JPH0686293B2 - Method for producing α-type hemihydrate gypsum - Google Patents

Method for producing α-type hemihydrate gypsum

Info

Publication number
JPH0686293B2
JPH0686293B2 JP10883787A JP10883787A JPH0686293B2 JP H0686293 B2 JPH0686293 B2 JP H0686293B2 JP 10883787 A JP10883787 A JP 10883787A JP 10883787 A JP10883787 A JP 10883787A JP H0686293 B2 JPH0686293 B2 JP H0686293B2
Authority
JP
Japan
Prior art keywords
gypsum
sodium citrate
dihydrate
type hemihydrate
hemihydrate gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10883787A
Other languages
Japanese (ja)
Other versions
JPS63274614A (en
Inventor
雅和 鬼塚
直晴 篠田
淳 多谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP10883787A priority Critical patent/JPH0686293B2/en
Publication of JPS63274614A publication Critical patent/JPS63274614A/en
Publication of JPH0686293B2 publication Critical patent/JPH0686293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/02Methods and apparatus for dehydrating gypsum
    • C04B11/024Ingredients added before, or during, the calcining process, e.g. calcination modifiers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/02Methods and apparatus for dehydrating gypsum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建築基材やボード材あるいは模型用として用
いられるα型半水石膏の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing α-type hemihydrate gypsum used as a building substrate, a board material, or a model.

〔従来の技術〕[Conventional technology]

α型半水石膏の製法としては、加圧水溶液法、加圧水蒸
気法、常圧水溶液法などが知られているが、いずれも回
分方式で製造する方法であり、大量のα型半水石膏を製
造するには不適当な方法であつた。
As a method for producing α-type hemihydrate gypsum, a pressurized aqueous solution method, a pressurized steam method, an atmospheric pressure aqueous solution method, etc. are known, but all of them are batch production methods and produce a large amount of α-type hemihydrate gypsum. It was an inappropriate method to do.

本発明者らは従来の回分方式を連続生産方式にして工業
的に大容量のα型半水石膏を連続的に製造する方法とし
て媒晶剤としてクエン酸ナトリウムを0.01重量%以下添
加した二水石膏スラリーを140℃以上で処理しα型半水
石膏を連続的に製造する方法を既に提案した。(特公昭
59-3406号公報参照) しかしながら、本発明者らは、既提案製造法では連続的
に品質の安定したα型半水石膏を製造することが難かし
く、微細粒径のα型半水石膏が混在したりII型無水石膏
が生成したりすることをたびたび経験した。
As a method for continuously producing an industrially large-capacity α-type hemihydrate gypsum by using the conventional batch system as a continuous production system, the present inventors have added dicitrate containing 0.01% by weight or less of sodium citrate as a habit modifier. We have already proposed a method for continuously producing α-type hemihydrate gypsum by treating gypsum slurry at 140 ° C or higher. (Special public relations
However, it is difficult for the present inventors to continuously produce α-type hemihydrate gypsum with stable quality by using the already proposed production method. We often experienced mixing and formation of type II anhydrous gypsum.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そこで本発明は、従来方法の欠点を解消しうる微細な粒
のα型半水石膏やII型無水石膏が混在しない品質の安定
したα型半水石膏の連続的な製造法を提供しようとする
ものである。
Therefore, the present invention intends to provide a continuous production method of stable α-type hemihydrate gypsum that does not contain fine-grained α-hemihydrate gypsum or II-type anhydrite that can eliminate the drawbacks of the conventional method. It is a thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記提案方法のα型半水石膏の品質不安定
な原因を検討した結果、原料である二水石膏スラリー中
に含有するクエン酸ナトリウム濃度が経時的に変動し、
加圧水熱処理槽内でα型半水石膏の結晶成長速度が安定
していないことが主因であるとの結論に至り、加圧水熱
処理槽でのクエン酸ナトリウム濃度を恒常的に安定化さ
せることによつて連続して安定した品質のα型半水石膏
を製造し得るという知見を得た。
As a result of examining the cause of the quality instability of the α-type hemihydrate gypsum of the proposed method, the present inventors changed the sodium citrate concentration contained in the raw material dihydrate gypsum slurry over time,
It was concluded that the crystal growth rate of α-type hemihydrate gypsum was not stable in the pressurized hydrothermal treatment tank, and by stabilizing the sodium citrate concentration in the pressurized hydrothermal treatment tank constantly. It was found that an α-type hemihydrate gypsum with a continuous and stable quality can be produced.

本発明はこの知見に基づいて完成されたものであつて、
二水石膏スラリーを加圧水熱処理してα型半水石膏に転
移させるにあたり、クエン酸ナトリウムを0.01重量%以
下含有した二水石膏スラリーを140℃以上の温度で適当
時間加圧水熱処理槽で処理してα型半水石膏を連続的に
製造する方法において、上記二水石膏スラリーの温度と
電気伝導度を測定して、該二水石膏スラリーに添加する
クエン酸ナトリウムの添加量を調節することを特徴とす
るα型半水石膏の製造方法である。
The present invention has been completed based on this finding,
In transferring the gypsum dihydrate gypsum slurry to α-type hemihydrate gypsum by heat treatment under pressure, dihydrate gypsum slurry containing 0.01% by weight or less of sodium citrate is treated in a pressure hydrothermal treatment tank at a temperature of 140 ° C. or higher for an appropriate time and α In a method for continuously producing mold hemihydrate gypsum, the temperature and electrical conductivity of the dihydrate gypsum slurry is measured, and the addition amount of sodium citrate added to the dihydrate gypsum slurry is adjusted. It is a method for producing α-type hemihydrate gypsum.

水中に溶解する二水石膏の溶解度は温度に依存して変化
し、又この溶解量は液の電気伝導度を測定すれば、測定
された電気伝導度と温度から知ることができる。さらに
これにクエン酸ナトリウムを添加すると電気伝導度は変
化するが二水石膏スラリー中へのクエン酸ナトリウムの
添加量に応じて変化する電気伝導度の変化とクエン酸ナ
トリウム添加量との関係を各温度との関係として予め検
量しておけば二水石膏スラリー中のクエン酸ナトリウム
量が判る。
The solubility of gypsum dihydrate dissolved in water changes depending on the temperature, and this amount of dissolution can be known from the measured electrical conductivity and temperature by measuring the electrical conductivity of the liquid. Furthermore, when sodium citrate is added to this, the electrical conductivity changes, but the relationship between the change in electrical conductivity and the sodium citrate addition amount that changes depending on the addition amount of sodium citrate in the gypsum dihydrate slurry is If the amount of sodium citrate in the gypsum dihydrate slurry is calibrated beforehand as a function of temperature, the amount of sodium citrate in the dihydrate gypsum slurry can be determined.

これらの関係について第2図〜第4図に示した。第2図
は二水石膏の水中への溶解度を温度の関数として示した
図であり、この溶解度と温度の関係を安達らは(1)式
の3次式として纏め、次のように示している。(Gypsum
& Line.No.135,1975,P63〜72) S=a+bt+ct2+dt3 …(1) S:溶解度〔g−CaSO4/kg−H2O〕 a,b,c,d:係数〔−〕 t:温度〔℃〕 第3図は各温度(40℃,60℃,80℃,100℃)における溶解
石膏温度と電気伝導度の関係を示すグラフであり、縦軸
は電気伝導度(Λ,単位mS/cm)の対数値、横軸は溶解
石膏濃度(CaSO4)の対数値を示す。第4図はクエン酸
ナトリウム濃度と電気伝導度の対数値の関係を示すグラ
フである。
These relationships are shown in FIGS. 2 to 4. Figure 2 is a diagram showing the solubility of gypsum dihydrate in water as a function of temperature. Adachi et al. Summarizes the relationship between this solubility and temperature as a cubic equation of equation (1), and shows it as follows. There is. (Gypsum
& Line.No.135,1975, P63~72) S = a + bt + ct 2 + dt 3 ... (1) S: Solubility [g-CaSO 4 / kg-H 2 O ] a, b, c, d: factor [-] t: Temperature (° C) Fig. 3 is a graph showing the relationship between the dissolved gypsum temperature and the electric conductivity at each temperature (40 ° C, 60 ° C, 80 ° C, 100 ° C), and the vertical axis represents the electric conductivity (Λ, unit mS / cm). Logarithmic value, the horizontal axis shows the logarithmic value of dissolved gypsum concentration (CaSO 4 ). FIG. 4 is a graph showing the relationship between the sodium citrate concentration and the logarithmic value of electrical conductivity.

先ず2水石膏スラリー中の石膏溶解度は、(1)式から
計算できるので、温度と電気伝導度の値から第3図,第
4図のグラフの関係を用いて、クエン酸ナトリウムの濃
度を求めることができ、クエン酸ナトリウムの添加量を
適性濃度に管理することができる。
First, since the solubility of gypsum in dihydrate gypsum slurry can be calculated from the equation (1), the concentration of sodium citrate is obtained from the values of temperature and electric conductivity using the relationships between the graphs of FIGS. 3 and 4. The amount of sodium citrate added can be controlled to an appropriate concentration.

〔実施例〕〔Example〕

第1図は本発明の一実施例として、α型半水石膏製造方
法のフローを示した図である。
FIG. 1 is a view showing a flow of an α-type hemihydrate gypsum production method as one embodiment of the present invention.

二水石膏スラリー供給槽4から配管5を介して原料二水
石膏スラリーを加圧水熱処理槽11へ供給し、該加圧水熱
処理槽11では攪拌機19で攪拌しながら連続式で二水石膏
を半水石膏二に転化させ、該加圧水熱処理槽11内滞留ス
ラリー18の滞留量が一定となるようにレベル検出器21で
レベルを検出しレベルコントローラ22で制御弁23を作動
させ配管20を介して、前記二水石膏スラリーの供給量相
当分を抜き出し、液体サイクロン24を介して粗粒含有ス
ラリー25を微粒スラリー26に分級させ、粗粒側25は製品
α‐半水石膏回収工程へ送り、微粒側26は前記二水石膏
スラリー供給槽4へ循環させている。該二水石膏スラリ
ー供給槽4にはその他に二水石膏スラリー1とクエン酸
ナトリウム貯槽2からクエン酸ナトリウムが供給される
が、このクエン酸ナトリウムの二水石膏スラリー供給槽
4への供給量は、前記加圧水熱処理槽11へ供給している
原料二水石膏スラリーの電気伝導度と温度を各々電気伝
導度検知器6及び温度計8で検知し、各々の検知信号を
増幅器7,9で処理し、この信号を演算調節計10で処理し
て、切出し器3を作動させて調節している。演算調節計
10では下記の演算を行なわせる。
The raw material dihydrate gypsum slurry is supplied from the dihydrate gypsum slurry supply tank 4 to the pressurized hydrothermal treatment tank 11 via the pipe 5, and the pressurized hydrothermal treatment tank 11 continuously agitates the dihydrate gypsum with the stirrer 19 to obtain the hemihydrate gypsum dihydrate. The level detector 21 detects the level so that the amount of the retained slurry 18 in the pressurized water heat treatment tank 11 becomes constant, and the control valve 23 is operated by the level controller 22 to operate the double water through the pipe 20. The amount equivalent to the supply amount of the gypsum slurry is extracted, the coarse particle-containing slurry 25 is classified into the fine particle slurry 26 via the liquid cyclone 24, the coarse particle side 25 is sent to the product α-hemihydrate gypsum recovery step, and the fine particle side 26 is the above-mentioned. It is circulated to the dihydrate gypsum slurry supply tank 4. The dihydrate gypsum slurry supply tank 4 is also supplied with sodium citrate from the dihydrate gypsum slurry 1 and the sodium citrate storage tank 2. The amount of sodium citrate supplied to the dihydrate gypsum slurry supply tank 4 is The electric conductivity and temperature of the raw material dihydrate gypsum slurry supplied to the pressurized hydrothermal treatment tank 11 are detected by the electric conductivity detector 6 and the thermometer 8, and the detection signals are processed by the amplifiers 7 and 9, respectively. The signal is processed by the operation controller 10, and the cutting device 3 is operated to adjust the signal. Arithmetic controller
At 10, the following calculation is performed.

(演算調節計演算項目) (1)原料二水石膏スラリー中の飽和溶解石膏濃度C*
計算 (イ)(1)式に表‐1の二水石膏のa,b,cを代入 (ロ)(1)式のtは測定値を使用 (2)媒晶剤濃度の計算 (イ)上記からt℃における飽和溶解石膏濃度が判れ
ば、第3図の関係が求めた次の(2)式よりCaSO4によ
る電気伝導度が判る。
(Calculation controller calculation items) (1) Calculate the saturated dissolved gypsum concentration C * in the raw material dihydrate gypsum slurry (b) Substitute a, b, and c of dihydrate gypsum in Table-1 into equation (1). ) The measured value is used for t in the equation (1). (2) Calculation of habit modifier concentration (a) If the saturated dissolved gypsum concentration at t ° C is known from the above, the following (2) obtained from the relationship in Fig. 3 From the formula, the electric conductivity due to CaSO 4 is known.

Λ*=α(t)t(C*)m …(2) Λ*:電気伝導度〔mS/cm〕 t:温度〔℃〕 C*:上記(1)項で得た飽和溶解石膏濃度〔g/kg-H2O〕 (ロ)実測した電気伝導度ΛとΛ*の計算値の差からク
エン酸ナトリウム濃度が求まる。
Λ * = α (t) t (C * ) m … (2) Λ * : electric conductivity [mS / cm] t: temperature [° C] C * : saturated dissolved gypsum concentration obtained in item (1) above [ g / kg-H 2 O) (B) The sodium citrate concentration can be calculated from the difference between the calculated values of the measured electrical conductivity Λ and Λ * .

Cadd=β(Λ−Λ*) Cadd:クエン酸ナトリウム濃度〔wt%〕 Λ:供給される二水石膏スラリーの電気伝導度〔mS/c
m〕 β:係数〔−〕 (βは上記、α,n,mと同様事前に測定して定める。) 本実施例での操作条件及び装置仕様は次の通りである。
Cadd = β (Λ−Λ * ) Cadd: Sodium citrate concentration [wt%] Λ: Electric conductivity of the supplied gypsum dihydrate slurry [mS / c
m] β: Coefficient [−] (β is measured and determined in advance in the same manner as α, n, m above.) The operating conditions and device specifications in this example are as follows.

(操作条件) (1)原料二水石膏スラリー濃度:15wt% (2)クエン酸ナトリウム濃度:0.01wt% (3)加圧水熱処理濃度:140℃ (4)加圧水熱処理槽ホールド液量:200l (主要装置条件) (1)二水石膏原料供給槽容積:2000l (2)加圧水熱処理槽容積:250l (3)加圧水熱処理槽攪拌機:タービン型 (4)同上攪拌機攪拌動力:1kW/m3 次に本発明の効果を示すために、第5図に製品α半水石
膏の100倍拡大写真を示した。
(Operating conditions) (1) Raw material dihydrate gypsum slurry concentration: 15 wt% (2) Sodium citrate concentration: 0.01 wt% (3) Pressurized water heat treatment concentration: 140 ° C (4) Pressurized water heat treatment tank hold liquid amount: 200 l (Main equipment Conditions) (1) Gypsum raw material supply tank volume: 2000 l (2) Pressurized water heat treatment tank volume: 250 l (3) Pressurized water heat treatment tank Stirrer: turbine type (4) Same as above Stirrer stirring power: 1 kW / m 3 Next of the present invention In order to show the effect, FIG. 5 shows a 100 times enlarged photograph of the product α hemihydrate gypsum.

〔発明の効果〕〔The invention's effect〕

以上述べたごとく、二水石膏原料スラリー中のクエン酸
ナトリウム濃度を所望濃度に制御維持させることによつ
て、安定した品質のα型半水石膏の連続製造ができるよ
うになつた。
As described above, by controlling and maintaining the sodium citrate concentration in the dihydrate gypsum raw material slurry at a desired concentration, it has become possible to continuously produce α-type hemihydrate gypsum of stable quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の一実施例を示す図、第2図は二水
石膏の水中への溶解度と温度の関係を示すグラフ、第3
図は各温度における溶解石膏濃度と電気伝導度の関係を
示すグラフ、第4図はクエン酸ナトリウム濃度と電気伝
導度の関係を示すグラフ、第5図は本発明の実施例で得
られたα半水石膏の結晶構造の顕微鏡写真(100倍)で
ある。
FIG. 1 is a diagram showing an embodiment of the method of the present invention, FIG. 2 is a graph showing the relationship between the solubility of dihydrate gypsum in water and temperature, and FIG.
FIG. 4 is a graph showing the relationship between the dissolved gypsum concentration and the electrical conductivity at each temperature, FIG. 4 is a graph showing the relationship between the sodium citrate concentration and the electrical conductivity, and FIG. 5 is the α obtained in the examples of the present invention. It is a micrograph (100 times) of the crystal structure of hemihydrate gypsum.

フロントページの続き (72)発明者 多谷 淳 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (56)参考文献 特開 昭62−27326(JP,A) 特公 昭53−15835(JP,B2)Front page continuation (72) Inventor Jun Taya 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Laboratory (56) Reference JP 62-27326 (JP, A) Japanese Patent Publication Sho 53-15835 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二水石膏スラリーを加圧水熱処理してα型
半水石膏に転移させるにあたり、クエン酸ナトリウムを
0.01重量%以下含有した二水石膏スラリーを140℃以上
の温度で適当時間加圧水熱処理槽で処理してα型半水石
膏を連続的に製造する方法において、上記二水石膏スラ
リーの温度と電気伝導度を測定して、該二水石膏スラリ
ーに添加するクエン酸ナトリウムの添加量を調節するこ
とを特徴とするα型半水石膏の製造方法。
1. Sodium citrate is added to a dihydrate gypsum slurry under pressure hydrothermal treatment to transform it into α-type hemihydrate gypsum.
In a method for continuously producing α-type hemihydrate gypsum by treating a dihydrate gypsum slurry containing 0.01% by weight or less at a temperature of 140 ° C or higher in a pressurized hydrothermal treatment tank for a suitable time, the temperature and electrical conductivity of the dihydrate gypsum slurry The method for producing α-type hemihydrate gypsum, characterized in that the addition amount of sodium citrate added to the dihydrate gypsum slurry is adjusted by measuring the degree.
JP10883787A 1987-05-06 1987-05-06 Method for producing α-type hemihydrate gypsum Expired - Fee Related JPH0686293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10883787A JPH0686293B2 (en) 1987-05-06 1987-05-06 Method for producing α-type hemihydrate gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10883787A JPH0686293B2 (en) 1987-05-06 1987-05-06 Method for producing α-type hemihydrate gypsum

Publications (2)

Publication Number Publication Date
JPS63274614A JPS63274614A (en) 1988-11-11
JPH0686293B2 true JPH0686293B2 (en) 1994-11-02

Family

ID=14494818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10883787A Expired - Fee Related JPH0686293B2 (en) 1987-05-06 1987-05-06 Method for producing α-type hemihydrate gypsum

Country Status (1)

Country Link
JP (1) JPH0686293B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642978B2 (en) * 1989-01-17 1997-08-20 三菱重工業株式会社 Manufacturing method of anhydrous gypsum
JP4960600B2 (en) * 2005-03-28 2012-06-27 株式会社トクヤマ Waste gypsum treatment method
CN104355560B (en) * 2014-10-21 2016-06-15 金正大生态工程集团股份有限公司 A kind of production method of α-high strength gypsum powder

Also Published As

Publication number Publication date
JPS63274614A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
CN104261453B (en) The method of modifying of dihydrate gypsum
Abdel‐Aal et al. Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations
JPH0686293B2 (en) Method for producing α-type hemihydrate gypsum
US2616789A (en) Method of producing gypsum plaster
CA2167978A1 (en) Process for the production of alpha hemihydrate calcium sulfate from flue gas desulfurization materials
Cody et al. A comparison of calcium sulfate dihydrate grown in clay gels and in sodium silicate gels
Garcia et al. Dissolution and phase transition of pharmaceutical compounds
US3578399A (en) Production of crystalline potassium sulfate
US4059674A (en) Method for manufacturing phosphoric acid and gypsum
JPH0256237A (en) Calcining method and improvement of apparatus
US4113835A (en) Process for preparing pure synthetic calcium sulfate semihydrate
US2848319A (en) Method of producing titanium
JPH0742107B2 (en) Method for producing α-type hemihydrate gypsum
US3449071A (en) Preparation of alumina crystals from a vapor phase reaction by monitoring the spectral scattering of light
EP0379266B1 (en) Production method for anhydrous gypsum
JPS5933530B2 (en) Method for producing copper pyrophosphate
IL28284A (en) Method for preparing bromites
JPS5898184A (en) Treatment of turbid water
US2231327A (en) Preparation of magnesium products
Konak The Catalysed and Uncatalysed Nucleation of Gypsum Crystals from Aqueous Solution
SU844571A1 (en) Method of automatic control of potassium salt production process
JPH0448730B2 (en)
GB1353353A (en) Process for the preparation of anhydrous magnesium chloride
SU1271857A1 (en) Method of automatic control for process of decomposing mineral raw material by acid in production of fertilizer
JPS6227326A (en) Production of alpha-hemihydrate gypsum

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees