JPH0685212B2 - Manufacturing method of alumite substrate for magnetic recording material - Google Patents

Manufacturing method of alumite substrate for magnetic recording material

Info

Publication number
JPH0685212B2
JPH0685212B2 JP61035063A JP3506386A JPH0685212B2 JP H0685212 B2 JPH0685212 B2 JP H0685212B2 JP 61035063 A JP61035063 A JP 61035063A JP 3506386 A JP3506386 A JP 3506386A JP H0685212 B2 JPH0685212 B2 JP H0685212B2
Authority
JP
Japan
Prior art keywords
alumite
substrate
film
magnetic recording
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035063A
Other languages
Japanese (ja)
Other versions
JPS62195721A (en
Inventor
寛 飯沼
良夫 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP61035063A priority Critical patent/JPH0685212B2/en
Publication of JPS62195721A publication Critical patent/JPS62195721A/en
Publication of JPH0685212B2 publication Critical patent/JPH0685212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 薄膜を媒体とする高磁気記録密度磁気ディスクの基板と
して用いられるアルマイト処理したアルミニウム基板の
製法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an alumite-treated aluminum substrate used as a substrate for a high magnetic recording density magnetic disk using a thin film as a medium.

従来の技術 高記録密度用の磁気ディスク基板等磁気記録媒体基板に
はアルミニウム合金材表面にアルマイト皮膜層を形成さ
せたいわゆるアルマイト基板が用いられる。
2. Description of the Related Art As a magnetic recording medium substrate such as a magnetic disk substrate for high recording density, a so-called alumite substrate having an alumite coating layer formed on the surface of an aluminum alloy material is used.

このように高記録密度の磁気記録材用としてアルマイト
基板が用いられる理由はアルマイト皮膜は硬質で耐摩耗
性に富み,また研摩性が良好で,高精度の平滑面が得ら
れ易く,従つてその表面に容易に薄膜の磁性膜を形成す
ることができるからである。
The reason why the alumite substrate is used for magnetic recording material with high recording density is that the alumite coating is hard and rich in abrasion resistance, has good abrasiveness, and is easy to obtain a highly accurate smooth surface. This is because a thin magnetic film can be easily formed on the surface.

先に,本発明者らはこのようなアルマイト基板として高
純度のアルミニウムに2〜6%程度のマグネシウムを含
有させめた合金材の表面にクロム酸アルマイトを形成し
たものを用いることを提案した(特開昭59−180832)。
Previously, the present inventors have proposed to use, as such an alumite substrate, an alloy material in which high purity aluminum contains about 2 to 6% of magnesium and on which alumite chromate is formed ( JP-A-59-180832).

従来は,一般のAl−2〜6%Mg合金に,硫酸アルマイト
皮膜を形成したものを用いていたためにアルマイト基板
には次のような欠点があつて,磁気記録材の高記録密度
化の妨げになつていた。
Conventionally, a general Al-2 to 6% Mg alloy with a sulfated alumite coating formed on it has the following drawbacks on the alumite substrate, which hinders the increase in recording density of magnetic recording materials. It was becoming.

即ち,その一つの黒点欠陥といわれる微小ピット状の皮
膜欠陥であつて,皮膜層にこの種の欠陥があるとこれが
磁性膜形成に際して磁性膜の陥没部となつて,使用時の
信号エラーの原因となるので,可及的にその数を少な
く,しかもその大きさを少くとも3μm以下に抑えるこ
とが望まれる。
That is, one of the black pit defects, which is a minute pit-shaped film defect, has this kind of defect in the film layer, which becomes a recessed part of the magnetic film when the magnetic film is formed, and causes a signal error during use. Therefore, it is desirable to reduce the number as much as possible and to keep the size to 3 μm or less.

また,もう一つの欠点は高密度磁気記録材を得る場合に
アルマイト基板上にα−Fe3O4をスパッタその他適宜の
方法により披着させて300〜400℃の温度に加熱しγ−Fe
2O3化する方法が採られるが,このような高温の加熱を
行つた場合,アルマイト皮膜に亀裂を生じ製品不良とな
ることであつて,このような亀裂発生を避けるためには
アルマイト皮膜層を3μm以下の薄膜にしなければなら
ないが,このように極端に薄肉の皮膜を形成したアルマ
イト基板を磁気ディスク基板として使用した場合,皮膜
の耐圧強度が劣化するためにCSS耐久性が低下するとい
う問題を生ずる。基板上に形成されるアルマイト皮膜層
に生じる黒点欠陥はアルミニウム合金中に含まれる鉄,
珪素,マンガン,クロムその他の不純物に基づいて晶出
する金属間化合物,例えば,FeAl3,MnAl6,NiAl3,β−(A
l−Fe−Si)等が合金材表面に介在すると,その部分が
これらの介在物粒子の粒径に応じた大きさの皮膜欠落部
となつてピット状欠陥を生ずるので,可及的に介在物の
数を減少させ,またその粒径を減少させる必要がある。
これに対し基板上に形成したアルマイト皮膜層を従来の
一般的な硫酸法アルマイト皮膜に変えてクロム酸法アル
マイト皮膜とするときは皮膜層におけるピット状欠陥の
発生が大巾に抑制され,しかも磁性膜形成のための熱処
理によつても亀裂発生がない。
Another drawback is that when obtaining a high-density magnetic recording material, α-Fe 3 O 4 is deposited on the alumite substrate by sputtering or another suitable method, and heated to a temperature of 300 to 400 ° C to produce γ-Fe.
The method of converting to 2 O 3 is adopted, but when such high temperature heating is performed, cracks may occur in the alumite film, resulting in product failure. In order to avoid such crack generation, the alumite film layer Must be a thin film of 3 μm or less, but when an alumite substrate with such an extremely thin film is used as a magnetic disk substrate, the CSS durability deteriorates because the pressure resistance of the film deteriorates. Cause Black spot defects in the alumite film layer formed on the substrate are iron contained in the aluminum alloy,
Intermetallic compounds that crystallize based on impurities such as silicon, manganese, chromium, such as FeAl 3 , MnAl 6 , NiAl 3 , β- (A
l-Fe-Si) intervenes on the surface of the alloy material, it forms a pit-like defect by forming a pit-like defect in a portion corresponding to the particle size of these inclusion particles. It is necessary to reduce the number of objects and the particle size.
On the other hand, when the chromic acid method alumite film is formed by changing the conventional alumite film layer formed on the substrate to the conventional sulfuric acid method alumite film, the occurrence of pit-like defects in the film layer is significantly suppressed and No crack is generated even by the heat treatment for forming the film.

これらの知見に基づいて発明された高純度アルミニウム
に2〜6%のマグネシウムを添加した基板にクロム酸ア
ルマイトを施こしたアルマイト基板は黒点欠陥や磁性膜
形成のための熱処理による皮膜の亀裂発生が全く,ある
いは殆んど見られず,またアルマイト皮膜層の厚さを3
μm以上に採ることによつて耐ヘッドクラッシュ性を改
善することができるので高記録密度用の磁気記録材基板
として秀れた性能を有する。
An anodized aluminum substrate in which 2 to 6% of magnesium is added to high-purity aluminum invented based on these findings has anodized chromate, and black spot defects and cracking of the film due to heat treatment for magnetic film formation occur. No or almost none, and the thickness of the alumite coating layer is 3
By adopting a thickness of at least μm, the head crash resistance can be improved, so that it has excellent performance as a magnetic recording material substrate for high recording density.

従来技術の問題点 クロム酸アルマイトは,すでに研究されている通り(例
えば佐藤ら,金属表面技術26巻,456頁,(1975))アル
マイトの微細孔が放射状に形成される。そのため,アル
ミニウムとアルマイトとの界面では,多数の微細孔が集
合したコロニーを形成し,クロム酸アルマイト独特の外
観を呈する。図2にクロム酸アルマイトの断面構造を示
めす。これをアルマイト表面より光学顕微鏡で観察する
とコロニー構造が泡の集合の様に見られる。
Problems of the prior art Chromate alumite, as already studied (for example, Sato et al., Metal Surface Technology, Vol. 26, p. 456, (1975)), has fine pores of alumite formed radially. Therefore, at the interface between aluminum and alumite, a large number of micropores form a colony, giving a unique appearance to chromate alumite. Figure 2 shows the cross-sectional structure of alumite chromate. When this is observed from the alumite surface with an optical microscope, the colony structure appears to be a collection of bubbles.

このコロニー構造の中に時に著しく大きなコロニー,即
ち粗大コロニーが形成されることが見出された。図3に
従来アルミ合金基板でのアルマイト表面から光学顕微鏡
で見たアルマイトの平面構造を示めし、粗大コロニーが
存在することが判る。粗大コロニーは細孔が優先的に成
長した結果である。従つて,粗大コロニー部の細孔には
多くの電流が流れ浴温の上昇により,皮膜の劣化が進む
と考えられる。(佐藤らによると細孔が長く続く程孔径
が大きくなると言われている。(金属表面技術26巻,456
頁(1975)) 前記の事から,粗大コロニー部の皮膜は周辺部に較べて
若干柔らかく,研磨時に微小なる凹みとなつて,アルマ
イト面に磁性体を形成したときその部分で記録再生特性
に悪影響を及ぼすピークシフトを生ずることとなり,磁
気ディスクとしての重大な欠陥であるビットエラーを生
ずることとなる。
It was found that in this colony structure, a remarkably large colony, that is, a large colony was sometimes formed. FIG. 3 shows a plane structure of alumite observed by an optical microscope from the alumite surface of the conventional aluminum alloy substrate, and it can be seen that coarse colonies are present. Coarse colonies are the result of preferential growth of pores. Therefore, it is considered that a large amount of current flows in the pores of the coarse colony part and the deterioration of the film progresses due to the increase in bath temperature. (Sato et al. Say that the longer the pores, the larger the pore size. (Metal surface technology 26, 456
Page (1975)) From the above, the film of the coarse colony part is slightly softer than the peripheral part, and it becomes a minute recess during polishing, and when a magnetic substance is formed on the alumite surface, it adversely affects the recording and reproducing characteristics. This results in a peak shift which causes a bit error which is a serious defect as a magnetic disk.

アルミ基板の表面に微小な傷があると,その部分に粗大
コロニーが発生しやすいことは知られていたが,微小な
傷がない部分でも発生することに本発明者らは注目し,
広くその発生原因を追求する中で合金成分中の銅の含有
率をある特定値内におさめると前記粗大コロニーの発生
が大巾に減少し,かつ磁気記録媒体を形成させた磁気デ
ィスク基板の表面性能が均一化,安定化することを見い
だして本発明を完成した。
It has been known that if there is a minute scratch on the surface of the aluminum substrate, a large colony is likely to occur in that part, but the inventors of the present invention have noticed that a coarse colony also occurs in that part,
When the content of copper in the alloy component is kept within a certain value in the pursuit of the cause of the occurrence, the occurrence of coarse colonies is greatly reduced, and the surface of the magnetic disk substrate on which the magnetic recording medium is formed. The present invention has been completed by finding that the performance becomes uniform and stable.

問題点を解決するための手段と作用 本発明は,重量でマグネシウム2〜6%,銅0.002〜0.0
3%を含み,残部アルミニウムおよび不純物からなり,
不純物の含有許容限界量が鉄0.003%,珪素0.005%,亜
鉛0.5%,マンガン0.0005%,クロム0.0005%,ニッケ
ル0.0005%,チタン0.0005%,その他の不純物元素の合
計が0.001%であるアルミニウム合金材であつて,その
表面に厚さ6μm以上のクロム酸を用いてアルマイト皮
膜を形成することを特徴とするものである。
Means and Actions for Solving Problems The present invention relates to 2 to 6% by weight of magnesium and 0.002 to 0.0 of copper.
Containing 3%, balance aluminum and impurities,
Aluminum alloy material whose allowable content of impurities is 0.003% of iron, 0.005% of silicon, 0.5% of zinc, 0.0005% of chromium, 0.0005% of chromium, 0.0005% of nickel, 0.0005% of titanium, and 0.001% of other impurities. The feature is that an alumite film is formed on the surface by using chromic acid having a thickness of 6 μm or more.

本発明のアルマイト基板においてアルミニウム材として
重量で2〜6%のマグネシウムを含む合金材を用いる理
由は,この合金が磁気ディスク等の磁気記録材基板とし
て要求される強度,平滑度を得やすい上にアルマイト性
が良好であるからである。
The reason why an alloy material containing 2 to 6% by weight of magnesium is used as the aluminum material in the alumite substrate of the present invention is that this alloy is easy to obtain the strength and smoothness required for a magnetic recording material substrate such as a magnetic disk. This is because the alumite property is good.

マグネシウム量が2%以下では基板材として十分な強度
が得られず,また6%以上では合金鋳造に際して組織中
にβ−Al2Mg3を晶出し,合金材を基板に加工した場合に
粗大な介在物となつて基板の切削性を損なつたり,また
アルマイト皮膜層の形成に際して黒点欠陥の原因となり
易い。
When the amount of magnesium is 2% or less, sufficient strength cannot be obtained as a substrate material, and when it is 6% or more, β-Al 2 Mg 3 is crystallized in the structure during alloy casting, and when the alloy material is processed into a substrate, it is coarse. It is likely to cause inclusions to impair the machinability of the substrate and cause black spot defects when forming the alumite coating layer.

コロニー構造は,クロム酸電解特有の構造であり,クロ
ム酸浴の濃度,温度,アルミニウム濃度やその他の電解
条件の影響を受ける。特に粗大コロニー部は,その影響
を大きく受けて皮膜性能が不均一になつたものと考えら
れるが,銅を特定量添加することによつて,コロニー構
造が微細かつ不明瞭になるとともに,粗大コロニーの数
が大巾に減少し,アルマイト処理磁気ディスク基板の表
面性能を均一化,安定化させるものである。図1に本発
明のアルマイト基板のアルマイト表面から光学顕微鏡で
見たアルマイトの平面構造を示めし、粗大コロニーが殆
んど存在しないことが判る。
The colony structure is peculiar to chromic acid electrolysis, and is affected by the concentration of chromic acid bath, temperature, aluminum concentration and other electrolysis conditions. In particular, it is considered that the coarse colony part was greatly affected by this and the film performance became uneven, but the addition of a specific amount of copper made the colony structure fine and unclear, and the coarse colony part The number of slabs is greatly reduced, and the surface performance of the alumite-treated magnetic disk substrate is made uniform and stable. FIG. 1 shows a plane structure of alumite seen from an alumite surface of the alumite substrate of the present invention with an optical microscope, and it is found that coarse colonies are scarcely present.

添加する銅の量は,0.002〜0.03%が好ましい。0.002%
以下では磁気ディスクのビットエラーに結びつくとみら
れる径が7μm以上の粗大コロニーが発生するようにな
り好ましくなく,また0.03%を越えるとアルマイト皮膜
の硬度が低下し,磁気ディスクとして必要な性能を満さ
なくなるので好ましくない。図4に銅の添加量とクロム
酸アルマイトの微小ヴィッカース硬度との関係を示す。
The amount of copper added is preferably 0.002 to 0.03%. 0.002%
Below, coarse colonies with a diameter of 7 μm or more, which are thought to be associated with bit errors of the magnetic disk, will be generated, and if it exceeds 0.03%, the hardness of the alumite coating will decrease and the performance required for the magnetic disk will be satisfied. It is not preferable because it disappears. FIG. 4 shows the relationship between the added amount of copper and the fine Vickers hardness of alumite chromate.

合金中の不純物元素の許容限界量を鉄0.003%,珪素0.0
05%,マンガン0.0005%,クロム0.0005%,ニッケル0.
0005%,チタン0.0005%と定めた理由は,これらの不純
物元素はアルミニウム地金中に比較的普通に存在する元
素であつて,しかもこれらの不純物元素の存在によつて
鋳造時に晶出する金属間化合物の多くがアルマイト皮膜
形成に際して皮膜欠落部生成の原因となり易い元素であ
るが,それぞれの限界量以下の存在では鋳造時に生成す
る金属間化合物の粒径は極めて微小であつて,従来の硫
酸法アルマイト皮膜においては兎に角として,本発明の
クロム酸法アルマイト皮膜においてはアルマイト皮膜層
における皮膜欠落による3μm以上のピット状欠落を生
ずることがないし,またそれ以下の大きさの欠陥を生ず
るとしても極く僅少であつて,健全な磁性膜形成に影響
を与えることがないからである。
The allowable limit of impurity elements in the alloy is 0.003% for iron and 0.0 for silicon.
05%, manganese 0.0005%, chromium 0.0005%, nickel 0.
The reason for defining 0005% and titanium as 0.0005% is that these impurity elements are elements that are relatively commonly present in aluminum ingots, and the presence of these impurity elements causes the intermetallic compounds to crystallize during casting. Most of the compounds are elements that tend to cause the formation of coating defects during the formation of alumite coatings, but the presence of less than the respective limit amounts produces extremely small grain sizes of intermetallic compounds during casting. In the alumite film, the chromic acid method alumite film of the present invention does not cause pit-like defects of 3 μm or more due to film loss in the alumite film layer, and even if defects of a size smaller than that occur. This is because it is extremely small and does not affect sound magnetic film formation.

なお,不純物元素中亜鉛はアルミニウム中に大きな固溶
限界を有するので比較的多量に存在しても余り問題にな
らず,0.5%までの含有が許容される。
Since zinc as an impurity element has a large solid solution limit in aluminum, it does not pose a problem even if it is present in a relatively large amount, and up to 0.5% is allowed.

本発明のアルマイト基板の製法は常法によつて展伸加工
された合金材の表面をダイヤモンドバイト等による精密
旋削仕上げやポリッシュを施して鏡面とした後クロム酸
電解浴を用いて直流電流を施してアルマイト皮膜層を形
成せしめる。
The method for producing an alumite substrate of the present invention is a conventional method, in which the surface of an alloy material that has been subjected to wrought processing is subjected to precision turning and polishing with a diamond tool or the like to give a mirror surface and then direct current is applied using a chromic acid electrolytic bath. To form an alumite film layer.

アルマイト処理に際しては通常のクロム酸法において行
われるベンゴウ−スチュアート法でも,定電圧法でもよ
いが,十分な膜厚のアルマイト皮膜層を得るためには定
電圧法の採用が望ましく,また定電圧法採用に当つては
一般に行われる40V程度の電圧よりも高い電圧で処理す
る方が好結果を得やすい。
For the alumite treatment, the Bengow-Stuart method or the constant voltage method, which is usually used in the chromic acid method, may be used. However, in order to obtain an alumite film layer having a sufficient film thickness, it is preferable to use the constant voltage method. For adoption, it is easier to obtain good results by processing at a higher voltage than the voltage of about 40V that is generally used.

皮膜厚は6μm以上であることが好ましく,6μm以下で
は十分なCSS耐久性を確保しにくくなる。
The film thickness is preferably 6 μm or more, and when it is 6 μm or less, it becomes difficult to secure sufficient CSS durability.

実施例 次に本発明合金を実施例に基づいて説明する。Examples Next, the alloy of the present invention will be described based on Examples.

第1表に示す組成A(本発明合金)およびB(比較合
金)そしてC(比較合金)の3種類のアルミニウム−マ
グネシウム合金溶湯を常法に従つてセラミック質フィル
ターで過し,非金属介在物を除去した後,水冷式半連
続鋳造法によつて断面255mm×910mmの鋳塊を作り,これ
を490℃で3時間加熱して均質化処理を施して厚さ8mmま
で熱間圧延し,さらに厚さ2mmまで冷間圧延して,420℃
で4時間の仕上げ焼鈍を施して基板用アルミニウム合金
材を得た。
Three kinds of molten aluminum-magnesium alloys having compositions A (inventive alloy) and B (comparative alloy) and C (comparative alloy) shown in Table 1 were passed through a ceramic filter according to a conventional method, and nonmetallic inclusions were used. After removing the water, a ingot with a cross section of 255 mm × 910 mm was made by a water-cooled semi-continuous casting method, heated at 490 ° C for 3 hours, homogenized and hot-rolled to a thickness of 8 mm. Cold rolled to a thickness of 2 mm at 420 ℃
Then, finish annealing was performed for 4 hours to obtain an aluminum alloy material for a substrate.

次いで,上記A,B,C3種類のアルミニウム合金材を粗切削
後,ダイヤモンド・バイトによる精密旋削を行なつた後
クロム酸を用いてアルマイト皮膜形成を行つた。各基板
のアルマイト皮膜厚さは10μmとした。
Next, the above A, B, and C types of aluminum alloy materials were roughly cut, precision-turned with a diamond bite, and then anodized with chromic acid. The thickness of the alumite coating on each substrate was 10 μm.

アルマイト条件は次の通りである。The alumite conditions are as follows.

クロム酸アルマイト条件 クロム酸濃度 10wt% 電圧(定電圧法) 65V 浴温 40℃ 電流密度 0.3A/dm2 前記の条件で得られたアルマイト基板について光学顕微
鏡の視野内(0.355mm2)における粗大コロニー(径が7
μm以上のもの)の数および皮膜硬度を計測し,その結
果を第2表に示す。
Chromic acid alumite conditions Chromic acid concentration 10wt% Voltage (constant voltage method) 65V Bath temperature 40 ° C Current density 0.3A / dm 2 Coarse colonies in the optical microscope field of view (0.355mm 2 ) for the alumite substrate obtained under the above conditions (Diameter is 7
The number and the hardness of coatings were measured, and the results are shown in Table 2.

第2表から,本発明のアルマイト基板(A)は銅の含有
量を低く抑えた比較合金(B)のアルマイト基板にくら
べて粗大コロニーの発生数が遥かに少なかつた。また,
銅を本発明の添加量以上に含む比較合金(C)にくらべ
て,皮膜硬度が高く磁気ディスク基板として優れた性能
を示していた。
From Table 2, the alumite substrate (A) of the present invention had far fewer coarse colonies than the alumite substrate of the comparative alloy (B) in which the copper content was kept low. Also,
Compared with the comparative alloy (C) containing copper in an amount not less than the addition amount of the present invention, the coating hardness was high and the magnetic disk substrate showed excellent performance.

また,前記各アルマイト基板を350℃にて2時間加熱し
たが,いずれも皮膜に亀裂は観察されず,良好な耐熱性
を示した。
When each of the alumite substrates was heated at 350 ° C. for 2 hours, no cracks were observed in the coating and good heat resistance was exhibited.

発明の効果 本発明のアルマイト基板は,記録再生特性に悪影響を与
える粗大コロニーが少なく,十分な表面硬度を有し,ア
ルマイト皮膜厚さが10μm以上であっても,350℃での加
熱処理で亀裂を発生することが無く,かつCSS耐久性に
優れた高記録密度磁気記録用アルマイト基板として抜群
の性能を有するものである。
EFFECTS OF THE INVENTION The alumite substrate of the present invention has few coarse colonies that adversely affect recording / reproducing characteristics, has sufficient surface hardness, and cracks by heat treatment at 350 ° C. even if the alumite coating thickness is 10 μm or more. It has excellent performance as an alumite substrate for high recording density magnetic recording, which does not generate heat and has excellent CSS durability.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明のアルマイト基板のアルマイト表面から光
学顕微鏡で見たときのアルマイトの平面構造を、図2は
クロム酸アルマイトの断面構造を、図3は従来のアルミ
合金基板でのアルマイト表面から光学顕微鏡で見たアル
マイトの平面構造を、また図4は銅の添加量とクロム酸
アルマイトの微小ヴィッカース硬度との関係を示めす。
FIG. 1 is a plan view of the alumite surface of the alumite surface of the alumite substrate of the present invention when viewed with an optical microscope, FIG. 2 is a cross-sectional structure of the alumite chromate, and FIG. 3 is an optical view of the alumite surface of a conventional aluminum alloy substrate. FIG. 4 shows the plane structure of alumite as seen with a microscope, and FIG. 4 shows the relationship between the amount of copper added and the fine Vickers hardness of alumite chromate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量でマグネシウム2〜6%,銅0.002〜
0.03%を含み,残部アルミニウムおよび不純物からな
り,不純物の含有許容限界量が鉄0.003%,珪素0.005
%,亜鉛0.5%,マンガン0.0005%,クロム0.0005%,
ニッケル0.0005%,チタン0.0005%,その他の不純物元
素の合計が0.001%であるアルニウム合金材であってそ
の表面に厚さ6μm以上のクロム酸を用いてアルマイト
皮膜を形成することを特徴とする磁気記録材用アルマイ
ト基板の製法。
1. By weight 2 to 6% magnesium and 0.002 to copper.
Containing 0.03%, balance aluminum and impurities, the allowable content of impurities is 0.003% iron, 0.005% silicon
%, Zinc 0.5%, manganese 0.0005%, chromium 0.0005%,
Magnetic recording characterized by forming an alumite film on the surface of an aluminum alloy material containing 0.0005% nickel, 0.0005% titanium, and 0.001% in total of other impurity elements and using chromic acid having a thickness of 6 μm or more on the surface thereof. Manufacturing method of alumite substrate for wood.
【請求項2】皮膜層に存在するコロニーの径が7μm以
下であることを特徴とする特許請求の範囲第1項記載の
磁気記録材用アルマイト基板の製法。
2. The method for producing an alumite substrate for a magnetic recording material according to claim 1, wherein the diameter of the colonies present in the coating layer is 7 μm or less.
JP61035063A 1986-02-21 1986-02-21 Manufacturing method of alumite substrate for magnetic recording material Expired - Lifetime JPH0685212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035063A JPH0685212B2 (en) 1986-02-21 1986-02-21 Manufacturing method of alumite substrate for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035063A JPH0685212B2 (en) 1986-02-21 1986-02-21 Manufacturing method of alumite substrate for magnetic recording material

Publications (2)

Publication Number Publication Date
JPS62195721A JPS62195721A (en) 1987-08-28
JPH0685212B2 true JPH0685212B2 (en) 1994-10-26

Family

ID=12431559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035063A Expired - Lifetime JPH0685212B2 (en) 1986-02-21 1986-02-21 Manufacturing method of alumite substrate for magnetic recording material

Country Status (1)

Country Link
JP (1) JPH0685212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052550B3 (en) * 2005-11-02 2007-02-08 Krohne Ag Clamp-on ultrasound flow-through measuring device comprises a guiding frame fixed to a fixing unit so that it moves away from or toward a tube and pivots along a pivoting axis

Also Published As

Publication number Publication date
JPS62195721A (en) 1987-08-28

Similar Documents

Publication Publication Date Title
US4431461A (en) Method for producing Al-base alloy substrates for magnetic recording media
JPWO2018025769A1 (en) Aluminum alloy plate for magnetic disk substrate, method of manufacturing the same, and magnetic disk
JP2020029595A (en) Aluminum alloy blank for magnetic disk and manufacturing method therefor, magnetic disk using aluminum alloy blank for magnetic disk and manufacturing method therefor
JPH0122343B2 (en)
US5244516A (en) Aluminum alloy plate for discs with improved platability and process for producing the same
US4540449A (en) Aluminum substrate for magnetic recording media
US4826737A (en) Method of using aluminum alloy as substrate for magnetic discs with enhanced magnetic recording density
JPH0685212B2 (en) Manufacturing method of alumite substrate for magnetic recording material
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JPH0310168B2 (en)
JPS5989748A (en) Aluminum substrate for magnetic disk
JP6990290B1 (en) Aluminum alloy disc blanks and magnetic discs for magnetic discs
JPH09235640A (en) Aluminum alloy sheet for magnetic disk substrate and its production
JP7474356B2 (en) Aluminum alloy disk blank for magnetic disk and magnetic disk
JPS6151018B2 (en)
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPS63111153A (en) Aluminum alloy sheet for vertical magnetic disk and its production
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
JP2002275568A (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JP2023032362A (en) Aluminum alloy disk blank for magnetic disk and its manufacturing method, aluminum alloy substrate for magnetic disk using aluminum alloy disk blank for the magnetic disk, and magnetic disk using the aluminum alloy substrate for the magnetic disk
JP2023109561A (en) Aluminum alloy blank for magnetic disk and magnetic disk
JP2023032364A (en) Aluminum alloy substrate for magnetic disks, and magnetic disk including the same
JP2024020847A (en) Aluminum alloy disk blanks for magnetic disks and magnetic disks
JPH05140757A (en) Production of plated substrate for disk
JP2002194470A (en) Aluminum alloy disk substrate