JPH0685326B2 - Alkaline zinc secondary battery - Google Patents
Alkaline zinc secondary batteryInfo
- Publication number
- JPH0685326B2 JPH0685326B2 JP58004355A JP435583A JPH0685326B2 JP H0685326 B2 JPH0685326 B2 JP H0685326B2 JP 58004355 A JP58004355 A JP 58004355A JP 435583 A JP435583 A JP 435583A JP H0685326 B2 JPH0685326 B2 JP H0685326B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- battery
- active material
- layer
- dendrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明はニツケル−亜鉛電池や銀−亜鉛電池の如く陰極
活物質として亜鉛を用いるアルカリ亜鉛二次電池に係
り、特に亜鉛極の改良に関するものである。The present invention relates to an alkaline zinc secondary battery using zinc as a cathode active material such as nickel-zinc battery or silver-zinc battery, and more particularly to improvement of zinc electrode. It is a thing.
(ロ)従来技術 この種電池において陰極活物質として用いられる亜鉛は
単位重量当りのエネルギー密度が大きく、且低価格であ
るという利点を有するものの、充電の際亜鉛極上にデン
ドライト(樹枝状亜鉛)が成長しこれが陽極と接して内
部短絡を引起し電池寿命を縮めるという欠点を有してい
た。(B) Conventional technology Although zinc used as a cathode active material in this type of battery has the advantages that it has a large energy density per unit weight and a low cost, dendrite (dendritic zinc) is not formed on the zinc electrode during charging. It has grown, and it has a defect that it contacts the anode and causes an internal short circuit, which shortens the battery life.
このような問題に対処するために、従来では亜鉛活物質
層の表面に種々のデンドライト防止層を形成することが
提案されている。In order to deal with such a problem, it has been conventionally proposed to form various dendrite prevention layers on the surface of the zinc active material layer.
第1の例としては亜鉛活物質層の表面に、カドミウム、
カドミウム化合物或いはそれらの混合物を主体とするデ
ンドライト防止層を形成することである。As a first example, on the surface of the zinc active material layer, cadmium,
This is to form a dendrite prevention layer mainly composed of a cadmium compound or a mixture thereof.
カドミウムは亜鉛より貴な酸化還元電位を有しているた
め充電時には亜鉛活物質層の表面が緻密な金属カドミウ
ム層で覆われることになり、金属亜鉛のデンドライト成
長を防止することができると共に放電時においても未だ
金属状態で存在するカドミウムの緻密な層がデンドライ
トの要因となる亜鉛酸イオンの溶出を抑制しうるため亜
鉛極の性能を改善しうる利点がある。Since cadmium has a redox potential more noble than that of zinc, the surface of the zinc active material layer is covered with a dense metal cadmium layer during charging, which can prevent dendrite growth of metal zinc and discharge. In this case, since the dense layer of cadmium which is still present in the metallic state can suppress the elution of zincate ion which causes dendrite, there is an advantage that the performance of the zinc electrode can be improved.
ところが、長期にわたる充放電サイクルの繰返しによ
り、亜鉛活物質層が徐々に膨張して表面のカドミウム単
独層が徐々にカドミウムと亜鉛との混合物層となつて前
述せるカドミウム単独層における効果が低下してしまう
ことがわかつた。However, due to repeated charge and discharge cycles over a long period of time, the zinc active material layer gradually expanded and the surface cadmium single layer gradually became a mixture layer of cadmium and zinc, and the effect in the cadmium single layer described above decreased. I knew it would happen.
又、第2の例としては亜鉛活物質層の表面にカーボンを
主体とするデンドライト防止層を形成することである。
カーボンは導電性を向上させると共に触媒作用により金
属亜鉛のデンドライトと接してこれを酸化物或いは水酸
化物に変化させて内部短絡を防止するというものであ
る。A second example is to form a dendrite prevention layer mainly containing carbon on the surface of the zinc active material layer.
Carbon improves electrical conductivity, and catalytically contacts the dendrite of metallic zinc to change it to an oxide or hydroxide to prevent an internal short circuit.
しかし、この場合においてもカーボン層は多孔体である
ため放電時における亜鉛酸イオンの溶出を防止すること
ができず必然的に亜鉛極の形状変化をもたらし、且活物
質の容量の低下を招く。However, even in this case, since the carbon layer is a porous body, it is not possible to prevent the elution of zincate ions during discharge, which inevitably causes a change in the shape of the zinc electrode and also causes a decrease in the capacity of the active material.
更に、第3の例としては亜鉛活物質層の表面に水酸化カ
ルシウムなどのアルカリ土類金属の水酸化物を主体とす
るデンドライト防止層を形成することである。この方法
は水酸化カルシウムが亜鉛酸イオンと下式(i)の如く
反応して遊離の亜鉛酸イオンを抑制するものである。A third example is to form a dendrite prevention layer mainly containing a hydroxide of an alkaline earth metal such as calcium hydroxide on the surface of the zinc active material layer. In this method, calcium hydroxide reacts with zincate ions as shown in the following formula (i) to suppress free zincate ions.
Ca(OH)2+Zn(OH)2- 4→CaZn(OH)4 +2OH- ……(i) しかしながら上式(i)で明らかなように亜鉛酸イオン
1モルに対して水酸化カルシウムも1モル要するため放
電時に溶解してくる亜鉛酸イオンを全て固定するために
は少くとも亜鉛酸イオンと等モルの水酸化カルシウムが
必要となり、その結果として亜鉛極中の水酸化カルシウ
ムの量が増大して電池容量の低下を招く。Ca (OH) 2 + Zn ( OH) 2- 4 → CaZn (OH) 4 + 2OH - ...... (i) , however the calcium hydroxide with respect to the above formula (i) in apparent zincate ion 1 mole to be Since 1 mol is required, at least equimolar calcium hydroxide with zincate ions is required to fix all zincate ions dissolved during discharge, and as a result, the amount of calcium hydroxide in the zinc electrode increases. As a result, the battery capacity is reduced.
(ハ)発明の目的 本発明は上記従来技術の問題点を抑制しこの種電池のサ
イクル特性向上を目的とする。(C) Object of the Invention The present invention aims to suppress the problems of the above-mentioned conventional techniques and improve the cycle characteristics of this type of battery.
(ニ)発明の構成 本発明は上記目的を達成すべくなされたものでありその
要旨とするところは、亜鉛活物質層の表面にポリアセチ
レンを添加したデンドライト防止層を形成したる亜鉛極
を備えたアルカリ亜鉛二次電池を提案するものである。(D) Structure of the Invention The present invention has been made to achieve the above object, and the gist thereof is to provide a zinc electrode forming a dendrite-preventing layer to which polyacetylene is added on the surface of a zinc active material layer. It proposes an alkaline zinc secondary battery.
(ホ)実施例 第1図は本発明電池の縦断面図を示し、(1)は亜鉛活
物質層(2)の表面にポリアセチレンを添加したデンド
ライト防止層(3)を形成したる亜鉛極であり、その詳
細については後述する。(E) Example FIG. 1 shows a vertical cross-sectional view of a battery of the present invention. (1) is a zinc electrode forming a dendrite prevention layer (3) in which polyacetylene is added to the surface of a zinc active material layer (2). Yes, the details will be described later.
(5)は例えばニツケル−カドミウム電池において一般
的に用いられている焼結式ニツケル極、(6)は保液
層、(7)はセパレータ、(8)(9)は陰陽極外部端
子、(10)は電槽、(11)は電槽蓋である。(5) is a sintered nickel electrode generally used in nickel-cadmium batteries, (6) is a liquid-retaining layer, (7) is a separator, (8) and (9) are negative and positive electrode external terminals, ( 10) is a battery case and (11) is a battery case cover.
亜鉛極の作成: 例1、亜鉛活物質層(2)は酸化亜鉛100部と酸化水銀
5部との混合粉末にポリテトラフルオロエチレン分散液
5〜10部を加え水で希釈してのち混練し、この混練物を
数回ロール掛けして所定厚みの亜鉛活物質シートを作成
し、これを陰極集電板(4)の両面に圧着したものであ
る。Preparation of Zinc Electrode: Example 1, Zinc active material layer (2) was mixed with 100 parts of zinc oxide and 5 parts of mercury oxide, 5 to 10 parts of polytetrafluoroethylene dispersion was added to water, diluted with water, and then kneaded. The kneaded product is rolled several times to form a zinc active material sheet having a predetermined thickness, and the zinc active material sheet is pressed onto both surfaces of the cathode current collector (4).
次にポリアセチレン粉末10部と酸化カドミウム10部との
混合粉末にポリテトラフルオロエチレン分散液2〜5部
を加え水で希釈したのち混練し、この混練物を数回ロー
ル掛してシート状とし、これを上記亜鉛活物質層の表面
に圧着してデンドライト防止層を形成する。Next, 2 to 5 parts of polytetrafluoroethylene dispersion was added to a mixed powder of 10 parts of polyacetylene powder and 10 parts of cadmium oxide, diluted with water and kneaded, and the kneaded product was rolled several times to form a sheet, This is pressed onto the surface of the zinc active material layer to form a dendrite prevention layer.
この亜鉛極を用いた電池をAとし、デンドライト防止層
にポリアセチレンを添加しない比較電池をA′とする。A battery using this zinc electrode is designated as A, and a comparative battery in which polyacetylene is not added to the dendrite prevention layer is designated as A '.
例2、亜鉛活物質層は例1と同様である。Example 2, the zinc active material layer is the same as in Example 1.
次にポリアセチレン粉末30部とカーボン粉末70部との混
合粉末にポリテトラフルオロエチレン分散液5〜10部を
加え水で希釈したのち混練し、この混練物を数回ロール
掛してシート状とし、これを亜鉛活物質層の表面に圧着
してデンドライト防止層を形成する。Next, 5 to 10 parts of polytetrafluoroethylene dispersion is added to a mixed powder of 30 parts of polyacetylene powder and 70 parts of carbon powder, diluted with water and kneaded, and the kneaded product is rolled several times to form a sheet, This is pressed onto the surface of the zinc active material layer to form a dendrite prevention layer.
この亜鉛極を用いた電池をBとし、デンドライト防止層
にポリアセチレンを添加しない比較電池をB′とする。A battery using this zinc electrode is designated as B, and a comparative battery in which polyacetylene is not added to the dendrite prevention layer is designated as B '.
例3、亜鉛活物層は例1と同様である。Example 3 and the zinc active material layer are the same as in Example 1.
次にポリアセチレン粉末10部と水酸化カルシウム10部と
の混合粉末にポリテトラフルオロエチレン分散液10部を
加え水で希釈したのち混練し、この混練物を数回ロール
掛してシート状とし、これを亜鉛活物質層の表面に圧着
してデンドライト防止層を形成する。Next, 10 parts of polytetrafluoroethylene dispersion was added to 10 parts of mixed powder of polyacetylene powder and 10 parts of calcium hydroxide, diluted with water and kneaded, and then the kneaded product was rolled several times to form a sheet, To the surface of the zinc active material layer to form a dendrite prevention layer.
この亜鉛極を用いた電池をCとし、デンドライト防止層
にポリアセチレンを添加しない電池をC′とする。A battery using this zinc electrode is designated as C, and a battery in which polyacetylene is not added to the dendrite prevention layer is designated as C '.
第2図はこれら電池のサイクル特性比較図であり、サイ
クル条件は0.25C電流で4時間充電、0.25C電流で3時間
放電とし、初期容量を100%としてサイクル数に伴う電
池容量の変化を示した。Fig. 2 is a comparison diagram of the cycle characteristics of these batteries. The cycle conditions are as follows: 0.25C current is charged for 4 hours and 0.25C current is discharged for 3 hours. The initial capacity is 100% and the battery capacity changes with the number of cycles. It was
(ヘ)発明の効果 第2図より本発明電池(A)(B)(C)によれば、比
較電池(A)′(B)′(C)′に比してサイクル特性
が向上していることがわかる。(F) Effect of the invention As shown in FIG. 2, the batteries (A), (B) and (C) of the present invention have improved cycle characteristics as compared with the comparative batteries (A) '(B)' (C) '. You can see that
この理由を考察すると、本発明において亜鉛極表面に形
成せるデンドライト防止層に添加したポリアセチレン
(CH)nは、水酸化カリウム、水酸化ナトリウム或いは
水酸化リチウムなどのアルカリ電解液中のアルカリ金属
(カリウム、ナトリウム、リチウム)と下式(ii)の如
く反応して層間化合物を形成する。Considering the reason for this, in the present invention, polyacetylene (CH) n added to the dendrite prevention layer formed on the zinc electrode surface is an alkali metal (potassium) such as potassium hydroxide, sodium hydroxide or lithium hydroxide in an alkaline electrolyte. , Sodium, lithium) as shown in the following formula (ii) to form an intercalation compound.
(CH)n+xMe+→(CH)n・xMe …(ii) (ポリアセチレン〕〔アルカリ金属〕〔層間化合物〕 そしてこの層間化合物が下式(iii)の如く亜鉛酸イオ
ンと反応する。(CH) n + xMe + → (CH) n · xMe (ii) (polyacetylene) [alkali metal] [intercalation compound] This intercalation compound reacts with zincate ions as in the following formula (iii).
Zn(OH)-- 4+CH)n・xMe→Zn+(CH)n・(x−2)Me+2
Me-+4OH- ……(iii) 即ち、ポリアセチレンを添加することにより、各種のデ
ンドライト防止層単独では十分に阻止しえなかつた亜鉛
酸イオンの電解液中への拡散を更に抑制することができ
るため、デンドライトの成長が抑えられこの種電池のサ
イクル特性の向上が計れるものでありその工業的価値は
極めて大である。 Zn (OH) - 4 + CH ) n · xMe → Zn + (CH) n · (x-2) Me + 2
Me − + 4OH − (iii) That is, by adding polyacetylene, it is possible to further suppress the diffusion of zincate ions into the electrolytic solution, which cannot be sufficiently blocked by various dendrite prevention layers alone. Therefore, the growth of dendrites can be suppressed and the cycle characteristics of this type of battery can be improved, and its industrial value is extremely large.
第1図は本発明電池の縦断面図、第2図はサイクル特性
比較図を夫々示す。 (1)…亜鉛極、(2)…亜鉛活物質層、(3)…ポリ
アセチレンを添加したデンドライト防止層、(5)…ニ
ツケル極、(6)…保液層、(7)…セパレータ、(1
0)…電槽、(11)…電槽蓋、(A)(B)(C)…本
発明電池、(A)′(B)′(C)′…比較電池。FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIG. 2 is a cycle characteristic comparison diagram. (1) ... Zinc electrode, (2) ... Zinc active material layer, (3) ... Polyacetylene-added dendrite prevention layer, (5) ... Nickel electrode, (6) ... Liquid retaining layer, (7) ... Separator, ( 1
0) ... battery case, (11) ... battery case lid, (A) (B) (C) ... battery of the present invention, (A) '(B)' (C) '... comparative battery.
Claims (2)
加したデンドライト防止層を形成したる亜鉛極を備えた
アルカリ亜鉛二次電池。1. An alkaline zinc secondary battery provided with a zinc electrode having a dendrite prevention layer having polyacetylene added to the surface of a zinc active material layer.
ドミウム化合物、カーボン或いはアルカリ土類金属の水
酸化物のうち少くとも一つを主体として構成されている
特許請求の範囲第項記載のアルカリ亜鉛二次電池。2. The alkaline zinc secondary material according to claim 1, wherein the dendrite prevention layer is mainly composed of at least one of cadmium, a cadmium compound, carbon or a hydroxide of an alkaline earth metal. battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58004355A JPH0685326B2 (en) | 1983-01-14 | 1983-01-14 | Alkaline zinc secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58004355A JPH0685326B2 (en) | 1983-01-14 | 1983-01-14 | Alkaline zinc secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59128761A JPS59128761A (en) | 1984-07-24 |
JPH0685326B2 true JPH0685326B2 (en) | 1994-10-26 |
Family
ID=11582089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58004355A Expired - Lifetime JPH0685326B2 (en) | 1983-01-14 | 1983-01-14 | Alkaline zinc secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0685326B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2872639A1 (en) * | 2012-04-13 | 2013-10-17 | PolyJoule, Inc. | Devices and methods including polyacetylenes |
-
1983
- 1983-01-14 JP JP58004355A patent/JPH0685326B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS59128761A (en) | 1984-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4084047A (en) | Stable alkaline zinc electrode | |
CA1121448A (en) | Cell having improved chargeability by oxidation of lower manganese oxides | |
US3288642A (en) | Rechargeable dry cell having gelled electrolyte | |
US3236690A (en) | Rechargeable alkaline cell and liquid phase-containing amalgam anode therefor | |
US3201279A (en) | Batteries | |
JPH0685326B2 (en) | Alkaline zinc secondary battery | |
JPH0582022B2 (en) | ||
JPS6081777A (en) | Nickel-zinc battery | |
JPH0690926B2 (en) | Alkaline zinc secondary battery | |
JP2578633B2 (en) | Zinc electrode for alkaline storage batteries | |
JPS58198855A (en) | Alkaline zinc secondary battery | |
JPH071695B2 (en) | Alkaline zinc storage battery | |
JPS63158749A (en) | Zinc electrode for alkaline storage battery | |
JPS6084768A (en) | Alkaline zinc storage battery | |
JP2762730B2 (en) | Nickel-cadmium storage battery | |
JPH073793B2 (en) | Alkaline zinc storage battery | |
JPS63124367A (en) | Alkaline zinc storage battery | |
JPH0560220B2 (en) | ||
JPH0685321B2 (en) | Alkaline zinc storage battery | |
JPS62108467A (en) | Alkaline zinc storage battery | |
JPS58137963A (en) | Alkaline zinc storage battery | |
JPH0544142B2 (en) | ||
JPH0252386B2 (en) | ||
JPH0584024B2 (en) | ||
JPS58197664A (en) | Alkaline zinc secondary battery |