon steel ultrathin strip obtained by the production method according to the present invention, and the product properties of the oriented silicon steel strip obtained by the conventional method and It is a table which compares and shows a magnetic characteristic.

この表から明らかなように本発明に係る低損失で配向性
の高い方向性ケイ素鋼極薄帯は、他のものに比較して磁
束密度が高く、保磁力が小さく、しかも鉄損が低く磁気
特性が著しく改善されている。
As is clear from this table, the low-loss, highly-oriented directional silicon steel ultra-thin ribbon according to the present invention has a higher magnetic flux density, a smaller coercive force, and a lower iron loss than other materials. The characteristics are remarkably improved.

本発明は前述したように高温熱処理温度(1000〜1400
℃)に達するまでの昇温速度が1.5℃/秒以上(5400℃
/時以上)と非常に速く、しかも高温熱処理温度での保
持時間が3時間以上と長い。
As described above, the present invention is applied to the high temperature heat treatment temperature (1000 to 1400).
Temperature rise rate of 1.5 ℃ / sec or more (5400 ℃)
/ Hr) or more), and the holding time at the high temperature heat treatment temperature is as long as 3 hours or more.

これは冷間圧延による(111)〔112〕集合組織をその後
の熱処理により1次再結晶、2次再結晶、3次再結晶と
組織を変えて目的の高配向の(110)〔001〕集合組織を
有する3次再結晶にするには、低温領域で現れる1次再
結晶、2次再結晶の結晶粒を大きくして安定な結晶粒に
成長させないため、低温領域を速く通過する必要があ
り、第6図などの実験結果より昇温速度を1.5℃/秒以
上とした。
This is because the (111) [112] texture by cold rolling is changed to the primary recrystallization, secondary recrystallization, and tertiary recrystallization by the subsequent heat treatment, and the desired highly oriented (110) [001] texture is obtained. In order to obtain a tertiary recrystallization having a structure, it is necessary to quickly pass through the low temperature region in order to increase the size of the primary recrystallization and secondary recrystallization grains that appear in the low temperature region and not to grow stable grains. Based on the experimental results shown in FIG. 6 and the like, the heating rate was set to 1.5 ° C./sec or more.

次に2次再結晶群の中で残っている(110)〔001〕の1
次再結晶粒を核にして3次再結晶粒を大きく成長させる
ために、1000〜1400℃での保持時間を3時間以上と長く
する必要がある。本発明はこれら昇温速度と高温熱処理
温度での保持時間と冷間圧延による板厚の制御との相関
関係により、磁束密度が高く、保磁力が小さく、鉄損の
低い高配向性ケイ素鋼極薄帯を得ることができる。
Next, 1 of (110) [001] remaining in the secondary recrystallization group
In order to make the third recrystallized grains grow large by using the second recrystallized grains as nuclei, it is necessary to extend the holding time at 1000 to 1400 ° C. to 3 hours or more. The present invention is a highly oriented silicon steel electrode having a high magnetic flux density, a small coercive force, and a low iron loss due to the correlation between the temperature rising rate, the holding time at the high temperature heat treatment temperature, and the control of the plate thickness by cold rolling. A ribbon can be obtained.

本発明のケイ素鋼帯を例えば変圧器などに用いれば、製
品の小型化、高効率化などを図ることができ、多種の用
途が可能である。また素材として市販されている通常の
方向性ケイ素鋼帯を使用することができ、しかも処理方
法が簡単であるから生産性が良く、処理コストの安価な
高配向性ケイ素鋼極薄帯を提供することができる。
If the silicon steel strip of the present invention is used in, for example, a transformer or the like, it is possible to reduce the size of the product and increase the efficiency thereof, and it is possible to have various uses. Further, it is possible to use an ordinary grain-oriented silicon steel strip that is commercially available as a raw material, and further, since the treatment method is simple, it is possible to provide a highly oriented silicon steel ultra-thin strip with good productivity and low treatment cost. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図ならびに第2図はB-Hループ特性図、第3図は鉄
損特性図、第4図は熱処理温度と磁気特性との関係を示
す特性図、第5図は熱処理温度と結晶粒径との関係を示
す特性図、第6図は昇温速度と3次再結晶組織の出現率
との関係を示す特性図、第7図は熱処理温度と磁気特性
との関係を示す特性図、第8図は熱処理時間と磁気特性
との関係を示す特性図、第9図はB-Hループ特性図、第1
0図は鉄損特性図である。
1 and 2 are BH loop characteristic diagrams, FIG. 3 is an iron loss characteristic diagram, FIG. 4 is a characteristic diagram showing the relationship between heat treatment temperature and magnetic characteristic, and FIG. 5 is heat treatment temperature and crystal grain size. 6 is a characteristic diagram showing the relationship between the heating rate and the appearance rate of the third-order recrystallized structure, FIG. 7 is a characteristic diagram showing the relationship between heat treatment temperature and magnetic characteristics, and FIG. Fig. 9 is a characteristic diagram showing the relationship between heat treatment time and magnetic properties. Fig. 9 is a BH loop characteristic diagram.
Figure 0 is an iron loss characteristic diagram.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小嶋 清司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭55−131128(JP,A) 特開 昭61−217526(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Kojima 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-55-131128 (JP, A) JP-A-61-217526 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】(110)〔001〕結晶粒集合組織を有する一
方向性ケイ素鋼帯素材を冷間圧延することにより、厚さ
150μm以下の(111)〔112〕集合組織を有する中間極
薄帯を作る第1工程と、 その第1工程の後に前記中間極薄帯を非酸化雰囲気中に
おいて1.5℃/秒以上の昇温速度で昇温して1000〜1400
℃の温度領域で3時間以上保持する熱処理を施すことに
よつて、平均結晶粒径が5mm以上の高度に集積された(1
10)〔001〕方位を有する3次再結晶粒の集合組織から
なる極薄帯を得る第2工程とを経由することを特徴とす
る低損失方向性ケイ素鋼極薄帯の製造法。
1. A thickness of a unidirectional silicon steel strip material having a (110) [001] crystal grain texture is cold-rolled.
A first step for producing an intermediate ultrathin ribbon having a (111) [112] texture of 150 μm or less, and a heating rate of 1.5 ° C./sec or more in the non-oxidizing atmosphere of the intermediate ultrathin ribbon after the first step. 1000 to 1400
By performing heat treatment for 3 hours or more in the temperature range of ℃, the average grain size was highly integrated with more than 5 mm (1
10) A method for producing an ultra-thin ribbon of low-loss directional silicon steel, which comprises passing through a second step of obtaining an ultra-thin ribbon composed of a texture of tertiary recrystallized grains having a [001] orientation.
【請求項2】特許請求の範囲第(1)項記載において、
前記方向性ケイ素鋼帯素材中のケイ素含有率が2〜8重
量%であることを特徴とする低損失方向性ケイ素鋼極薄
帯の製造法。
2. In the claim (1),
The method for producing a low-loss directional silicon steel ultra-thin strip, wherein the content of silicon in the directional silicon steel strip material is 2 to 8% by weight.
【請求項3】特許請求の範囲第(1)項または第(2)
項記載において、前記低損失方向ケイ素鋼極薄帯の圧延
方向に対する〔001〕軸の平均ずれ角度が2.5度以内の高
配向性を有することを特徴とする低損失方向性ケイ素鋼
極薄帯の製造法。
3. Claims (1) or (2)
In the paragraph, in the low-loss direction silicon steel ultra-thin ribbon, the average deviation angle of the (001) axis with respect to the rolling direction of the low-loss direction silicon steel ultra-thin ribbon has a high orientation within 2.5 degrees. Manufacturing method.
【請求項4】特許請求の範囲第(1)項または第(2)
項記載において、前記非酸化雰囲気が不活性ガスまたは
水素ガス、あるいは不活性ガスと水素ガスの混合雰囲気
であることを特徴とする低損失方向性ケイ素鋼極薄帯の
製造法。
4. Claims (1) or (2)
5. The method for producing an ultra-thin ribbon of low loss directional silicon steel according to the item 1, wherein the non-oxidizing atmosphere is an inert gas or a hydrogen gas, or a mixed atmosphere of an inert gas and a hydrogen gas.
【請求項5】特許請求の範囲第(4)項記載において、
前記ガスの非酸化雰囲気が減圧されていることを特徴と
する低損失方向性ケイ素鋼極薄帯の製造法。
5. In the claim (4),
A method for producing a low-loss directional silicon steel ultra-thin ribbon, characterized in that the non-oxidizing atmosphere of the gas is depressurized.
【請求項6】特許請求の範囲第(1)項または第(2)
項記載において、前記非酸化雰囲気が減圧雰囲気である
ことを特徴とする低損失方向性ケイ素鋼極薄帯の製造
法。
6. Claims (1) or (2)
The method for producing a low-loss directional silicon steel ultrathin ribbon as described in the item 1, wherein the non-oxidizing atmosphere is a reduced pressure atmosphere.
【請求項7】特許請求の範囲第(1)項または第(2)
項記載において、前記第2工程後に極薄鋼帯を冷却し、
次に極薄鋼帯の表面に塗膜形成剤を塗布して加熱するこ
とによつて被膜を形成させることを特徴とする低損失方
向性ケイ素鋼極薄帯の製造法。
7. Claims (1) or (2)
In the item, the ultrathin steel strip is cooled after the second step,
Next, a method for producing a low-loss directional silicon steel ultra-thin strip characterized in that a coating film-forming agent is applied to the surface of the ultra-thin steel strip and heated to form a film.
JP62003270A 1987-01-12 1987-01-12 Manufacturing method of low-loss directional silicon steel ultra-thin ribbon Expired - Fee Related JPH0686628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003270A JPH0686628B2 (en) 1987-01-12 1987-01-12 Manufacturing method of low-loss directional silicon steel ultra-thin ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003270A JPH0686628B2 (en) 1987-01-12 1987-01-12 Manufacturing method of low-loss directional silicon steel ultra-thin ribbon

Publications (2)

Publication Number Publication Date
JPS63171827A JPS63171827A (en) 1988-07-15
JPH0686628B2 true JPH0686628B2 (en) 1994-11-02

Family

ID=11552759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003270A Expired - Fee Related JPH0686628B2 (en) 1987-01-12 1987-01-12 Manufacturing method of low-loss directional silicon steel ultra-thin ribbon

Country Status (1)

Country Link
JP (1) JPH0686628B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2903226C2 (en) * 1979-01-29 1981-10-01 WEF Wissenschaftliche Entwicklungsgesellschaft für Fertigungstechnik mbH, 4000 Düsseldorf Method for producing a steel sheet with a Goss texture
JPS6131529A (en) * 1984-07-23 1986-02-14 Shiraishi:Kk Eccentric composite shaft with air lock in penumatic caisson

Also Published As

Publication number Publication date
JPS63171827A (en) 1988-07-15

Similar Documents

Publication Publication Date Title
JP4402961B2 (en) Oriented electrical steel sheet with excellent film adhesion and method for producing the same
EP0374948B1 (en) Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
JPH0665724B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JPH0686628B2 (en) Manufacturing method of low-loss directional silicon steel ultra-thin ribbon
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPS5945730B2 (en) Hot rolling method for high magnetic flux density unidirectional silicon steel sheet
JPH0257635A (en) Manufacture of extra thin foil of grain-oriented silicon steel with low core loss
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPH05186829A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPS5915966B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH0631394A (en) Production of thin cast slab for non-oriented silicon steel sheet
WO2023129259A1 (en) Improved method for the production of high permeability grain oriented electrical steel containing chromium
JP3013000B2 (en) Method for manufacturing bidirectional silicon steel sheet
JPH0776733A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH0257125B2 (en)
JPH0733549B2 (en) Method for manufacturing bidirectional silicon steel sheet
JPS6311619A (en) Production of grain oriented high silicon steel sheet
JPS60152633A (en) Manufacture of thin strip of high-silicon iron alloy having superior magnetic characteristic
JPH0827516A (en) Production of (100) oriented iron thin strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees