JPH0685318A - Manufacture of light emitting diode array chip - Google Patents

Manufacture of light emitting diode array chip

Info

Publication number
JPH0685318A
JPH0685318A JP25895292A JP25895292A JPH0685318A JP H0685318 A JPH0685318 A JP H0685318A JP 25895292 A JP25895292 A JP 25895292A JP 25895292 A JP25895292 A JP 25895292A JP H0685318 A JPH0685318 A JP H0685318A
Authority
JP
Japan
Prior art keywords
light emitting
diffusion
chip
emitting diode
blocking film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25895292A
Other languages
Japanese (ja)
Inventor
Kazuhiro Oki
一宏 大木
Yuji Tomizuka
雄二 富塚
Michiro Kozutsumi
三千郎 小堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25895292A priority Critical patent/JPH0685318A/en
Publication of JPH0685318A publication Critical patent/JPH0685318A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Led Devices (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Dicing (AREA)

Abstract

PURPOSE:To provide a light emitting diode array chip capable of high-density integration of light emitting elements without light emission property lowering even in the endmost light emitting part. CONSTITUTION:The surface of an epitaxial wafer 10 is covered with a first diffusion check film 12 equipped with a diffusion window, and also a second diffusion blocking film is provided on the surface of the epitaxial wafer 10 where the endmost light emitting part is formed. The second diffusion blocking film is different in quality from the first diffusion blocking film 12, and it can be removed selectively by etching. A light emitting part including the endmost light emitting part is formed by diffusing impurities into an epitaxial layer 11b through the diffusion window. Hereby, the second diffusion check film restrains a p-type semiconductor region 17 from being formed around a chip in thermal diffusion process. Therefore, the endmost light emitting part never becomes conductive with a board 1a through a crystal defect being introduced into the end face of the chip at dicing, and the injected current is used for recombination light emission with high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LEDプロッター等に
使用される高解像度の発光ダイオードアレイチップを製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a high resolution light emitting diode array chip used for an LED plotter or the like.

【0002】[0002]

【従来の技術】電子写真式のプロッターは、一定のピッ
チで複数の発光素子を基板上に形成した発光ダイオード
アレイを光源として使用している。従来の発光ダイオー
ドアレイチップは、たとえば図1に示すように、基板1
1a表面にn型GaAsPのエピタキシャル層11bを
成長させたエピタキシャルウエハ10を使用する。エピ
タキシャル層11bの上に、拡散阻止膜12を選択拡散
マスクとして使用し熱拡散法によってp型半導体領域を
形成して発光部13としている。個々の発光部13に電
極部14が設けられた後、エピタキシャルウエハ10が
ダイシングによって各チップに切断される。
2. Description of the Related Art An electrophotographic plotter uses, as a light source, a light emitting diode array having a plurality of light emitting elements formed on a substrate at a constant pitch. A conventional light emitting diode array chip has a substrate 1 as shown in FIG.
An epitaxial wafer 10 having an n-type GaAsP epitaxial layer 11b grown on the surface 1a is used. A p-type semiconductor region is formed on the epitaxial layer 11b by a thermal diffusion method using the diffusion blocking film 12 as a selective diffusion mask to form a light emitting portion 13. After the electrode portion 14 is provided on each light emitting portion 13, the epitaxial wafer 10 is cut into each chip by dicing.

【0003】通常の発光ダイオードアレイは、解像度2
00〜400ドット/インチの発光ダイオード64〜2
56個を一つのチップ内に集積している。最近では、印
画品質を向上させるため、更に解像度を向上させた発光
ダイオードアレイが要求されている。この点から、特に
400ドット/インチ以上の高解像度をもった発光ダイ
オードを高い歩留りで製造できる技術が必要とされてい
る。
A typical light emitting diode array has a resolution of 2
Light emitting diode 64-2 of 00-400 dots / inch
56 pieces are integrated in one chip. Recently, in order to improve print quality, a light emitting diode array having further improved resolution is required. From this point, there is a need for a technique capable of manufacturing a light emitting diode having a high resolution of 400 dots / inch or more with a high yield.

【0004】[0004]

【発明が解決しようとする課題】従来の方法によって製
造した400ドット/インチ以上の高解像度をもつ発光
ダイオードでは、図2(a)に示すようにアレイ最端発
光部に著しい発光出力の低下がみられる。この点、個々
の発光部の隣接間距離が比較的大きな400ドット/イ
ンチ未満の解像度が低い発光ダイオードでは、図2
(b)に示すように、個々の発光部は、アレイ最端で低
下することがなく、何れの発光部も等しい発光出力をも
つ。
In the light emitting diode having a high resolution of 400 dots / inch or more manufactured by the conventional method, the light emitting output is remarkably lowered at the light emitting portion at the end of the array as shown in FIG. 2 (a). Seen. In this regard, in a light emitting diode having a low resolution of less than 400 dots / inch, which has a relatively large distance between adjacent light emitting portions,
As shown in (b), the individual light emitting units do not decrease at the end of the array, and all the light emitting units have the same light emission output.

【0005】アレイ最端発光部の発光出力が図2(a)
に示すように低下した発光ダイオードアレイチップをプ
リンター等に使用すると、印字品質を劣化させる原因と
なる。アレイ最端発光部における発光出力低下は、解像
度を向上させるため小さなピッチで多数の発光部を配列
させるほど顕著に現れる。そのため、不良品発生率が高
く、発光ダイオードアレイチップの生産コストを上昇さ
せる原因となっている。本発明は、このような問題を解
消すべく案出されたものであり、チップ外周端部におけ
るp型半導体領域の形成を別途の拡散阻止膜で抑制する
ことにより、アレイ端部での発光出力低下が生じない発
光ダイオードアレイチップを高い歩留りで製造すること
を目的とする。
The emission output of the light emitting portion at the end of the array is shown in FIG.
If the deteriorated LED array chip is used in a printer or the like as shown in (4), it may cause deterioration of print quality. The decrease in the light emission output at the light emitting portion at the end of the array becomes more remarkable as a large number of light emitting portions are arranged at a small pitch in order to improve the resolution. Therefore, the defective product generation rate is high, which causes an increase in the production cost of the light emitting diode array chip. The present invention has been devised to solve such a problem, and by suppressing the formation of the p-type semiconductor region at the outer peripheral edge of the chip by a separate diffusion blocking film, the light emission output at the edge of the array is suppressed. It is an object of the present invention to manufacture a light-emitting diode array chip that does not deteriorate with a high yield.

【0006】[0006]

【課題を解決するための手段】本発明の発光ダイオード
アレイチップ製造方法は、その目的を達成するため、拡
散窓を備えた第1の拡散阻止膜でエピタキシャルウエハ
の表面を覆うと共に、最端発光部が形成される前記エピ
タキシャルウエハのチップ周辺部に前記第1の拡散阻止
膜とは材質が異なる第2の拡散阻止膜を設け、前記拡散
窓を介してエピタキシャル層に不純物を拡散させて発光
部となるp型半導体領域を形成することを特徴とするを
特徴とする。
In order to achieve the object, a method of manufacturing a light emitting diode array chip according to the present invention covers the surface of an epitaxial wafer with a first diffusion blocking film having a diffusion window, and emits the outermost light. A second diffusion blocking film made of a material different from that of the first diffusion blocking film is provided around the chip of the epitaxial wafer in which a portion is formed, and impurities are diffused into the epitaxial layer through the diffusion window to emit light. It is characterized in that a p-type semiconductor region is formed.

【0007】[0007]

【作 用】従来の発光ダイオードアレイにおいて、アレ
イ端部に位置する発光部の発光出力が低下する理由は、
次のように考えられる。通常、熱拡散法,イオン注入法
等によってp型半導体領域を形成する際、図3に示すよ
うに発光部14だけでなく、チップ外周部15にもp型
半導体領域17が形成される。また、発光部13のp型
半導体領域は、深さXj に対して1〜1.5倍の距離Y
j だけ横方向にも広がり、拡散阻止膜12の下へも侵入
する。
[Operation] In the conventional light emitting diode array, the reason why the light emission output of the light emitting section located at the end of the array is lowered is
It can be considered as follows. Usually, when the p-type semiconductor region is formed by a thermal diffusion method, an ion implantation method or the like, the p-type semiconductor region 17 is formed not only in the light emitting portion 14 but also in the chip outer peripheral portion 15 as shown in FIG. The p-type semiconductor region of the light emitting portion 13 has a distance Y that is 1 to 1.5 times the depth X j .
It spreads in the lateral direction by j , and penetrates under the diffusion blocking film 12.

【0008】他方、ダイシングによる発光ダイオードア
レイチップの切出しは、図4に示すように高速回転して
いるダイシングブレード18をウエハーに接触させてチ
ップ外周部15を研削することによって行われる。その
ため、ウエハーの切断面19には、結晶欠陥層20が導
入される。したがって、切り出された後のウエハーにお
いて、チップ外周部15にあるp型半導体領域17は、
結晶欠陥層20を介して基板11aと電気的に短絡した
状態になる。
On the other hand, the cutting of the light emitting diode array chip by dicing is performed by bringing the dicing blade 18 rotating at high speed into contact with the wafer and grinding the chip outer peripheral portion 15 as shown in FIG. Therefore, the crystal defect layer 20 is introduced into the cut surface 19 of the wafer. Therefore, in the wafer after being cut out, the p-type semiconductor region 17 in the chip outer peripheral portion 15 is
The substrate 11a is electrically short-circuited via the crystal defect layer 20.

【0009】また、発光ダイオードアレイチップの短辺
方向の端部となる切断面19は、プリンター等に実装し
た状態では、図5に示すように隣接する発光ダイオード
アレイチップ21,22の継ぎ目部分23に相当する。
この継ぎ目部分23においても最端発光部24,25が
所定のピッチで配列される必要があることから、チップ
端部26,27は最端発光部24,25のごく近傍に位
置する。図6に示す最端発光部24からチップ端部26
までの距離Lは、発光ダイオードアレイの解像度、すな
わち線密度が高くなるほど短くなる。特に400ドット
/インチ以上の解像度をもつ発光ダイオードアレイで
は、距離Lが極めて短いため、チップ外周部に形成され
ているp型半導体領域17に最端発光部24が接触して
しまう。
Further, the cut surface 19 which is the end portion in the short side direction of the light emitting diode array chip has a joint portion 23 of the adjacent light emitting diode array chips 21 and 22 as shown in FIG. 5 when mounted on a printer or the like. Equivalent to.
Also in this joint portion 23, since the outermost light emitting portions 24 and 25 need to be arranged at a predetermined pitch, the chip end portions 26 and 27 are located very close to the outermost light emitting portions 24 and 25. From the endmost light emitting portion 24 to the tip end portion 26 shown in FIG.
The distance L to becomes shorter as the resolution of the light emitting diode array, that is, the higher the linear density becomes. Particularly in a light emitting diode array having a resolution of 400 dots / inch or more, the distance L is extremely short, so that the end light emitting portion 24 comes into contact with the p-type semiconductor region 17 formed on the outer peripheral portion of the chip.

【0010】このような最端発光部24,25において
は、駆動のために注入された電流が発光に寄与すること
なく、チップ外周部に形成されているp型半導体領域1
7及び結晶欠陥層20を介して基板11aに至る。その
結果、最端発光部24に限って、図2(a)に示した発
光出力の低下がみられる。本発明においては、図7に示
すように、拡散阻止膜12とは異なる材質でできた拡散
阻止膜28をチップ外周部に設けることにより、発光出
力を低下させる原因となるp型半導体領域17の形成を
抑制している。
In such endmost light emitting portions 24 and 25, the current injected for driving does not contribute to light emission, and the p-type semiconductor region 1 formed in the outer peripheral portion of the chip.
7 and the crystal defect layer 20 to reach the substrate 11a. As a result, the light emission output shown in FIG. 2A is reduced only in the outermost light emitting section 24. In the present invention, as shown in FIG. 7, by providing a diffusion blocking film 28 made of a material different from that of the diffusion blocking film 12 on the outer peripheral portion of the chip, the p-type semiconductor region 17 that causes a decrease in light emission output is formed. It suppresses the formation.

【0011】1種類のみの拡散阻止膜12を使用した従
来法では、前述したようにp型半導体領域17がチップ
周辺部に形成される。p型半導体領域17の形成自体
は、図8に示すようなチップ外側に張出し部12aを付
けた拡散阻止膜12の使用によって防止できる。しか
し、張出し部12a,12bは、ダイシング工程でダイ
シングブレード18により切断される。拡散阻止膜12
として窒化ケイ素膜,酸化アルミニウム膜等が通常使用
されており、これら材質の拡散阻止膜12をダイシング
ブレード18で切断すると、発光ダイオードアレイチッ
プの端部において拡散阻止膜12の剥離が生じる。その
ため、拡散阻止膜12の最終的な目的であるp−n接合
の保護作用が妨げられる。
In the conventional method using only one kind of diffusion blocking film 12, the p-type semiconductor region 17 is formed in the peripheral portion of the chip as described above. The formation of the p-type semiconductor region 17 itself can be prevented by using the diffusion blocking film 12 having the protrusion 12a on the outside of the chip as shown in FIG. However, the overhang portions 12a and 12b are cut by the dicing blade 18 in the dicing process. Diffusion blocking film 12
A silicon nitride film, an aluminum oxide film or the like is usually used as the material. When the diffusion blocking film 12 made of these materials is cut by the dicing blade 18, the diffusion blocking film 12 is peeled off at the end portion of the light emitting diode array chip. Therefore, the protective purpose of the pn junction, which is the final purpose of the diffusion blocking film 12, is hindered.

【0012】他方、2種類の拡散阻止膜12及び28を
使用するとき、チップ外周部におけるp型半導体領域1
7の形成が阻止されると共に、ダイシングによって導入
される結晶欠陥部20を介し基板11aへの導通が防止
される。そのため、最端発光部24の発光出力を低下さ
せることがなくなる。また、第2の拡散阻止膜28を拡
散終了後に除去するとき、何れの拡散阻止膜12,28
もダイシングブレード18で切断することなく、チップ
の分離を行うことができる。その結果、高解像度の発光
ダイオードアレイチップを高い歩留りで製造することが
可能となる。第2の拡散阻止膜28は、第1の拡散阻止
膜12と異なる材質であるため、第1の拡散阻止膜12
に悪影響を与えることなく選択的にエッチング除去され
る。たとえば、拡散阻止膜28の材質には、W,Mo,
Ti等の高融点金属や酸化アルミニウム等がある。拡散
阻止膜12との関連で拡散阻止膜12の材質を選択する
とき、拡散阻止膜12の形状等に変化を与えることな
く、高精度に作り込まれた発光ダイオードアレイチップ
が得られる。
On the other hand, when the two types of diffusion blocking films 12 and 28 are used, the p-type semiconductor region 1 in the peripheral portion of the chip is used.
The formation of 7 is prevented, and conduction to the substrate 11a is prevented through the crystal defect portion 20 introduced by dicing. Therefore, the light emission output of the endmost light emitting unit 24 is not reduced. When removing the second diffusion barrier film 28 after the diffusion is completed, which diffusion barrier film 12, 28 is to be removed?
Also, the chips can be separated without cutting with the dicing blade 18. As a result, it becomes possible to manufacture a high resolution light emitting diode array chip with a high yield. Since the second diffusion blocking film 28 is made of a material different from that of the first diffusion blocking film 12, the first diffusion blocking film 12 is formed.
Is selectively removed by etching without adversely affecting. For example, the diffusion blocking film 28 may be made of W, Mo,
There are refractory metals such as Ti and aluminum oxide. When the material of the diffusion blocking film 12 is selected in relation to the diffusion blocking film 12, it is possible to obtain a light emitting diode array chip that is built with high precision without changing the shape of the diffusion blocking film 12.

【0013】[0013]

【実施例】エピタキシャルウエハ10に、第1の拡散阻
止膜12となる窒化ケイ素をプラズマCVDによって形
成した後、常法に従って発光部13及びチップ外周部1
5を形成した。解像度400ドット/インチの発光ダイ
オードアレイを得るため、一つの発光部13を一辺30
μmのほぼ正方形とし、隣接する発光部13のピッチを
63.5μmに設定した。また、チップには、エピタキ
シャルウエハ10から切り出した長さ8mm及び幅0.
5mmの矩形片を使用した。第2の拡散阻止膜28とな
るタングステン膜をCVD法によって形成した後、発光
部13に当る部分の拡散阻止膜28を除去した。そし
て、エピタキシャル層11bに不純物を熱拡散法で拡散
させ、p型半導体領域17を設けた。その後、拡散阻止
膜28を除去し、最端発光部24,25を含む個々の発
光部13に電極14を形成し、最後にエピタキシャルウ
エハ10から各チップに切り出した。
EXAMPLE A silicon nitride film to be a first diffusion barrier film 12 was formed on an epitaxial wafer 10 by plasma CVD, and then a light emitting portion 13 and a chip outer peripheral portion 1 were formed by a conventional method.
5 was formed. In order to obtain a light emitting diode array having a resolution of 400 dots / inch, one light emitting unit 13 is provided on one side 30
The light emitting portions 13 adjacent to each other had a substantially square shape with a pitch of 63.5 μm. The chip has a length of 8 mm and a width of 0.
A 5 mm square piece was used. After forming a tungsten film to be the second diffusion blocking film 28 by the CVD method, the diffusion blocking film 28 in the portion corresponding to the light emitting portion 13 was removed. Then, impurities are diffused into the epitaxial layer 11b by a thermal diffusion method to provide the p-type semiconductor region 17. After that, the diffusion blocking film 28 was removed, the electrodes 14 were formed on the individual light emitting portions 13 including the outermost light emitting portions 24 and 25, and finally, each chip was cut out from the epitaxial wafer 10.

【0014】得られたチップの発光出力特性を調査し
た。調査は、400ドット/インチの発光ダイオードア
レイチップを100個作製したとき、最端発光部24,
25の発光出力が規格値に達しないものを不良として判
定し、不良品の個数、すなわち不良品発生率で評価し
た。調査結果を表1に示す。なお、拡散阻止膜28の効
果を調査するため、それぞれの実験において拡散阻止膜
28の厚みを変えた場合の不良品発生率をカウントし
た。また、表1では、第2の拡散阻止膜28を使用する
ことなく作製した発光ダイオードアレイチップの評価結
果を比較例として併せ示している。
The emission output characteristics of the obtained chip were investigated. The investigation was conducted when 100 light emitting diode array chips each having 400 dots / inch were manufactured.
The light emitting output of No. 25, which did not reach the standard value, was determined as defective and evaluated by the number of defective products, that is, the defective product occurrence rate. The survey results are shown in Table 1. In order to investigate the effect of the diffusion blocking film 28, the defective product occurrence rate when the thickness of the diffusion blocking film 28 was changed was counted in each experiment. In addition, Table 1 also shows, as a comparative example, the evaluation results of the light emitting diode array chip manufactured without using the second diffusion blocking film 28.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように、第2の拡散阻止
膜28を設けない比較例では、約20%以上の割合で不
良品が発生していた。これに対し、厚み1000Åのタ
ングステン膜を拡散阻止膜28として設けたものでは、
不良品発生率が大幅に低減していた。タングステンの膜
が5000Å及び10000Åと厚いものでは、RUN
1〜4の何れにおいても不良品の発生が皆無となった。
そして、得られた発光ダイオードアレイチップは、図9
に示すようにアレイ最端部における発光出力の低下がみ
られず、優れた特性をもつものであった。
As is clear from Table 1, in the comparative example in which the second diffusion barrier film 28 was not provided, defective products were generated at a rate of about 20% or more. On the other hand, in the case where a 1000 Å thick tungsten film is provided as the diffusion blocking film 28,
The defective product rate was significantly reduced. If the tungsten film is as thick as 5000Å and 10000Å, RUN
In all of 1 to 4, no defective products were generated.
The obtained LED array chip is shown in FIG.
As shown in (1), the emission output at the end of the array was not reduced, and the device had excellent characteristics.

【0017】[0017]

【発明の効果】以上に説明したように、本発明において
は、不純物拡散用の窓部が形成された拡散阻止膜と材質
が異なる別個の拡散阻止膜をチップ外周部に設けること
によって、熱拡散工程時にp型半導体領域がチップ外周
部に形成されることを抑制している。そのため、ダイシ
ングによってチップの端面に導入された結晶欠陥部を介
して最端発光部が基板に導通することがなくなる。その
結果、発光部のピッチを小さくした場合にあってもアレ
イ最端部における発光出力の低下がない。また、ダイシ
ング時に何れの拡散阻止膜をもダイシングブレードで切
断することなく個々のチップに分離することができるた
め、解像度を上げるために高集積密度で発光部を形成し
た発光ダイオードアレイチップが高い歩留りで得られ
る。
As described above, according to the present invention, a diffusion barrier film having a different material from that of the diffusion barrier film having the window for impurity diffusion is provided on the outer peripheral portion of the chip, so that thermal diffusion can be achieved. It is possible to prevent the p-type semiconductor region from being formed on the outer periphery of the chip during the process. Therefore, the endmost light emitting portion will not be electrically connected to the substrate through the crystal defect portion introduced into the end surface of the chip by dicing. As a result, even when the pitch of the light emitting portions is reduced, the light emission output at the end of the array does not decrease. In addition, since any diffusion blocking film can be separated into individual chips without cutting with a dicing blade during dicing, the light emitting diode array chip with the light emitting portion formed with high integration density to improve resolution has a high yield. Can be obtained at.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の発光ダイオードアレイチップの平面図
(a)及び断面図(b)
FIG. 1 is a plan view (a) and a sectional view (b) of a conventional light emitting diode array chip.

【図2】 従来の発光ダイオードアレイチップの発光出
力特性
FIG. 2 Light emission output characteristics of a conventional light emitting diode array chip

【図3】 従来の発光ダイオードアレイチップの横断面
FIG. 3 is a cross-sectional view of a conventional light emitting diode array chip.

【図4】 ウエハ上のチップ配列状態FIG. 4 Chip arrangement on a wafer

【図5】 発光ダイオードアレイチップの実装状態FIG. 5: Mounting state of light emitting diode array chip

【図6】 高解像度発光ダイオードアレイチップの問題
を説明する図
FIG. 6 is a diagram illustrating a problem of a high resolution light emitting diode array chip.

【図7】 本発明に従った発光ダイオードアレイチップ
の横断面図
FIG. 7 is a cross-sectional view of a light emitting diode array chip according to the present invention.

【図8】 張出し部を付けた拡散阻止膜FIG. 8: Diffusion blocking film with overhang

【図9】 本発明実施例で作製された発光ダイオードア
レイチップの発光出力特性
FIG. 9: Light emission output characteristics of the light emitting diode array chip manufactured in the example of the present invention

【符号の説明】[Explanation of symbols]

10 エピタキシャルウエハ 11a 基板 11b エピタキシャル層 12 第1の拡散阻止
膜 13 発光部 14 電極 15 チップ外周部 17 チップ外周部に形成されるp型半導体領域 24,25 最端発光部 26,27 チップ端
部 28 第2の拡散阻止膜
10 Epitaxial Wafer 11a Substrate 11b Epitaxial Layer 12 First Diffusion Blocking Film 13 Light Emitting Portion 14 Electrode 15 Chip Outer Edge 17 P-Type Semiconductor Region Formed on Chip Outer Edge 24, 25 End Light Emitting Edge 26, 27 Chip Edge 28 Second diffusion barrier film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B43L 13/00 J 8705−2C H01L 21/78 L 8617−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B43L 13/00 J 8705-2C H01L 21/78 L 8617-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 拡散窓を備えた第1の拡散阻止膜でエピ
タキシャルウエハの表面を覆うと共に、最端発光部が形
成される前記エピタキシャルウエハのチップ周辺部に前
記第1の拡散阻止膜とは材質が異なる第2の拡散阻止膜
を設け、前記拡散窓を介してエピタキシャル層に不純物
を拡散させ発光部となるp型半導体領域を形成すること
を特徴とする発光ダイオードアレイチップの製造方法。
1. A first diffusion barrier film covering a surface of an epitaxial wafer with a first diffusion barrier film having a diffusion window, wherein the first diffusion barrier film is provided around a chip peripheral portion of the epitaxial wafer where an endmost light emitting portion is formed. A method for manufacturing a light emitting diode array chip, comprising providing a second diffusion blocking film made of a different material, and diffusing impurities into the epitaxial layer through the diffusion window to form a p-type semiconductor region serving as a light emitting portion.
JP25895292A 1992-09-02 1992-09-02 Manufacture of light emitting diode array chip Withdrawn JPH0685318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25895292A JPH0685318A (en) 1992-09-02 1992-09-02 Manufacture of light emitting diode array chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25895292A JPH0685318A (en) 1992-09-02 1992-09-02 Manufacture of light emitting diode array chip

Publications (1)

Publication Number Publication Date
JPH0685318A true JPH0685318A (en) 1994-03-25

Family

ID=17327312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25895292A Withdrawn JPH0685318A (en) 1992-09-02 1992-09-02 Manufacture of light emitting diode array chip

Country Status (1)

Country Link
JP (1) JPH0685318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871226A2 (en) * 1997-04-11 1998-10-14 Oki Electric Industry Co., Ltd. Method of manufacturing light-receiving/emitting diode array chip
JP2009290242A (en) * 2002-11-11 2009-12-10 Oki Data Corp Semiconductor device, optical print head, and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871226A2 (en) * 1997-04-11 1998-10-14 Oki Electric Industry Co., Ltd. Method of manufacturing light-receiving/emitting diode array chip
EP0871226A3 (en) * 1997-04-11 1999-05-19 Oki Electric Industry Co., Ltd. Method of manufacturing light-receiving/emitting diode array chip
US5972729A (en) * 1997-04-11 1999-10-26 Oki Electric Industry Co., Ltd. Method of manufacturing light-receiving/emitting diode array chip
JP2009290242A (en) * 2002-11-11 2009-12-10 Oki Data Corp Semiconductor device, optical print head, and image forming apparatus
US8395159B2 (en) 2002-11-11 2013-03-12 Oki Data Corporation Semiconductor apparatus with thin semiconductor film
US8445935B2 (en) 2002-11-11 2013-05-21 Oki Data Corporation Semiconductor apparatus with thin semiconductor film
US8816384B2 (en) 2002-11-11 2014-08-26 Oki Data Corporation Semiconductor apparatus with thin semiconductor film

Similar Documents

Publication Publication Date Title
US6191436B1 (en) Optical semiconductor device
EP1278249B1 (en) Group-iii nitride compound semiconductor device
US20100006864A1 (en) Implanted connectors in led submount for pec etching bias
US4476620A (en) Method of making a gallium nitride light-emitting diode
CN104823287B (en) Opto-electronic semiconductor chip with multiple active regions being arranged side by side
KR20010005846A (en) Light emitting device and method for manufacturing the same
US7078319B2 (en) Laser separated die with tapered sidewalls for improved light extraction
US8158490B2 (en) Method for producing group III nitride-based compound semiconductor device
KR20010088929A (en) AlGaInN LED device and their fabrication method
US7754512B2 (en) Method of fabricating semiconductor light-emitting devices with isolation trenches
JPH0685318A (en) Manufacture of light emitting diode array chip
US6384429B1 (en) Light-emitting semiconductor device with reduced obstructions to light emission
JPH0685319A (en) Manufacture of light emitting diode array chip
US5866439A (en) Method of fabricating an end face light emitting type light-emitting diode and a light-emitting diode array device
JPH05275738A (en) Manufacture of light-emitting diode array chip
JP2002111049A (en) Method for manufacturing semiconductor light emitting element
JPH0685057A (en) Dicing of semiconductor chip
JPH06314817A (en) Manufacture of light emitting diode array chip
US6063644A (en) Light-emitting element and array with etched surface, and fabrication method thereof
JPH0685320A (en) Manufacture of light emitting diode array chip
JP3488783B2 (en) Light emitting diode array
JPH10335698A (en) Semiconductor light emitting device
US20090057836A1 (en) Semiconductor device having electrode film in which film thickness of periphery is thinner than film thickness of center
JPH11214335A (en) Manufacture of semiconductor element
JP2001217457A (en) Light-emitting element array

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102