JPH0685859A - Burst demodulator - Google Patents

Burst demodulator

Info

Publication number
JPH0685859A
JPH0685859A JP23475292A JP23475292A JPH0685859A JP H0685859 A JPH0685859 A JP H0685859A JP 23475292 A JP23475292 A JP 23475292A JP 23475292 A JP23475292 A JP 23475292A JP H0685859 A JPH0685859 A JP H0685859A
Authority
JP
Japan
Prior art keywords
data
burst
data signal
signal
demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23475292A
Other languages
Japanese (ja)
Other versions
JP3111680B2 (en
Inventor
Yasushi Sogabe
靖志 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04234752A priority Critical patent/JP3111680B2/en
Publication of JPH0685859A publication Critical patent/JPH0685859A/en
Application granted granted Critical
Publication of JP3111680B2 publication Critical patent/JP3111680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow the demodulator to cope with high speed transmission processing by adapting the storage simultaneous demodulation system by a low speed sample, thereby relieving the load without deteriorating estimated accuracy. CONSTITUTION:An A/D converter 2 samples and quantizes a burst mode modulation wave subject to quasi-synchronization detection by a quasisynchronization detector 1 from a digital phase modulation burst reception signal 11. A carrier estimate means 4 estimates a carrier to correct a frequency and a phase to a sample point data signal 12 stored once for each burst in a buffer memory 3. An interpolation timing generating means 5 applies arithmetic operation to the corrected data signal 13 to estimate a Nyquist point, and generated interpolation timing information sets 14, 15 are given to a data correction means 6, which applies interpolation calculation to the correction data signal 13 to estimate Nyquist point data and to generate tentative demodulation data series 16, 17. A timing decision means 7 compares, discriminates and selects the accumulated the absolute values or the squared absolute values of data levels of the tentative demodulation data series 16, 17 for each burst, and the resulting demodulation data series 18 is discriminated by a data discrimination means 8, which outputs a demodulated data signal 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はデジタル位相変調バー
スト受信信号を復調する蓄積一括復調方式の特性を改良
するバースト復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burst demodulator for improving the characteristics of a collective batch demodulation system for demodulating a digital phase modulation burst reception signal.

【0002】[0002]

【従来の技術】たとえば文献(本多他:PSK信号の計
算的復調法に関する検討、信学技報、CS87−10
9、1987)に示す従来例のバースト復調装置は図9
のように、準同期検波器1は、デジタル位相変調バース
ト受信信号11に搬送波近似周波数をもつ非同期の参照
搬送波で準同期検波を施す。アナログ/デジタル変換器
2は、準同期検波器1から受信と参照搬送波差分周波数
をもつ検波後のバーストモード変調波に高速クロック
(たとえばシンボル周期当たり16サンプル程度以上)
で標本化と量子化演算を施す。バッファメモリ3は、ア
ナログ/デジタル変換器2から受信フィルタで波形整形
後バーストごとにすべてのサンプル点データを一旦蓄積
する。デジタル信号処理形復調器10は、バッファメモ
リ3からのサンプル点データ信号12の最適位相点を抽
出して復調データ信号14を判定し出力する。
2. Description of the Related Art For example, literature (Honda et al .: Study on computational demodulation method of PSK signal, IEICE Technical Report, CS87-10).
9, 1987), the conventional burst demodulator shown in FIG.
As described above, the quasi-synchronous detector 1 performs quasi-synchronous detection on the digital phase modulation burst reception signal 11 with an asynchronous reference carrier having a carrier approximate frequency. The analog / digital converter 2 uses a high-speed clock (for example, about 16 samples or more per symbol period) for the burst mode modulated wave after detection from the quasi-synchronous detector 1 and the reference carrier difference frequency.
Sampling and quantizing operations are performed in. The buffer memory 3 temporarily stores all sample point data for each burst after waveform shaping by the reception filter from the analog / digital converter 2. The digital signal processing demodulator 10 extracts the optimum phase point of the sample point data signal 12 from the buffer memory 3 to determine and output the demodulated data signal 14.

【0003】上記従来例のバースト復調装置は、位相推
定誤差を小さくするために高速サンプリングで最適位相
点を抽出する蓄積一括復調方式を採る。
The above-mentioned conventional burst demodulation device adopts a collective storage demodulation method for extracting an optimum phase point by high-speed sampling in order to reduce a phase estimation error.

【0004】デジタル信号処理形復調器10は図10の
ように、まずバッファメモリからのサンプル点データ信
号12に対し、そのデータ系列から搬送波推定手段4で
搬送波を推定しデータの周波数と位相を補正する。つぎ
に周波数と位相を補正したデータ信号からタイミング推
定手段7aで推定する最適位相点(ナイキスト点に最近
の推定サンプル点)のデータだけをサンプラ7bで抽出
する。さらにデータ判定手段8で判定し復調データ信号
19として出力する。タイミング推定手段7aは、つぎ
のように最適位相点を推定する。まず2相位相シフトキ
ーイング(以下、BPSKという)の場合には、図11
のようにBPSKの受信信号を1シンボル当たり1サン
プルしたとき(実線は振幅aでシンボル周期Tの受信信
号の波形を示す。dは送信データ(−1又は1)を表
し、ここでは1,1,−1,1からなる一連の送信デー
タの例を示す。yはサンプルされた信号を表し、ここで
はy1 、y2 だけ図示する)、サンプル点が本来のナイ
キスト点からτ(0≦τ<T)だけずれていると仮定
し、サンプルされた信号yはその時刻における信号成分
と符号間干渉の成分との和で表されるが、ここでは前後
のそれぞれkシンボルまでの符号間干渉の影響があると
すると、受信フィルタのインパルス応答をつぎのように
表せば h(τ)=sin(πτ/T)・cos(πατ/T)/{(πτ/T)・(1−2ατ/T)} α:受信フィルタのロールオフ率 たとえばy1 は y1 =d1 ah(τ)+d2 ah(τ+T)+…+d
k+1 ah(τ+kT)+d0 ah(τ−T)+…+d
-k+1ah(τ−kT) となり、同様にしてm番目のサンプルされた信号ym
一般的に ym =Σlm+1 ah(τ+l T) −k≦l ≦k τ=(n−1)T/X のように表せる。また図12のようにBPSKの受信信
号を1シンボル当たりXサンプルしたとき、簡単のため
に初期位相差=0とすると、m番目におけるn(1≦n
≦X)番目の受信信号ym は一般的に ym =Σlm+1 ah{(n−1)T/X+l T} −
k≦l ≦k のように表せる。いま1バーストのシンボル数をLと
し、各シンボルにおけるそれぞれn番目のサンプルの振
幅の絶対2乗値を累積したn番目の累積値Pnは Pn=Σm |Σlm+1 ah(τ+l T)|2 1≦m≦L, −k≦l ≦k となる。ここでdj (j≦0,L+1≦j)は存在しな
いが、後での式の近似を考えてdj (j≦0,L+1≦
j)は疑似雑音(PN)パターンであるとする。つぎに
4相位相シフトキーイング(以下、QPSKという)の
場合には、同相と直流成分の2系列ありそれぞれ互いに
独立であるから、BPSKの場合と同じに求めたPnは Pn=Σm [{Σlm+1 ah(τ+l T)}2 +{Σl d■m+1 ah(τ+l T)}2 ] 1≦m≦L, −k≦l ≦k となる。ここでd、d■はそれぞれ同相と直交成分のデ
ータ系列を表す。振幅a=1とし、Lが十分大きくデー
タがランダムとすると、上式は簡単に Pn=2LΣl2 (τ+l T) =2LΣl2 {(n−1)T/X+l T} −k≦l
≦k となる。上式でPnはτ=0(n=1)の時最大となる
から、ナイキスト点をサンプルした時Pnは最大となる
が、実際の動作において初期位相差が0であるとは限ら
ないから、ナイキスト点に最も近い推定サンプル点を最
適位相点と推定する。
As shown in FIG. 10, the digital signal processing type demodulator 10 first estimates the carrier wave from the data sequence of the sample point data signal 12 from the buffer memory by the carrier wave estimating means 4 and corrects the frequency and phase of the data. To do. Next, only the data of the optimum phase point (estimated sample point most recent to the Nyquist point) estimated by the timing estimating means 7a is extracted from the data signal whose frequency and phase have been corrected by the sampler 7b. Further, it is judged by the data judging means 8 and outputted as a demodulated data signal 19. The timing estimating means 7a estimates the optimum phase point as follows. First, in the case of two-phase phase shift keying (hereinafter referred to as BPSK), FIG.
When the BPSK received signal is sampled 1 time per symbol as described above (the solid line shows the waveform of the received signal with the amplitude a and the symbol period T. d represents transmission data (-1 or 1), where 1, 1 , -1, 1, a series of transmission data consisting of y, y represents a sampled signal, only y 1 and y 2 are shown here, and the sampling point is τ (0 ≦ τ) from the original Nyquist point. The sampled signal y is represented by the sum of the signal component and the intersymbol interference component at that time, assuming that they are shifted by <T). If there is an influence, the impulse response of the reception filter can be expressed as follows: h (τ) = sin (πτ / T) ・ cos (πατ / T) / {(πτ / T) ・ (1-2ατ / T )} alpha: roll-off rate for example y 1 of the receive filter is y 1 = d 1 a (Τ) + d 2 ah ( τ + T) + ... + d
k + 1 ah (τ + kT) + d 0 ah (τ−T) + ... + d
-k + 1 ah (τ-kT ) becomes, m th sampled signal y m in the same manner as is generally y m = Σ l d m + 1 ah (τ + l T) -k ≦ l ≦ k τ = It can be expressed as (n-1) T / X. Further, when the BPSK received signal is X-sampled per symbol as shown in FIG. 12, if the initial phase difference is set to 0 for simplification, then n (1 ≦ n
≦ X) th received signal y m is generally y m = Σ l d m + 1 ah {(n-1) T / X + l T} -
It can be expressed as k≤l≤k. Now, assuming that the number of symbols in one burst is L, the n-th cumulative value Pn obtained by accumulating the absolute square value of the amplitude of the n-th sample in each symbol is Pn = Σ m | Σ l d m + 1 ah (τ + l T ) | 2 1 ≤ m ≤ L, -k ≤ l ≤ k. Here, d j (j ≦ 0, L + 1 ≦ j) does not exist, but d j (j ≦ 0, L + 1 ≦
Let j) be a pseudo noise (PN) pattern. Next, in the case of four-phase phase shift keying (hereinafter referred to as QPSK), since there are two series of in-phase and DC components and they are independent of each other, Pn obtained in the same way as in the case of BPSK is Pn = Σ m [{Σ l d m + 1 ah (τ + l T)} 2 + {Σ l d ■ m + 1 ah (τ + l T)} 2] 1 ≦ m ≦ L, the -k ≦ l ≦ k. Here, d and d ■ represent data series of in-phase and quadrature components, respectively. And amplitude a = 1, when L is sufficiently large data is random, the above equation simply Pn = 2LΣ l h 2 (τ + l T) = 2LΣ l h 2 {(n-1) T / X + l T} -k ≦ l
≤k. In the above equation, Pn is maximum when τ = 0 (n = 1), so Pn is maximum when the Nyquist point is sampled, but the initial phase difference is not always 0 in actual operation. The estimated sample point closest to the Nyquist point is estimated as the optimum phase point.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来のバ
ースト復調装置では、位相推定誤差を小さくするために
高速サンプリング(たとえばシンボル周期当たり16サ
ンプル程度以上)で最適位相点を抽出する蓄積一括復調
方式を採るから、伝送速度が高速になるとアナログ/デ
ジタル変換器は高速動作を要し、バッファメモリは膨大
な蓄積データ数となり、デジタル信号処理形復調器は演
算量が多くなる問題点があった。
In the conventional burst demodulation device as described above, the accumulated batch demodulation for extracting the optimum phase point by high-speed sampling (for example, about 16 samples or more per symbol period) in order to reduce the phase estimation error. Since the system is adopted, the analog / digital converter needs to operate at high speed when the transmission speed becomes high, the buffer memory has an enormous amount of accumulated data, and the digital signal processing type demodulator has a problem that the amount of calculation becomes large. .

【0006】この発明が解決しようとする課題は、バー
スト復調装置が負荷を軽減しかつ位相推定誤差を小さく
するように、低速サンプリングで最適位相点を抽出する
蓄積一括復調方式を提供することにある。
An object of the present invention is to provide a batch accumulation demodulation system for extracting an optimum phase point by low-speed sampling so that the burst demodulator can reduce the load and reduce the phase estimation error. .

【0007】[0007]

【課題を解決するための手段】この発明のバースト復調
装置は、上記課題を解決するため、デジタル位相変調バ
ースト受信信号を準同期検波器で準同期検波したバース
トモード変調波にアナログ/デジタル変換器で標本化と
量子化演算を施し、バッファメモリでバーストごとにす
べて一旦蓄積したサンプル点データ信号に対し、デジタ
ル信号処理形復調器でその最適位相点を抽出して復調デ
ータ信号を判定し出力するものであって、デジタル信号
処理形復調器でつぎの手段を設け、低速サンプリングで
最適位相点を抽出する蓄積一括復調方式を採ることを特
徴とする。
In order to solve the above-mentioned problems, a burst demodulation device of the present invention is an analog / digital converter for converting a burst phase modulated wave obtained by quasi-coherent detection of a digital phase modulation burst reception signal by a quasi-coherent detector. Sampling and quantizing operations are performed with, and the optimum phase point is extracted by the digital signal processing type demodulator from the sample point data signal that has been temporarily stored for each burst in the buffer memory, and the demodulated data signal is judged and output. The digital signal processing type demodulator is provided with the following means, and is characterized by adopting a storage batch demodulation method for extracting an optimum phase point by low-speed sampling.

【0008】搬送波推定手段は、バッファメモリからの
サンプル点データ信号に対し、そのデータ系列から搬送
波を推定しデータの周波数と位相を補正する。
The carrier wave estimating means estimates the carrier wave from the data series of the sample point data signal from the buffer memory and corrects the frequency and phase of the data.

【0009】補間タイミング生成手段は、直接に、また
は搬送波電力対雑音電力比測定手段を設け搬送波推定手
段から補正データ信号の平均値と分数値を求めて測定す
る搬送波電力対雑音電力比情報に対応し、搬送波推定手
段からの補正データ信号、またはバッファメモリからの
サンプル点データ信号に演算を施しナイキスト点を推定
し複数の補間タイミング情報を生成する。
The interpolation timing generating means corresponds to the carrier power to noise power ratio information measured directly or by providing the carrier power to noise power ratio measuring means and obtaining the average value and fractional value of the correction data signal from the carrier estimating means. Then, the correction data signal from the carrier wave estimating means or the sample point data signal from the buffer memory is operated to estimate the Nyquist point and generate a plurality of interpolation timing information.

【0010】データ補正手段は、補間タイミング生成手
段からの複数の補間タイミング情報で搬送波推定手段か
らの補正データ信号に補間演算を施してナイキスト点デ
ータを推定し複数の仮復調データ系列として生成する。
The data correction means performs an interpolation operation on the correction data signal from the carrier wave estimation means with a plurality of interpolation timing information from the interpolation timing generation means to estimate the Nyquist point data and generate it as a plurality of temporary demodulation data series.

【0011】タイミング決定手段は、データ補正手段か
らの複数の仮復調データ系列それぞれに対し、そのデー
タ振幅の絶対値もしくは絶対2乗値の累積加算値、その
データ振幅の絶対分散値、その既知パターン部分と所定
の既知パターンとの相関値、またはその軟判定と硬判定
とを施した軟判定データ系列と硬判定データ系列との相
関値を比較判定して復調データ系列を選択する。
The timing determining means, for each of the plurality of temporary demodulation data series from the data correcting means, the cumulative value of the absolute value or absolute square value of the data amplitude, the absolute variance value of the data amplitude, and its known pattern. A demodulation data sequence is selected by comparing and determining the correlation value between the part and a predetermined known pattern or the correlation value between the soft decision data sequence subjected to the soft decision and the hard decision and the hard decision data sequence.

【0012】データ判定手段は、タイミング決定手段か
ら復調データ系列を判定し復調データ信号として出力す
る。
The data determining means determines the demodulated data sequence from the timing determining means and outputs it as a demodulated data signal.

【0013】[0013]

【作用】この発明のバースト復調装置は上記手段で、デ
ジタル位相変調バースト受信信号から生成したサンプル
点データ信号に対し、まずそのデータ系列から搬送波を
推定しデータの周波数と位相を補正をする。つぎにその
補正データ信号に演算を施しナイキスト点を推定し複数
の補間タイミング情報を生成する。または補正データ信
号の代りにバッファメモリからのサンプル点データ信号
を用いてもよい。また補正データ信号の平均値と分散値
から測定する搬送波電力対雑音電力比に対応した補正デ
ータ信号またはサンプル点データ信号を用いてもよい。
さらに複数の補間タイミング情報で補正データ信号に補
間演算をしてナイキスト点データを推定し生成した複数
の仮復調データ系列それぞれに対し、そのデータ振幅の
絶対値もしくは絶対2乗値の累積加算値、そのデータ振
幅の絶対分散値、その既知パターン部分と所定の既知パ
ターンとの相関値、またはその軟判定と硬判定とを施し
た軟判定データ系列と硬判定データ系列との相関値を比
較判定して選択した復調データ系列を判定し復調データ
信号として出力する。
With the above means, the burst demodulator of the present invention corrects the frequency and phase of the data by estimating the carrier from the data sequence of the sample point data signal generated from the digital phase modulation burst reception signal. Next, the corrected data signal is calculated to estimate the Nyquist point and generate a plurality of interpolation timing information. Alternatively, a sample point data signal from the buffer memory may be used instead of the correction data signal. A correction data signal or sample point data signal corresponding to the carrier power to noise power ratio measured from the average value and the variance value of the correction data signal may be used.
Further, for each of a plurality of provisional demodulation data sequences generated by performing interpolation calculation on the correction data signal with a plurality of interpolation timing information and estimating Nyquist point data, the cumulative addition value of the absolute value or absolute square value of the data amplitude, The absolute variance value of the data amplitude, the correlation value between the known pattern portion and a predetermined known pattern, or the correlation value between the soft decision data series and the hard decision data series subjected to the soft decision and the hard decision is compared and determined. The selected demodulated data sequence is determined and output as a demodulated data signal.

【0014】[0014]

【実施例】この発明を示す一実施例のバースト復調装置
は図1のように、準同期検波器1とアナログ/デジタル
変換器2とバッファメモリ3と搬送波推定手段4とデー
タ判定手段8は、上記従来例の図9と図10に対応す
る。補間タイミング生成手段5は、搬送波推定手段4か
らの補正データ信号13に演算を施してナイキスト点を
推定し、補間タイミング情報14と15を生成する。デ
ータ補正手段6は、補間タイミング生成手段5からの補
間タイミング情報14と15で搬送波推定手段4からの
補正データ信号13に補間演算を施してナイキスト点デ
ータを推定し、仮復調データ系列16と17として生成
する。タイミング決定手段7は、データ補正手段6から
仮復調データ系列16と17それぞれに対し、そのデー
タ振幅の絶対値または絶対2乗値をバーストごとに累積
加算した値を比較判定して復調データ系列18を選択
し、データ判定手段8に出力する。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a burst demodulating apparatus according to an embodiment of the present invention includes a quasi-synchronous detector 1, an analog / digital converter 2, a buffer memory 3, a carrier wave estimating means 4 and a data judging means 8. It corresponds to FIG. 9 and FIG. 10 of the above conventional example. The interpolation timing generation means 5 performs an operation on the correction data signal 13 from the carrier wave estimation means 4 to estimate the Nyquist point, and generates interpolation timing information 14 and 15. The data correction means 6 interpolates the correction data signal 13 from the carrier wave estimation means 4 with the interpolation timing information 14 and 15 from the interpolation timing generation means 5 to estimate the Nyquist point data, and the temporary demodulation data series 16 and 17 are obtained. Generate as. The timing determining means 7 compares and determines the value obtained by cumulatively adding the absolute value or absolute square value of the data amplitude of each of the temporary demodulated data series 16 and 17 from the data correction means 6 for each burst, and demodulated data series 18 Is selected and output to the data determination means 8.

【0015】上記実施例のバースト復調装置は、低速サ
ンプリングで最適位相点を抽出する蓄積一括復調方式を
採る。
The burst demodulation device of the above-mentioned embodiment adopts the batch accumulation demodulation method for extracting the optimum phase point by low-speed sampling.

【0016】補間タイミング生成手段5はたとえばQP
SK時で図2のように、搬送波推定手段4からの補正デ
ータ信号13に演算を施した累積加算値Pnをナイキス
ト点からのづれτ(−T/2≦τ≦T/2)の関数と考
え正規化した累積加算値P(τ)に対してナイキスト点
を推定し、補間タイミング情報14と15を生成する。 P(τ)=2LΣL2 (τ+L T)/P(0) −k
≦L ≦k たとえば図2でシンボル周期T当たり2サンプルした1
番目と2番目の累積加算値P1とP2の比Kは、P(3
T/16)とP(11T/16)の場合とP(13T/
16)とP(21T/16)の場合とで区別がつかない
から、 P1とP2の外側にあり、P2のタイミング点よ
り5T/16だけP2の外側 P1とP2の内側にあり、P1のタイミング点よ
り3T/16だけP2側 としてナイキスト点を推定し、補間タイミング情報δ1
とδ2 14と15としてδ1 =5/8,δ2 =3/8を
生成する。
The interpolation timing generation means 5 is, for example, QP.
At SK, as shown in FIG. 2, the cumulative addition value Pn obtained by performing the calculation on the correction data signal 13 from the carrier wave estimating means 4 is a function of deviation τ (−T / 2 ≦ τ ≦ T / 2) from the Nyquist point. The Nyquist point is estimated with respect to the cumulative addition value P (τ) that is normalized and the interpolation timing information 14 and 15 is generated. P (τ) = 2LΣ L h 2 (τ + LT) / P (0) -k
≤L ≤k For example, 1 sampled by 2 samples per symbol period T in FIG.
The ratio K between the second and second cumulative addition values P1 and P2 is P (3
T / 16) and P (11T / 16) and P (13T /
16) and P (21T / 16) are indistinguishable, so they are outside P1 and P2, and outside P2 by 5T / 16 from the timing point of P2 Inside P1 and P2, and timing of P1 From the point, the Nyquist point is estimated with 3T / 16 on the P2 side, and the interpolation timing information δ 1
And δ 2 14 and 15, δ 1 = 5/8 and δ 2 = 3/8 are generated.

【0017】データ補正手段6はたとえばBPSK時で
図3のように、補間タイミング生成手段5からのδ1
δ2 で搬送波推定手段4からの補正データ信号に1次補
間(たとえば内分)または2次補間(たとえばラグラン
ジェ法)演算を施してナイキスト点データを推定し、仮
復調データ系列16と17として生成する。たとえば図
3で(m−1)シンボル目の2番目とmシンボル目の1
番目の各サンプル点データy2 (m−1)とy1 (m)
間をδ1 :(1−δ1 )で内分し、仮復調データu1
(m)を得る。同様に(m−1)シンボル目の1番目と
2番目の各サンプル点データy1 (m−1)とy2 (m
−1)間をδ2 :(1−δ2 )で内分し、仮復調データ
2 (m)を得る。u1 (m)とu2 (m)から成るデ
ータ系列をそれぞれ仮復調データ系列16と17として
生成する。 u1 (m)=(1−δ1 )×y2 (m−1)+δ1 ×y1 (m) u2 (m)=(1−δ2 )×y1 (m−1)+δ2 ×y2 (m−1)
As shown in FIG. 3, the data correction means 6 uses δ 1 and δ 2 from the interpolation timing generation means 5 to perform linear interpolation (for example, internal division) on the correction data signal from the carrier wave estimation means 4 as shown in FIG. Nyquist point data is estimated by performing a quadratic interpolation (for example, Lagrange method) operation, and is generated as temporary demodulation data series 16 and 17. For example, in FIG. 3, the second of the (m-1) th symbol and the first of the mth symbol
Th sample point data y 2 (m-1) and y 1 (m)
The interval is internally divided by δ 1 : (1−δ 1 ), and the temporary demodulation data u 1
(M) is obtained. Similarly, the first and second sample point data y 1 (m-1) and y 2 (m
-1) is internally divided by δ 2 : (1-δ 2 ) to obtain provisional demodulation data u 2 (m). Data sequences consisting of u 1 (m) and u 2 (m) are generated as temporary demodulation data sequences 16 and 17, respectively. u 1 (m) = (1-δ 1 ) × y 2 (m-1) + δ 1 × y 1 (m) u 2 (m) = (1-δ 2 ) × y 1 (m-1) + δ 2 × y 2 (m-1)

【0018】タイミング決定手段7は図4のように、デ
ータ補正手段6からの仮復調データ系列16と17それ
ぞれに対し、累積加算器71でそのデータ振幅の絶対値
または絶対2乗値をバーストごとに累積加算した値S1
とS2 を比較器72で値の大きい方を正しい系列と判定
し、選択器73で仮復調データ系列16と17のいずれ
かを復調データ系列18として選択し、データ判定手段
8に出力する。 S1 =Σm1 (m) または Σm |u1 (m)|2
1≦m≦L S2 =Σm2 (m) または Σm |u2 (m)|2
1≦m≦L
As shown in FIG. 4, the timing deciding means 7 uses a cumulative adder 71 for each of the temporary demodulated data sequences 16 and 17 from the data correcting means 6 to calculate the absolute value or absolute square value of the data amplitude for each burst. Value S 1 cumulatively added to
The comparator 72 determines that the larger value of S 2 and S 2 is the correct series, and the selector 73 selects one of the temporary demodulation data series 16 and 17 as the demodulation data series 18, and outputs it to the data judging means 8. S 1 = Σ m u 1 (m) or Σ m | u 1 (m) | 2
1 ≦ m ≦ L S 2 = Σ m u 2 (m) or Σ m | u 2 (m) | 2
1 ≦ m ≦ L

【0019】なお上記実施例でタイミング決定手段7は
図4のように、累積加算器71の代りに分散計算器71
またはパターン相関器71で演算したデータ振幅の絶対
分散値V1 とV2 または仮復調データ系列16と17の
既知パターン部分と所定の既知パターンとの相関値D1
とD2 を比較器72で値の小さい方または大きい方を正
しい系列と判定してもよい。
In the above embodiment, the timing determining means 7 has a dispersion calculator 71 instead of the cumulative adder 71 as shown in FIG.
Alternatively, the correlation value D 1 between the absolute variance values V 1 and V 2 of the data amplitude calculated by the pattern correlator 71 or the known pattern portion of the temporary demodulated data series 16 and 17 and a predetermined known pattern.
The comparator 72 may determine that the smaller value or the larger value of D 2 and D 2 is the correct series.

【0020】また上記実施例でタイミング決定手段7は
図5のように、累積加算器71の代りに軟判定器74と
硬判定器75で軟判定と硬判定とを施した軟判定データ
系列{u1 }sと{u2 }sおよび硬判定データ系列
{u1 }hと{u2 }hに相関器76で演算した相関値
1 とC2 を比較器72で値の大きい方を正しい系列と
判定してもよい。ここで軟判定データ系列とは、仮復調
データ系列の振幅を複数ビットで量子化したデータ系列
であり、硬判定データ系列とは、1ビット量子化の場合
のデータ系列である。
In the above embodiment, the timing decision means 7 has a soft-decision data sequence in which the soft-decision unit 74 and the hard-decision unit 75 perform soft-decision and hard-decision instead of the cumulative adder 71 as shown in FIG. the u 1} s and {u 2} s and the hard decision data sequence {u 1} h and {u 2} larger value by a comparator 72 correlation values C 1 and C 2 calculated in the correlator 76 h You may judge as a correct series. Here, the soft decision data sequence is a data sequence in which the amplitude of the temporary demodulation data sequence is quantized with a plurality of bits, and the hard decision data sequence is a data sequence in the case of 1-bit quantization.

【0021】また上記実施例で補間タイミング生成手段
5は図6のように、搬送波電力対雑音電力比測定手段9
を設け、搬送波推定手段4から補正データ信号の平均値
として搬送波電力(C)、分散値として雑音電力(N)
をそれぞれ求め、搬送波電力対雑音電力比(C/N)情
報20を測定し、C/N情報20に対応した累積加算値
P(τ)に対しナイキスト点を推定し、補間タイミング
情報14と15を生成してもよい。たとえばBPSK時
で図7のようにP(τ)の形状はC/Nの値に従って変
化するから、C/Nに対応するP(τ)からナイキスト
点を推定する方が雑音重畳信号に対して位相推定誤差を
小さくできる効果がある。
Further, in the above embodiment, the interpolation timing generating means 5 is a carrier power to noise power ratio measuring means 9 as shown in FIG.
Is provided, the carrier power (C) is an average value of the correction data signal from the carrier wave estimating means 4, and the noise power (N) is a dispersion value.
Respectively, the carrier power to noise power ratio (C / N) information 20 is measured, the Nyquist point is estimated with respect to the cumulative addition value P (τ) corresponding to the C / N information 20, and the interpolation timing information 14 and 15 are obtained. May be generated. For example, in BPSK, the shape of P (τ) changes according to the value of C / N as shown in FIG. 7. Therefore, it is better to estimate the Nyquist point from P (τ) corresponding to C / N with respect to the noise superimposed signal. This has the effect of reducing the phase estimation error.

【0022】また上記実施例で補間タイミング生成手段
5は、搬送波推定手段4からの補正データ信号13に演
算を施すとして説明したが、図8のようにバッファメモ
リ3からのサンプル点データ信号12に演算を施しても
よい。演算は複素平面上のサンプル点データを用いるか
ら、準同期検波による残留周波数があっても累積加算値
P(τ)は同じになる。
In the above embodiment, the interpolation timing generating means 5 is described as performing the calculation on the correction data signal 13 from the carrier wave estimating means 4, but as shown in FIG. 8, the sampling point data signal 12 from the buffer memory 3 is converted. You may perform calculation. Since the calculation uses sample point data on the complex plane, the cumulative addition value P (τ) is the same even if there is a residual frequency due to quasi-coherent detection.

【0023】また上記実施例でアナログ/デジタル変換
器2の出力に対し、波形整形をするとして説明したが、
折り返し等を考慮した受信フィルタであれば波形整形後
にアナログ/デジタル変換をしてもよいのはいうまでも
ない。
In the above embodiment, the waveform of the output of the analog / digital converter 2 is shaped.
It goes without saying that analog / digital conversion may be performed after waveform shaping as long as it is a reception filter considering folding or the like.

【0024】[0024]

【発明の効果】上記のようなこの発明のバースト復調装
置では、低速サンプル(たとえばシンボル周期当たり2
サンプル)で最適位相点を抽出する蓄積一括復調方式を
採るから、従来のように高速サンプルによる方式と比べ
負荷を軽減でき、高速伝送化に対処できる。また補間タ
イミング生成手段の導入によるサンプル数の減少で位相
推定誤差を小さくできる効果がある。
In the burst demodulator of the present invention as described above, low-speed samples (for example, 2 per symbol period) are used.
Since the collective batch demodulation method for extracting the optimum phase point by (sample) is adopted, the load can be reduced compared to the conventional method using high-speed samples, and high-speed transmission can be coped with. Further, the introduction of the interpolation timing generation means has the effect of reducing the phase estimation error by reducing the number of samples.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を示す一実施例のバースト復調装置の
機能ブロック図。
FIG. 1 is a functional block diagram of a burst demodulator according to an embodiment of the present invention.

【図2】図1に示す補間タイミング生成手段の動作を説
明する図。
FIG. 2 is a diagram for explaining the operation of the interpolation timing generation means shown in FIG.

【図3】図1に示すデータ補正手段の動作を説明する
図。
FIG. 3 is a diagram for explaining the operation of the data correction means shown in FIG.

【図4】図1に示すタイミング決定手段の機能ブロック
図。
FIG. 4 is a functional block diagram of the timing determining means shown in FIG.

【図5】図1に示すタイミング決定手段の他の一実施例
の機能ブロック図。
5 is a functional block diagram of another embodiment of the timing determining means shown in FIG.

【図6】この発明を示す搬送波電力対雑音電力比測定手
段を含む他の一実施例の機能ブロック図。
FIG. 6 is a functional block diagram of another embodiment including carrier power to noise power ratio measuring means according to the present invention.

【図7】図6に示す搬送波電力対雑音電力比測定手段の
動作を説明する図。
FIG. 7 is a diagram for explaining the operation of the carrier power to noise power ratio measuring means shown in FIG.

【図8】この発明を示す他の一実施例の機能ブロック
図。
FIG. 8 is a functional block diagram of another embodiment showing the present invention.

【図9】従来例のバースト復調装置の機能ブロック図。FIG. 9 is a functional block diagram of a conventional burst demodulator.

【図10】図9に示すデジタル信号処理形復調器の機能
ブロック図。
10 is a functional block diagram of the digital signal processing demodulator shown in FIG.

【図11】図10に示すタイミング推定手段の1シンボ
ル当たり1サンプル動作を説明する図。
FIG. 11 is a diagram for explaining one sample operation per symbol of the timing estimation means shown in FIG.

【図12】図10に示すタイミング推定手段の1シンボ
ル当たりXサンプル動作を説明する図。
FIG. 12 is a diagram for explaining an X sample operation per symbol of the timing estimating means shown in FIG.

【符号の説明】[Explanation of symbols]

1 準同期検波器 2 アナログ/デジタル変換器 3 バッファメモリ 4 搬送波推定手段 5 補間タイミング生成手段 6 データ補正手段 7 タイミング決定手段 8 データ判定手段 9 搬送波電力対雑音電力比測定手段 11 受信信号 12 サンプル点データ信号 13 補正データ信号 14,15 補間タイミング情報 16,17 仮復調データ系列 18 復調データ系列 19 復調データ信号 1 Quasi-Synchronous Detector 2 Analog / Digital Converter 3 Buffer Memory 4 Carrier Estimating Means 5 Interpolation Timing Generating Means 6 Data Correcting Means 7 Timing Determining Means 8 Data Judging Means 9 Carrier Power to Noise Power Ratio Measuring Means 11 Received Signals 12 Sample Points Data signal 13 Corrected data signal 14, 15 Interpolation timing information 16, 17 Temporary demodulated data sequence 18 Demodulated data sequence 19 Demodulated data signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 デジタル位相変調バースト受信信号から
準同期検波をしたバーストモード変調波に標本化と量子
化演算を施しバーストごとにすべてのサンプル点データ
信号を一旦蓄積する、準同期検波器とアナログ/デジタ
ル変換器およびバッファメモリと、バッファメモリから
前記サンプル点データ信号の最適位相点を抽出して復調
データ信号を判定し出力するデジタル信号処理形復調器
とを備えるバースト復調装置において、前記デジタル信
号処理形復調器で前記バッファメモリからのサンプル点
データ信号に対し、そのデータ系列から搬送波を推定し
データの周波数と位相を補正する搬送波推定手段と、搬
送波推定手段からの前記補正データ信号に演算を施して
ナイキスト点を推定し複数の補間タイミング情報を生成
する補間タイミング生成手段と、補間タイミング生成手
段からの前記複数の補間タイミング情報で前記搬送波推
定手段からの補正データ信号に補間演算を施してナイキ
スト点データを推定し複数の仮復調データ系列として生
成するデータ補正手段と、データ補正手段からの前記複
数の仮復調データ系列それぞれに対し、そのデータ振幅
の絶対値または絶対2乗値の累積加算値を比較判定して
復調データ系列を選択するタイミング決定手段と、タイ
ミング決定手段から前記復調データ系列を判定し復調デ
ータ信号として出力するデータ判定手段とを設けること
を特徴とするバースト復調装置。
1. A quasi-synchronous detector and analog for temporarily storing all sample point data signals for each burst by subjecting a burst mode modulated wave obtained by quasi-coherent detection from a digital phase modulation burst reception signal to sampling and quantization operations. A digital signal processing type demodulator for extracting a optimum phase point of the sample point data signal from the buffer memory and judging and outputting a demodulated data signal from the buffer memory; The processing type demodulator estimates carrier wave from the data sequence of the sample point data signal from the buffer memory and corrects the frequency and phase of the data, and calculates the corrected data signal from the carrier wave estimating means. Interpolation timing for applying multiple Nyquist points and generating multiple interpolation timing information Generating means and data correcting means for performing interpolation calculation on the correction data signal from the carrier wave estimating means with the plurality of interpolation timing information from the interpolation timing generating means to estimate Nyquist point data and generating as a plurality of temporary demodulation data series. Timing determination means for comparing and judging the cumulative addition value of the absolute value or absolute square value of the data amplitude of each of the plurality of temporary demodulated data series from the data correction means, and selecting the demodulated data series; A burst demodulation device, comprising: data determining means for determining the demodulated data sequence from the determining means and outputting it as a demodulated data signal.
【請求項2】 タイミング決定手段でデータ補正手段か
らの複数の仮復調データ系列それぞれに対し、その絶対
分散値、その既知パターン部分と所定の既知パターンと
の相関値、またはその軟判定と硬判定とを施した軟判定
データ系列と硬判定データ系列との相関値を比較判定し
て復調データ系列を選択することを特徴とする請求項1
記載のバースト復調装置。
2. An absolute variance value, a correlation value between a known pattern portion and a predetermined known pattern, or a soft decision and a hard decision for each of a plurality of temporary demodulation data sequences from the data correction means by the timing decision means. The demodulation data sequence is selected by comparing and determining correlation values between the soft decision data sequence and the hard decision data sequence subjected to.
The burst demodulator described.
【請求項3】 補間タイミング生成手段で搬送波推定手
段から補正データ信号の平均値と分散値を算出し搬送波
電力対雑音電力比を測定する搬送波電力対雑音電力比測
定手段を設け、該搬送波電力対雑音電力比情報に対応し
た入力信号に演算を施すことを特徴とする請求項1また
は2記載のバースト復調装置。
3. A carrier power to noise power ratio measuring means for calculating an average value and a variance value of the correction data signal from the carrier wave estimating means in the interpolation timing generating means and measuring a carrier power to noise power ratio is provided. The burst demodulator according to claim 1 or 2, wherein an operation is performed on an input signal corresponding to the noise power ratio information.
【請求項4】 補間タイミング生成手段で搬送波推定手
段からの補正データ信号の代りにバッファメモリからの
サンプル点データ信号に演算を施すことを特徴とする請
求項1、2または3記載のバースト復調装置。
4. The burst demodulator according to claim 1, 2 or 3, wherein the interpolation timing generation means calculates the sampling point data signal from the buffer memory instead of the correction data signal from the carrier wave estimating means. .
JP04234752A 1992-09-02 1992-09-02 Demodulator Expired - Fee Related JP3111680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04234752A JP3111680B2 (en) 1992-09-02 1992-09-02 Demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04234752A JP3111680B2 (en) 1992-09-02 1992-09-02 Demodulator

Publications (2)

Publication Number Publication Date
JPH0685859A true JPH0685859A (en) 1994-03-25
JP3111680B2 JP3111680B2 (en) 2000-11-27

Family

ID=16975802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04234752A Expired - Fee Related JP3111680B2 (en) 1992-09-02 1992-09-02 Demodulator

Country Status (1)

Country Link
JP (1) JP3111680B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194541A (en) * 1995-01-20 1996-07-30 Yaskawa Electric Corp Position controller
WO2002009315A1 (en) * 2000-07-24 2002-01-31 Mitsubishi Denki Kabushiki Kaisha Receiving apparatus and receiving method for radio communication
US6354313B1 (en) * 1998-03-05 2002-03-12 Micron Technology, Inc. Apparatus for rinsing and drying semiconductor wafers in a chamber with a movable side wall

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194541A (en) * 1995-01-20 1996-07-30 Yaskawa Electric Corp Position controller
US6354313B1 (en) * 1998-03-05 2002-03-12 Micron Technology, Inc. Apparatus for rinsing and drying semiconductor wafers in a chamber with a movable side wall
US6383304B1 (en) 1998-03-05 2002-05-07 Micron Technology, Inc. Method of rinsing and drying semiconductor wafers in a chamber with a movable side wall
US6460554B2 (en) 1998-03-05 2002-10-08 Micron Technology, Inc. Apparatus for rinsing and drying semiconductor wafers in a chamber with a movable side wall
WO2002009315A1 (en) * 2000-07-24 2002-01-31 Mitsubishi Denki Kabushiki Kaisha Receiving apparatus and receiving method for radio communication

Also Published As

Publication number Publication date
JP3111680B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
EP0601605B1 (en) Clock recovery circuit of a demodulator
EP1158739B1 (en) Timing reproducer and demodulator comprising the same
EP2420032B1 (en) Non-coherent detection apparatus and method for ieee 802.15.4 lr-wpan bpsk receiver
JP3237827B2 (en) Wireless data communication terminal
RU2396724C2 (en) Methods and device for detection of time connection in system of wireless communication
JP3179267B2 (en) Filter and carrier phase estimating apparatus using the filter
US8755760B2 (en) Radio receiver, radio communication system, radio communication method, and program
CN113132285A (en) Digital demodulation system and method
US5892803A (en) Determination of symbol sample timing using soft decisions
US5995572A (en) Method for measuring frequency shift in digital communications using synchronization sequence and channel step response
JP3792098B2 (en) Timing reproducing apparatus, demodulating apparatus and timing reproducing method using the same
TW201123790A (en) System for selecting sample phase based on channel capacity
US6874096B1 (en) Apparatus and method for detecting packet arrival time
JPH0685859A (en) Burst demodulator
EP1780931A2 (en) Reception apparatus and method
US20030235257A1 (en) Apparatus and method for receiving digital signal
JPH09214574A (en) Phase detector for data synchronization device and its operating method
US20030112908A1 (en) Multi-interpolated data recovery with a relative low sampling rate
US6940926B1 (en) Digital phase/frequency detector
US7092467B2 (en) Method for estimating symbol timing in feed-forward manner
Tibenderana et al. Low-complexity high-performance GFSK receiver with carrier frequency offset correction
CN116405354B (en) Carrier frequency offset estimation method, device, chip and computer readable storage medium
JPH10308785A (en) Tdma data receiver
JP2938289B2 (en) Synchronous detection circuit
JP3064831B2 (en) Symbol identification point detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees