JPH0686258A - Orthogonal transform encoder and decoder - Google Patents

Orthogonal transform encoder and decoder

Info

Publication number
JPH0686258A
JPH0686258A JP25587092A JP25587092A JPH0686258A JP H0686258 A JPH0686258 A JP H0686258A JP 25587092 A JP25587092 A JP 25587092A JP 25587092 A JP25587092 A JP 25587092A JP H0686258 A JPH0686258 A JP H0686258A
Authority
JP
Japan
Prior art keywords
dct
encoding
transform
orthogonal
variable length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25587092A
Other languages
Japanese (ja)
Other versions
JP3211989B2 (en
Inventor
Kenji Sugiyama
賢二 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP25587092A priority Critical patent/JP3211989B2/en
Priority to DE69322713T priority patent/DE69322713T2/en
Priority to EP93306868A priority patent/EP0586225B1/en
Priority to US08/113,676 priority patent/US5424778A/en
Publication of JPH0686258A publication Critical patent/JPH0686258A/en
Priority to US08/397,752 priority patent/US5502491A/en
Priority to US08/569,428 priority patent/US5684536A/en
Application granted granted Critical
Publication of JP3211989B2 publication Critical patent/JP3211989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To improve the encoding efficiency of the entire picture, and to attain an encoding in which the quantization noise is not noticeable by changing the dimension of an orthogonal transformation and selecting an optimal transformation system for each block. CONSTITUTION:A picture signal inputted from a picture input 1 is DCT-operated in a horizontal direction by a horizontal DCT in the block state of 8X8 picture elements, and transmitted to a vertical DCT 3 and a quantizer 8. The data area DCT-operated in a vertical direction by the DCT 3, and the two-dimensional DCT signal is transmitted to a quantizer 4. Then, a weighting corresponding to a visual characteristic is operated to each DCT coefficient by the quantizers 4 and 8. The outputs of the quantizers 4 and 8 are encoded by variable length encoders 5 and 9, the output of the optimal transformation system, that is, the encoding amounts of each block are smaller discriminated by a minimum value discriminator 10 is selected by a selector 6, the data are outputted from an data output 7, and a mode is outputted from a mode output 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル信号の処理
を行なう記録,伝送,表示装置において、信号をより少
ない符号量で効率的に符号化し、復合化する高能率符号
化に係り、特にDCTなどの直交変換を行う符号化装置
及び復号化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high efficiency coding for efficiently coding and decoding a signal with a smaller code amount in a recording, transmitting and displaying apparatus for processing a digital signal, and more particularly to a DCT. The present invention relates to an encoding device and a decoding device that perform orthogonal transformation such as.

【0002】[0002]

【従来の技術】<直交変換符号化>DCT(離散コサイ
ン変換)などの直交変換を用いる高能率符号化方式は、
画像の相関を効率的に利用してデータを削減できるの
で、高能率符号化の標準方式などで広く使われている。
そこでは、直交変換は垂直、水平の2次元で行われるの
が一般的となっている。これは1次元では水平または垂
直の片方向の相関しか利用できないのに対し、2次元の
方では垂直と水平の両方が扱えて、より効率的にデータ
を削減できるからである。
2. Description of the Related Art <Orthogonal Transform Coding> A high efficiency coding system using orthogonal transform such as DCT (Discrete Cosine Transform)
It is widely used in standard systems for high-efficiency coding because it can efficiently use the correlation of images to reduce data.
Here, orthogonal transformation is generally performed in two dimensions, vertical and horizontal. This is because in one dimension only horizontal or vertical one-way correlation can be used, whereas in two dimensions, both vertical and horizontal can be handled, and data can be reduced more efficiently.

【0003】変換ブロックの大きさは、大きい方が相関
を有効に使える点では有利だが、8×8画素以上ではあ
まり差がない。一方、量子化誤差はブロック全体に広が
るため、視覚的にはブロックは小さな方が望ましく、処
理量も小さな方が少なくて済む。そこで垂直8次、水平
8次の8×8画素のブロックで変換するのが最も一般的
である。また、動画像符号化では時間方向でフレーム間
の予測符号化を行い、予測残差に対して空間的に直交変
換を用いるのが一般的となっている。
Larger transform blocks are advantageous in that the correlation can be effectively used, but there is not much difference when the size is 8 × 8 pixels or more. On the other hand, since the quantization error spreads over the entire block, it is preferable that the block is visually small, and the processing amount is small. Therefore, it is most common to perform conversion by a block of 8 × 8 pixels of vertical 8th order and horizontal 8th order. Further, in moving image coding, it is general to perform predictive coding between frames in the time direction and spatially perform orthogonal transformation on prediction residuals.

【0004】<符号化装置>従来例の符号化装置の構成
を図6に示す。画像入力1から与えられた画像信号は、
8×8画素の2次元ブロック毎に、水平DCT2で水平
方向に8次DCTが行われ、続けて垂直DCT3で垂直
方向に8次DCTが行われる。変換された信号は、量子
化器4で視覚的に誤差が目立たない程度の量子化ステッ
プ幅で量子化され、可変長符号化器5に与えられる。こ
こで量子化された信号は大半の係数が0になっている。
可変長符号化器5では、2次元ブロック状態の信号が図
9の(A)に示されたような順番(いわゆる、ジグザグ
スキャン)で1次元状態に配列変換され、0係数はその
連続数が、非0係数はその値が、ハフマン符号などの可
変長符号(VLC)で符号化される。可変長符号化器5
の出力は、圧縮データとしてデータ出力7より復号装置
に向けて出力される。
<Encoding Device> FIG. 6 shows the configuration of a conventional encoding device. The image signal given from the image input 1 is
For each two-dimensional block of 8 × 8 pixels, the horizontal DCT 2 performs the 8th DCT in the horizontal direction, and the vertical DCT 3 subsequently performs the 8th DCT in the vertical direction. The converted signal is quantized by the quantizer 4 with a quantization step width such that an error is visually inconspicuous, and is given to the variable length encoder 5. Most of the coefficients of the quantized signal are 0.
In the variable length encoder 5, the signals in the two-dimensional block state are array-converted into the one-dimensional state in the order shown in FIG. 9A (so-called zigzag scan), and the number of consecutive 0 coefficients is 0. The value of the non-zero coefficient is encoded by a variable length code (VLC) such as Huffman code. Variable length encoder 5
Is output as compressed data from the data output 7 to the decoding device.

【0005】<復号化装置>従来例の復号化装置の構成
を図7に示す。復号化装置の処理動作は符号化装置の逆
である。データ入力21より与えられた圧縮データは、
可変長復号器71で可変長符号が固定長符号に戻され、
配列の逆変換が行われ8×8画素の2次元ブロック状態
の信号となり逆量子化器72に与えられる。逆量子化器
72では符号が量子化代表値に変換され、垂直逆DCT
24に与えられる。量子化代表値は、垂直逆DCT24
で垂直方向に逆DCTが行われ、続けて水平逆DCT2
6で水平方向に逆DCTが行われ、再生された画像信号
になり、画像出力27より出力される。
<Decoding Device> FIG. 7 shows the structure of a conventional decoding device. The processing operation of the decoding device is the reverse of that of the encoding device. The compressed data given from the data input 21 is
The variable length decoder 71 converts the variable length code back to the fixed length code,
The inverse transformation of the array is performed and a signal in a two-dimensional block state of 8 × 8 pixels is provided to the inverse quantizer 72. In the inverse quantizer 72, the code is converted into a quantized representative value, and the vertical inverse DCT
Given to 24. The quantized representative value is the vertical inverse DCT24.
Inverse DCT is performed in the vertical direction, and then horizontal inverse DCT2
In step 6, inverse DCT is performed in the horizontal direction to form a reproduced image signal, which is output from the image output 27.

【0006】[0006]

【発明が解決しようとする課題】従来の2次元直交変換
符号化は、画像内相関が比較的高い部分では効率が良い
が、画像のエッジ部分など相関の低い部分には必ずしも
適していない。フレーム間予測残差信号においてその傾
向が特に強くなり、残差信号の画像内相関はかなり低い
ので、2次元直交変換は必ずしも適切な符号化でない。
2次元変換より水平のみや垂直のみの1次元変換の方が
効率が高くなる部分が存在する。
The conventional two-dimensional orthogonal transform coding is efficient at a portion where the intra-image correlation is relatively high, but is not necessarily suitable for a portion where the correlation is low such as an edge portion of the image. The two-dimensional orthogonal transform is not necessarily an appropriate encoding because the tendency becomes particularly strong in the inter-frame prediction residual signal and the intra-image correlation of the residual signal is considerably low.
There is a portion where the efficiency is higher in the one-dimensional conversion only in the horizontal direction or the vertical direction than the two-dimensional conversion.

【0007】また、2次元変換を行うと、量子化誤差が
2次元ブロック内に広がり、エッジの周りのノイズ成分
が目立ち易くなる。すなわち同等な符号化誤差なら、変
換ブロックの小さい1次元変換の方が視覚的に望まし
い。一方、DPCMなどの符号化方式は、ノイズ成分が
目立ち難く視覚的に望ましいが、画像内相関が有効に使
い切れず、基本的な効率が十分でない。
Further, when the two-dimensional conversion is performed, the quantization error spreads within the two-dimensional block, and the noise component around the edge becomes conspicuous. That is, if the coding error is equivalent, one-dimensional conversion with a smaller conversion block is visually desirable. On the other hand, a coding method such as DPCM is visually desirable because noise components are inconspicuous, but the intra-image correlation cannot be used effectively, and the basic efficiency is not sufficient.

【0007】本発明は以上の点に着目してなされたもの
で、ブロック毎に直交変換の次元を変え、最適な変換方
式を選択することで、効率が高く、しかもノイズ成分が
目立ち難い直交変換符号化装置及び復号化装置を提供す
ることを目的とするものである。
The present invention has been made by paying attention to the above points. By changing the dimension of orthogonal transformation for each block and selecting the optimum transformation method, the efficiency of the orthogonal transformation is high and the noise component is not noticeable. An object is to provide an encoding device and a decoding device.

【0008】[0008]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、画像信号を複数の次元で直交変換する
符号化装置であって、次元の組み合わせが異なる直交変
換と、これに対応した可変長符号化とを行う複数種類の
変換符号化手段と、前記の複数種類の変換符号化手段で
画像信号を変換符号化し、発生符号量が最も少ない変換
符号化出力を選択する手段とからなることを特徴とする
直交変換符号化装置を提供する。
In order to achieve the above object, the present invention is an encoding device for orthogonally transforming an image signal in a plurality of dimensions, and an orthogonal transformation in which the combinations of dimensions are different, and A plurality of types of transform coding means for performing corresponding variable length coding, and a means for transform coding the image signal by the plurality of types of transform coding means, and selecting a transform coding output with the smallest generated code amount. An orthogonal transform encoding device is provided.

【0009】さらに、符号化された画像信号を複数の次
元で直交逆変換する復号化装置であって、直交逆変換す
る次元の組み合わせが変更自在な直交逆変換手段と、前
記の直交逆変換手段に対応して復号化方法を変更自在な
可変長復号化手段とからなることを特徴とする直交変換
復号化装置を提供する。
Further, there is provided a decoding device for orthogonally inversely transforming an encoded image signal in a plurality of dimensions, the orthogonality inverse transformation means being capable of changing the combination of dimensions for orthogonality inverse transformation, and the aforementioned orthogonal inverse transformation means. The present invention provides an orthogonal transform decoding device characterized by comprising a variable length decoding means capable of changing the decoding method corresponding to the above.

【0010】また、画像信号を複数の次元で直交変換す
る符号化装置であって、次元の組み合わせが異なる直交
変換と、これに対応した可変長符号化とを行う複数種類
の変換符号化手段と、画像の各次元方向の変化の程度を
検出するモード判定手段とからなり、前記モード判定手
段で相対的に変化が大きいと判定された次元に対して、
直交変換を行わないようにしたことを特徴とする直交変
換符号化装置を提供するものである。
Further, there is provided an encoding device for orthogonally transforming an image signal in a plurality of dimensions, and a plurality of types of transform encoding means for performing an orthogonal transform having different combinations of dimensions and a variable length coding corresponding thereto. , A mode determination means for detecting the degree of change in each dimensional direction of the image, and for the dimensions determined to be relatively large by the mode determination means,
An orthogonal transform coding device is provided which is characterized in that orthogonal transform is not performed.

【0011】[0011]

【作用】上記のように構成された直交変換符号化及び復
号化装置によれば、(ブロック毎に)直交変換の次元を
変え、最適な変換方式を選択することで、単一の変換方
法を用いる符号化方式に対し、局所毎に最適な符号化が
行え、画像全体での符号化効率を高めることができる。
また、エッジなどで1次元変換が使われるので、画一的
に2次元変換する装置と比較して量子化ノイズが目立ち
難くなり、主観画質は効率の改善よりさらに良好なもの
になる。
According to the orthogonal transform coding and decoding apparatus configured as described above, the single transform method is changed by changing the dimension of the orthogonal transform (for each block) and selecting the optimum transform method. Optimal encoding can be performed locally for the encoding method used, and the encoding efficiency of the entire image can be improved.
In addition, since one-dimensional conversion is used at edges and the like, quantization noise is less noticeable than in a device that performs uniform two-dimensional conversion, and subjective image quality is better than efficiency improvement.

【0012】[0012]

【実施例】<第1の符号化装置>図1は本発明の直交変
換符号化装置の第1の実施例を示すブロック図である。
図6の従来例と同一部分には同一符号を付して示す。図
6の符号化装置とは、量子化器8、可変長符号化器9、
最小値判定器10、セレクタ6、モード出力11が追加
されている点が異なる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Coding Device> FIG. 1 is a block diagram showing a first embodiment of an orthogonal transform coding device of the present invention.
The same parts as those in the conventional example of FIG. 6 are designated by the same reference numerals. The encoding device of FIG. 6 includes a quantizer 8, a variable length encoder 9,
The difference is that a minimum value determiner 10, a selector 6, and a mode output 11 are added.

【0013】図1において、画像入力1より与えられた
画像信号は、8×8画素のブロック状態で、水平DCT
2により水平方向にDCTされ、垂直DCT3と量子化
器8に与えられる。垂直DCT3では水平方向にDCT
された信号に対し、垂直方向にDCTが行われ、2次元
DCTされた信号が量子化器4に与えられる。したがっ
て、量子化器8では水平方向のみにDCTされた信号が
量子化され、量子化器4では水平及び垂直の2次元DC
Tされた信号が量子化される。
In FIG. 1, the image signal supplied from the image input 1 is a horizontal DCT in a block state of 8 × 8 pixels.
DCT is performed in the horizontal direction by 2 and applied to the vertical DCT 3 and the quantizer 8. Vertical DCT3 is horizontal DCT
The obtained signal is subjected to DCT in the vertical direction, and the two-dimensional DCT signal is given to the quantizer 4. Therefore, the quantizer 8 quantizes the DCT signal only in the horizontal direction, and the quantizer 4 quantizes horizontal and vertical two-dimensional DC.
The T signal is quantized.

【0014】ここで、水平方向のみの変換の場合はDC
Tブロックは1次元の8画素になるが、2次元処理と切
り替える都合上、垂直方向にはDCTブロックを8個束
ねて8×8画素のブロック状態で扱うのが便利である。
この様子を図8(B)に示すが、図中DCはDCT係数の
DC成分、ACはAC成分を示すものであり、太線の枠内
がDCTブロックを示している。量子化器4と8では、
各係数に対して均一の量子化をするのなら、処理は同一
であるが、視覚特性に対応した重み付けが各DCT係数
に対して行われる(例えば、高い周波数では粗くする)
場合は処理が異なる。量子化の重み付けは、量子化器4
では2次元的な特性であるが、量子化器8では1次元的
な特性が繰り返されることになる。
Here, in the case of conversion in the horizontal direction only, DC
The T block has one-dimensional 8 pixels, but for convenience of switching to the two-dimensional processing, it is convenient to bundle eight DCT blocks in the vertical direction and handle them in a block state of 8 × 8 pixels.
This state is shown in FIG. 8B. In the figure, DC indicates the DC component of the DCT coefficient, AC indicates the AC component, and the thick line frame indicates the DCT block. In quantizers 4 and 8,
If uniform quantization is performed on each coefficient, the processing is the same, but weighting corresponding to the visual characteristics is performed on each DCT coefficient (for example, coarser at high frequencies).
If the case is different. Quantization weighting is performed by the quantizer 4
Has a two-dimensional characteristic, the quantizer 8 repeats a one-dimensional characteristic.

【0015】量子化器4、8の出力は可変長符号化器
5、9で符号化され、共にセレクタ6及び、最小値判定
器10に与えられる。可変長符号化で配列変換(スキャ
ン)は可変長符号化器5と9で異なり、可変長符号化器
5のものは9図(A)の様に従来例と同じジグザクスキ
ャンであるが、1次元DCTに対する可変長符号化器9
のものは9図(B)の垂直方向にスキャンする。このよ
うに、1次元DCTの場合は直交変換のブロックにまた
がって配列変換されることになるが、この手法は本発明
と同一発明人、同一出願人による「可変長符号化方法及
びその装置」(特願平1−213939)に示されてい
るものと同様である。このように1次元変換のものは8
個束ねて処理することで、2次元DCTと同様に扱え、
0ランレングス符号化の効率が改善できる。この場合、
可変長符号化器5と9で同一のVLCテ−ブルを使うこ
とができるが、別々に最適化すれば、僅かながらさらに
効率改善できる。
The outputs of the quantizers 4 and 8 are encoded by the variable length encoders 5 and 9, and both are given to the selector 6 and the minimum value determiner 10. In the variable length coding, the array conversion (scan) differs between the variable length encoders 5 and 9, and the variable length encoder 5 has the same zigzag scan as in the conventional example as shown in FIG. Variable-length encoder 9 for three-dimensional DCT
Scan the vertical direction of FIG. 9 (B). As described above, in the case of the one-dimensional DCT, the array conversion is performed by straddling the blocks of the orthogonal transformation, but this method is the "variable length coding method and its apparatus" by the same inventor and the same applicant as the present invention. It is the same as that shown in (Japanese Patent Application No. 1-213939). In this way, one-dimensional conversion is 8
By bundling and processing, it can be handled like a two-dimensional DCT,
The efficiency of 0 run length coding can be improved. in this case,
The same VLC table can be used for the variable length encoders 5 and 9, but if they are optimized separately, the efficiency can be improved slightly.

【0016】最小値判定器10では、可変長符号化器5
と9の出力の各ブロックの符号量(ビット数)を比較
し、少ないほうの出力がセレクタ6で選択されるように
制御信号をモード情報として出力する。ここで、符号量
を比較して処理を切り替える単位は、DCTのブロック
(8×8画素)と同じである必要はなく、DCTのブロ
ックを複数個束ねてもよい。特にカラー画像で色差信号
のサブサンプルを行っている場合は、サブサンプルの割
合に応じて複数の輝度信号ブロックとひとつの色差信号
ブロックがペアになるので、このペアごとで符号量を比
較して処理を切り替えたほうが好都合である。
In the minimum value judging device 10, the variable length encoder 5 is used.
And 9 are compared in code amount (bit number) of each block, and a control signal is output as mode information so that the selector 6 selects the smaller output. Here, the unit for comparing the code amounts and switching the processing does not have to be the same as the DCT block (8 × 8 pixels), and a plurality of DCT blocks may be bundled. Especially when color difference signal sub-sampling is performed on a color image, a plurality of luminance signal blocks and one color difference signal block form a pair according to the ratio of the sub-samples. It is convenient to switch the processing.

【0017】モード情報はモード出力から復号装置に向
けて出力されると共に、セレクタ6に与えられ。セレク
タ6では可変長符号化器5と9の出力で、データ量の少
ないほうが選択され、データ出力7より出力される。そ
の結果、垂直方向の相関が小さい場合には、1次元(水
平)DCTが選択され、2次元DCTが行われないの
で、効率が高く、しかもノイズ成分が目立ち難い直交変
換がなされる。
The mode information is output from the mode output to the decoding device and is also given to the selector 6. The selector 6 selects the one having the smaller data amount from the outputs of the variable length encoders 5 and 9, and outputs it from the data output 7. As a result, when the correlation in the vertical direction is small, the one-dimensional (horizontal) DCT is selected and the two-dimensional DCT is not performed, so that the orthogonal transformation is performed with high efficiency and in which the noise component is inconspicuous.

【0018】このような処理において、それぞれの変換
で量子化による歪みが同等になるように量子化の重み付
けを設定し、その状態でデータ量の少ないほうを選択す
れば、歪み量は一定で、全体のデータ量は必ず少なくな
る。その際、量子化器8の量子化を僅かに粗くしておく
と、1次元変換の方が選択され易くなり、符号化の誤差
量は若干増えるが、視覚的に望ましい符号化となる。
In such processing, if the quantization weighting is set so that the distortion due to the quantization becomes equal in each transformation and the one with smaller data amount is selected in that state, the distortion amount is constant, The total amount of data will definitely decrease. At this time, if the quantization of the quantizer 8 is made slightly coarser, the one-dimensional conversion is easier to be selected, and the encoding error amount is slightly increased, but the encoding is visually desirable.

【0019】なお、本実施例では2次元と水平のみのも
のを示したが、2次元と垂直のみ、垂直のみと水平の
み、2次元と垂直のみと水平のみの3種類、さらに直交
変換を行わない場合も含めた適応処理も可能である。
In the present embodiment, only two-dimensional and horizontal ones are shown, but three types of two-dimensional and vertical only, vertical only and horizontal only, two-dimensional and vertical only and horizontal, and orthogonal transformation are performed. It is possible to perform adaptive processing including the case where it does not exist.

【0020】<復号化装置>図1に対応する実施例復号
装置の構成を図2に示す。図7の従来例と同一部分には
同一符号を付して示す。図7の復号化装置とは、モード
入力28、セレクタ25がある点と、可変長復号器2
2、逆量子化器23の動作が異なる。データ入力21よ
り与えられる圧縮データは、可変長復号器22に導かれ
る。一方、モード入力28より入力されるモード情報
は、可変長復号器22、逆量子化器23、セレクタ25
に与えられる。可変長復号器22、逆量子化器23の動
作は基本的には従来例同じであるが、モード情報によ
り、可変長復号器22では配列の逆変換テーブルが替え
られ、逆量子化器23では重み付けのテーブルが替えら
れる。
<Decoding Device> FIG. 2 shows the configuration of the decoding device of the embodiment corresponding to FIG. The same parts as those in the conventional example of FIG. 7 are designated by the same reference numerals. The decoding device of FIG. 7 has a mode input 28 and a selector 25, and the variable length decoder 2
2. The operation of the inverse quantizer 23 is different. The compressed data supplied from the data input 21 is guided to the variable length decoder 22. On the other hand, the mode information input from the mode input 28 includes the variable length decoder 22, the dequantizer 23, and the selector 25.
Given to. The operations of the variable length decoder 22 and the inverse quantizer 23 are basically the same as in the conventional example, but the inverse conversion table of the array is changed in the variable length decoder 22 according to the mode information, and the inverse quantizer 23 in the inverse quantizer 23. The weighting table is changed.

【0021】逆量子化器23の出力は、垂直逆DCT2
4とセレクタ25に導かれ、垂直逆DCT24では垂直
方向にDCTの逆変換が行われる。セレクタ25はモー
ド情報によって制御され、2次元DCTのブロックで
は、垂直逆DCT24の出力が選択され、水平のみの場
合では逆量子化器23の出力が選択されて、水平逆DC
Tに導かれ水平方向にDCTの逆変換が行われる。これ
により、2次元DCTのブロックでは、垂直水平両方の
逆DCTが行われ、水平のみの場合では水平逆DCTの
みが行われ、得られた再生画像が画像27より出力され
る。
The output of the inverse quantizer 23 is the vertical inverse DCT2
4 and the selector 25, and the vertical inverse DCT 24 inversely transforms the DCT in the vertical direction. The selector 25 is controlled by the mode information, and in the two-dimensional DCT block, the output of the vertical inverse DCT 24 is selected, and in the case of only horizontal, the output of the inverse quantizer 23 is selected, and the horizontal inverse DCT is selected.
The signal is guided to T and the DCT inverse transformation is performed in the horizontal direction. As a result, in the two-dimensional DCT block, both vertical and horizontal inverse DCT are performed, and in the case of only horizontal, only horizontal inverse DCT is performed, and the obtained reproduced image is output from the image 27.

【0022】<第2の符号化装置>図3は本発明の直交
変換符号化装置の第2の実施例を示すブロック図であ
る。第1の実施例との相違は、主符号化系とは別の手段
で変換モードを決める点である。構成上は、量子化器や
可変長符号化を2系統持たず、モード判定部として垂直
変化検出器31、アクティビティ検出器32、モード判
定器33を持つ点が異なる。
<Second Coding Device> FIG. 3 is a block diagram showing a second embodiment of the orthogonal transform coding device of the present invention. The difference from the first embodiment is that the conversion mode is determined by means other than the main coding system. The configuration is different in that it does not have two systems of quantizers and variable length coding, but has a vertical change detector 31, an activity detector 32, and a mode determiner 33 as a mode determiner.

【0023】図3において、画像入力1より与えられる
画像信号は、8×8画素のブロック信号として水平DC
T2で水平方向にDCTされ、垂直DCT3とセレクタ
6に導かれる。垂直DCT3では垂直方向にDCTが行
われ、2次元DCTされた信号がセレクタ6に導かれ
る。
In FIG. 3, the image signal given from the image input 1 is a horizontal DC signal as a block signal of 8 × 8 pixels.
DCT is performed in the horizontal direction at T2, and is guided to the vertical DCT3 and the selector 6. In the vertical DCT 3, DCT is performed in the vertical direction, and the two-dimensional DCT signal is guided to the selector 6.

【0024】一方、モード判別部では、画像入力1より
入力された入力信号は垂直変化検出器31とアクティビ
ティ検出器32に導かれ、垂直変化検出器31では垂直
方向の変化の程度vを求め、アクティビティ検出器32
では画像のブロック分散値dを求める。垂直方向の変化
の程度vとブロック分散値dは、それぞれ次式で与えら
れる(なお、dcは平均値である)。
On the other hand, in the mode discriminating section, the input signal input from the image input 1 is guided to the vertical change detector 31 and the activity detector 32, and the vertical change detector 31 obtains the degree v of vertical change, Activity detector 32
Then, the block variance value d of the image is obtained. The degree of change v in the vertical direction and the block variance value d are given by the following equations (where dc is an average value).

【0025】[0025]

【数1】 [Equation 1]

【0026】モード判定器33ではその二つの情報を比
較して、分散値vに対して垂直方向の変化の程度dが大
きな場合に、水平DCTのみとなるような制御信号を出
力する。これは垂直方向に変化が大きい信号を、垂直方
向にDCTすると、高い周波数成分が多くなり、変換し
ない場合より効率が悪くなるためである。つまり、モー
ド判定部で相対的に変化が大きいと判定された次元で
は、直交変換を行わないようにして、変換効率の悪化を
回避している。量子化器4、可変長符号化器5は、図2
の復号化装置実施例と同様に基本的な動作は従来例と同
じで、モード情報により量子化器4では重み付けのテー
ブルが、可変長符号化器5では配列の変換が替えられ
る。この実施例の場合、主な符号化は1系統で済み、処
理量が図1の実施例の場合より少なくて済む。
The mode discriminator 33 compares the two pieces of information and outputs a control signal such that only the horizontal DCT is obtained when the degree of change d in the vertical direction is large with respect to the variance value v. This is because if a signal that varies greatly in the vertical direction is subjected to DCT in the vertical direction, the number of high frequency components increases, and the efficiency becomes worse than that in the case where no conversion is performed. That is, orthogonal transformation is not performed in the dimension for which the mode determination unit has determined that the change is relatively large, thereby avoiding deterioration of conversion efficiency. The quantizer 4 and the variable length encoder 5 are the same as those in FIG.
The basic operation is the same as that of the conventional example as in the decoding device embodiment, and the weighting table is changed in the quantizer 4 and the array conversion is changed in the variable length encoder 5 according to the mode information. In the case of this embodiment, the main encoding is only one system, and the processing amount is smaller than that in the embodiment of FIG.

【0027】<第3の符号化装置>図4は本発明の直交
変換符号化装置の第3の実施例を示すブロック図であ
る。図3と同一部分には同一符号を付して示す。図3と
異なるのは、フレーム間予測符号化であり、予測残差信
号に対して直交変換を行う点である。構成上は予測減算
器41、フレームメモリ42や局部復号部(逆量子化器
23、水平逆DCT26,垂直逆DCT24、セレクタ
25)を持つ点である。
<Third Coding Device> FIG. 4 is a block diagram showing a third embodiment of the orthogonal transform coding device of the present invention. The same parts as those in FIG. 3 are designated by the same reference numerals. 3 is different from FIG. 3 in interframe predictive coding, in that orthogonal prediction is performed on a prediction residual signal. In terms of configuration, it has a predictive subtractor 41, a frame memory 42, and a local decoding unit (inverse quantizer 23, horizontal inverse DCT 26, vertical inverse DCT 24, selector 25).

【0028】画像入力1より与えられた画像信号は、予
測減算器41でフレームメモリ42から与えられる予測
信号が減算され、残差信号となり水平DCT2とモード
判定部34に与えられる。モード判定部34、水平DC
T2、垂直DCT3、セレクタ6、量子化器4、可変長
符号化器5の動作は図3の第2の実施例符号化装置と同
じである。局部復号部である逆量子化器23、水平逆D
CT26,垂直逆DCT24、セレクタ25の動作は図
2の第1の実施例復号化装置と同じである。局部復号さ
れた残差信号は加算器43で予測信号が加算され、再生
された画像信号となり、フレームメモリ42に与えられ
る。フレームメモリ42から1フレーム遅延させられた
再生画像が、予測信号として予測減算器41と加算器4
3に与えられる。
The predictive signal supplied from the frame memory 42 is subtracted from the predictive subtractor 41 from the image signal supplied from the image input 1 to form a residual signal, which is supplied to the horizontal DCT 2 and the mode determining section 34. Mode determination unit 34, horizontal DC
The operations of T2, the vertical DCT 3, the selector 6, the quantizer 4, and the variable length encoder 5 are the same as those of the encoder of the second embodiment of FIG. Inverse quantizer 23 which is a local decoding unit, horizontal inverse D
The operations of the CT 26, the vertical inverse DCT 24, and the selector 25 are the same as those of the first embodiment decoding apparatus shown in FIG. The locally decoded residual signal is added with the prediction signal by the adder 43 to be a reproduced image signal, which is given to the frame memory 42. The reproduced image delayed by one frame from the frame memory 42 is used as a prediction signal to predict the subtractor 41 and the adder 4.
Given to 3.

【0029】予測残差信号は、通常の画像信号以上に画
像内相関が低くなっており、1次元DCTが使われる割
合が通常の画像信号よりさらに多くなる。すなわち、画
像の動きが小さい時では、予測残差はわずかで画像内相
関が少ないので、2次元DCTが行われず1次元DCT
により、効率よく、かつノイズも目立ないように直交変
換される。なお、現実にはフレーム間予測信号に対して
動き補償が適用されることが多いが、本実施例のように
動き補償を省いたものと本質的な違いはない。
The intra-image correlation of the prediction residual signal is lower than that of the normal image signal, and the proportion of the one-dimensional DCT used is higher than that of the normal image signal. That is, when the motion of the image is small, the prediction residual is small and the intra-image correlation is small, so that the two-dimensional DCT is not performed and the one-dimensional DCT is not performed.
By this, the orthogonal transformation is performed efficiently and without making noise noticeable. In reality, motion compensation is often applied to the inter-frame prediction signal, but there is essentially no difference from the motion compensation that is omitted in the present embodiment.

【0030】<復号化装置>図5は本発明の図4の符号
化装置に対応する復号化装置の実施例を示すブロック図
である。図2の実施例と同一部分には同一符号を付して
示す。図2の復号化装置とは、フレームメモリ42と加
算器43がある点が異なる。可変長符復号器22、逆量
子化器23、垂直逆DCT24,水平逆DCT26、セ
レクタ25の動作は図2の第1の実施例復号装置と同じ
である。フレームメモリ42と加算器43の動作は図4
の第3の実施例符号化装置と同じである。
<Decoding Device> FIG. 5 is a block diagram showing an embodiment of a decoding device corresponding to the coding device of FIG. 4 of the present invention. The same parts as those in the embodiment of FIG. 2 are designated by the same reference numerals. The decoding device of FIG. 2 is different in that a frame memory 42 and an adder 43 are provided. The operations of the variable-length code decoder 22, the inverse quantizer 23, the vertical inverse DCT 24, the horizontal inverse DCT 26, and the selector 25 are the same as those of the first embodiment decoding apparatus in FIG. The operations of the frame memory 42 and the adder 43 are shown in FIG.
This is the same as the third embodiment of the encoding device.

【0031】[0031]

【発明の効果】本発明の符号化によれば、(ブロック毎
に)直交変換の次元を変え、最適な変換方式を選択する
ことで、単一の変換方法を用いる符号化方式に対し、局
所毎に最適な符号化が行え、画像全体での符号化効率を
高めることができる。特にフレーム間予測残差適用する
場合は、予測残差には画像内相関が少ないので、極めて
効率的に直交変換される。
According to the encoding of the present invention, by changing the dimension of the orthogonal transformation (for each block) and selecting the optimal transformation method, the local transformation can be performed with respect to the coding method using a single transformation method. Optimal encoding can be performed for each of them, and the encoding efficiency of the entire image can be improved. In particular, when inter-frame prediction residuals are applied, the intra-image correlation is small in the prediction residuals, so that orthogonal transformation is extremely efficient.

【0032】また、エッジなどでは1次元変換が使わ
れ、量子化ノイズが目立ち難くなり、主観画質は誤差の
軽減よりさらに良好なものになる。以上説明の如く、本
発明の直交変換符号化装置及び復号化装置は、実用上極
めて優れた効果を有するものである。
In addition, since one-dimensional conversion is used at edges and the like, quantization noise becomes less noticeable, and subjective image quality becomes better than error reduction. As described above, the orthogonal transform encoding device and the decoding device of the present invention have extremely excellent practical effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の直交変換符号化装置の第1の実施例を
示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of an orthogonal transform coding device of the present invention.

【図2】本発明の直交変換復号化装置の第1の実施例を
示すブロック図である。
FIG. 2 is a block diagram showing a first embodiment of an orthogonal transform decoding device of the present invention.

【図3】本発明の直交変換符号化装置の第2の実施例を
示すブロック図である。
FIG. 3 is a block diagram showing a second embodiment of the orthogonal transform encoding device of the present invention.

【図4】本発明の直交変換符号化装置の第3の実施例を
示すブロック図である。
FIG. 4 is a block diagram showing a third embodiment of the orthogonal transform encoding device of the present invention.

【図5】本発明の直交変換復号化装置の第3の実施例を
示すブロック図である。
FIG. 5 is a block diagram showing a third embodiment of the orthogonal transform decoding device of the present invention.

【図6】直交変換符号化装置の従来例を示すブロック図
である。
FIG. 6 is a block diagram showing a conventional example of an orthogonal transform encoding device.

【図7】直交変換復号化装置の従来例を示すブロック図
である。
FIG. 7 is a block diagram showing a conventional example of an orthogonal transform decoding device.

【図8】2次元と1次元のDCTブロックの構成を示す
図である。
FIG. 8 is a diagram showing a configuration of two-dimensional and one-dimensional DCT blocks.

【図9】2次元と1次元の配列変換の順番(スキャン
順)を示す図である。
FIG. 9 is a diagram showing the order of two-dimensional and one-dimensional array conversion (scan order).

【符号の説明】[Explanation of symbols]

1…画像入力、2…水平DCT、3…垂直DCT、4,
8…量子化器、5,9…可変符号化器、6,25…セレ
クタ、7…データ出力、10…最小値判定器、11…モ
ード出力、21…データ入力、22,71…可変長復号
器、23,72…逆量子化器、24…垂直逆DCT、2
6…水平逆DCT、27…画像出力、28…モード入
力、31…垂直変化検出器、32…アクティビティ検出
器、33…モード判定器、34…モード判定部、41…
予測減算器、42…フレームメモリ、43…加算器。
1 ... Image input, 2 ... Horizontal DCT, 3 ... Vertical DCT, 4,
8 ... Quantizer, 5, 9 ... Variable encoder, 6, 25 ... Selector, 7 ... Data output, 10 ... Minimum value determiner, 11 ... Mode output, 21 ... Data input, 22, 71 ... Variable length decoding , 23, 72 ... Inverse quantizer, 24 ... Vertical inverse DCT, 2
6 ... Horizontal inverse DCT, 27 ... Image output, 28 ... Mode input, 31 ... Vertical change detector, 32 ... Activity detector, 33 ... Mode decision unit, 34 ... Mode decision unit, 41 ...
Predictive subtractor, 42 ... Frame memory, 43 ... Adder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】画像信号を複数の次元で直交変換する符号
化装置であって、 次元の組み合わせが異なる直交変換と、これに対応した
可変長符号化とを行う複数種類の変換符号化手段と、 前記の複数種類の変換符号化手段で画像信号を変換符号
化し、発生符号量が最も少ない変換符号化出力を選択す
る手段とからなることを特徴とする直交変換符号化装
置。
1. An encoding device for orthogonally transforming an image signal in a plurality of dimensions, comprising a plurality of types of transform encoding means for performing an orthogonal transform having different combinations of dimensions and a variable length coding corresponding thereto. An orthogonal transform coding device, comprising: a unit for transform-encoding an image signal by the plurality of types of transform-encoding units and selecting a transform-encoded output with the smallest generated code amount.
【請求項2】符号化された画像信号を複数の次元で直交
逆変換する復号化装置であって、 直交逆変換する次元の組み合わせが変更自在な直交逆変
換手段と、 前記の直交逆変換手段に対応して復号化方法を変更自在
な可変長復号化手段とからなることを特徴とする直交変
換復号化装置。
2. A decoding device for orthogonally inversely transforming an encoded image signal in a plurality of dimensions, the orthogonal inverse transforming means being capable of changing the combination of the dimensions of the orthogonal inverse transforming, and the orthogonal inverse transforming means. An orthogonal transform decoding device, comprising: a variable length decoding means capable of changing a decoding method corresponding to the above.
【請求項3】画像信号を複数の次元で直交変換する符号
化装置であって、 次元の組み合わせが異なる直交変換と、これに対応した
可変長符号化とを行う複数種類の変換符号化手段と、 画像の各次元方向の変化の程度を検出するモード判定手
段とからなり、 前記モード判定手段で相対的に変化が大きいと判定され
た次元に対して、直交変換を行わないようにしたことを
特徴とする直交変換符号化装置。
3. An encoding device for orthogonally transforming an image signal in a plurality of dimensions, comprising a plurality of types of transform encoding means for performing an orthogonal transform having different combinations of dimensions and a variable length encoding corresponding thereto. , A mode determination unit that detects the degree of change in each dimension of the image, and that the orthogonal transformation is not performed for the dimension determined to be relatively large by the mode determination unit. A characteristic orthogonal transform coding device.
JP25587092A 1992-08-31 1992-08-31 Orthogonal transform encoding device and decoding device Expired - Lifetime JP3211989B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25587092A JP3211989B2 (en) 1992-08-31 1992-08-31 Orthogonal transform encoding device and decoding device
DE69322713T DE69322713T2 (en) 1992-08-31 1993-08-31 Device for orthogonal transformation coding and decoding
EP93306868A EP0586225B1 (en) 1992-08-31 1993-08-31 Orthogonal transform coding apparatus and decoding apparatus
US08/113,676 US5424778A (en) 1992-08-31 1993-08-31 Orthogonal transform coding apparatus and decoding apparatus
US08/397,752 US5502491A (en) 1992-08-31 1995-03-02 Orthogonal transform coding apparatus and decoding apparatus
US08/569,428 US5684536A (en) 1992-08-31 1995-12-08 Orthogonal transform coding apparatus and decoding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25587092A JP3211989B2 (en) 1992-08-31 1992-08-31 Orthogonal transform encoding device and decoding device

Publications (2)

Publication Number Publication Date
JPH0686258A true JPH0686258A (en) 1994-03-25
JP3211989B2 JP3211989B2 (en) 2001-09-25

Family

ID=17284725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25587092A Expired - Lifetime JP3211989B2 (en) 1992-08-31 1992-08-31 Orthogonal transform encoding device and decoding device

Country Status (1)

Country Link
JP (1) JP3211989B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148425A1 (en) * 2006-06-19 2007-12-27 Fujitsu Limited Image compressing device, image restoring device, and program
JP2013172323A (en) * 2012-02-21 2013-09-02 Toshiba Corp Motion detector, image processing apparatus, and image processing system
JP2014523175A (en) * 2011-06-27 2014-09-08 ブリティッシュ・ブロードキャスティング・コーポレーション Video encoding and decoding using transforms
JP2020123947A (en) * 2019-01-29 2020-08-13 ソニー株式会社 Image block coding method based on pixel domain pre-processing operation for image block

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148425A1 (en) * 2006-06-19 2007-12-27 Fujitsu Limited Image compressing device, image restoring device, and program
JP2014523175A (en) * 2011-06-27 2014-09-08 ブリティッシュ・ブロードキャスティング・コーポレーション Video encoding and decoding using transforms
JP2017098975A (en) * 2011-06-27 2017-06-01 ブリティッシュ・ブロードキャスティング・コーポレーションBritish Broadcasting Corporation Video encoding and decoding using transform
JP2013172323A (en) * 2012-02-21 2013-09-02 Toshiba Corp Motion detector, image processing apparatus, and image processing system
JP2020123947A (en) * 2019-01-29 2020-08-13 ソニー株式会社 Image block coding method based on pixel domain pre-processing operation for image block

Also Published As

Publication number Publication date
JP3211989B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
KR100788220B1 (en) Quality based image compression
KR100303054B1 (en) Quantization matrix for still and moving picture coding
EP1230804B1 (en) Variance based adaptive block size dct image compression
US6658157B1 (en) Method and apparatus for converting image information
EP0586225B1 (en) Orthogonal transform coding apparatus and decoding apparatus
US5253075A (en) Image signal coding/decoding system using adaptive quantization
KR100932412B1 (en) Configurable Pattern Optimizer
US6252905B1 (en) Real-time evaluation of compressed picture quality within a digital video encoder
JPH1093966A (en) Picture encoding device
JPH05219385A (en) Picture compression expansion method and device
US6016365A (en) Decoder having adaptive function of eliminating block effect
JP3089941B2 (en) Inter prediction coding device
JP3211989B2 (en) Orthogonal transform encoding device and decoding device
US5614953A (en) Image signal decoding apparatus having an encoding error compensation
JP4762486B2 (en) Multi-resolution video encoding and decoding
US20060146183A1 (en) Image processing apparatus, encoding device, and methods of same
JP2901656B2 (en) Image coding device
JP2914607B2 (en) Image signal decoding device
JP3190164B2 (en) Code amount estimation device
JP3104334B2 (en) Image coding device
JP2872149B2 (en) Image coding device
JPH06284406A (en) Orthogonal transformation coder
JP3169147B2 (en) High-efficiency coding device for video data
JPH06113140A (en) Picture processor
JPH06244736A (en) Encoder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12