JPH0685049A - Manufacture of semiconductor device including groove-filling-process - Google Patents

Manufacture of semiconductor device including groove-filling-process

Info

Publication number
JPH0685049A
JPH0685049A JP24470691A JP24470691A JPH0685049A JP H0685049 A JPH0685049 A JP H0685049A JP 24470691 A JP24470691 A JP 24470691A JP 24470691 A JP24470691 A JP 24470691A JP H0685049 A JPH0685049 A JP H0685049A
Authority
JP
Japan
Prior art keywords
filling
etching
film
semiconductor device
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24470691A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24470691A priority Critical patent/JPH0685049A/en
Publication of JPH0685049A publication Critical patent/JPH0685049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To provide a method for manufacturing semiconductors with shorter manufacturing time, higher productivity and higher reliability, while the portion to be removed is evenly removed, relating to the manufacture of semiconductor devices which includes the process for filling the groove in a base body through depositing means that performs etching and depositing at the same time. CONSTITUTION:Relating to the semiconductor device manufacturing method that includes the process of filling grooves 21-23 formed in a base body, by a depositing means in which etching and depositing are made at the same time, after the grooves 21-23 are filled, the depositing means is performed under the condition that etching horizontally progresses as required, and then a film 4 whose side wall is etched faster than others is formed, in an intention that filling materials 34-36 formed on the position other than portions to be filled are removed. And then, with the film used as a mask 4', filling materials 34'-36' to be removed are partially removed, and the remains are removed by grinding. All these processes are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溝の埋め込み工程を有
する半導体装置の製造方法に関する。本発明は、トレン
チアイソレーション、トレンチキャパシタ、溝の埋め込
みプラグ(埋め込みコンタクト)その他の構造を形成す
べく、溝を埋め込む工程を要する各種の半導体装置の製
造方法として利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a step of filling a groove. INDUSTRIAL APPLICABILITY The present invention can be used as a method for manufacturing various semiconductor devices that require a step of filling a trench to form a trench isolation, a trench capacitor, a buried plug (buried contact) of a groove, and other structures.

【0002】[0002]

【従来の技術】半導体集積回路等の半導体装置の微細化
・高集積化に伴い、素子間分離法も寸法変換差の大きい
従来のLOCOS法に替わり、寸法変換差のない溝型素
子間分離、例えばシャロートレンチ法などが用いられよ
うとしており、その実用化が重要な課題である。
2. Description of the Related Art With the miniaturization and high integration of semiconductor devices such as semiconductor integrated circuits, the element-to-element isolation method has replaced the conventional LOCOS method, which has a large dimensional conversion difference. For example, the shallow trench method is about to be used, and its practical application is an important issue.

【0003】このような溝型素子間分離を性能良く形成
するには、各種形状の溝を良好に埋め込むことができる
技術が要せられる。このためには、エッチングと堆積と
を同時進行的に行う堆積技術(バイアスECR−CVD
法が代表的である)が好ましく使用できる。バイアスE
CR−CVD法は、低圧で高密度プラズマを形成可能
で、低温での高速成長が達成でき、更に半導体ウェハー
等の基体にRFバイアスを印加することによって、堆積
のみならず、同時的にエッチングもでき、従って、微細
化されたトレンチ(溝)の埋め込みを良好に実現でき、
微細な溝の埋め込みのために欠かせない技術となってい
るものと言える。
In order to form such groove-type element isolation with good performance, a technique capable of satisfactorily filling grooves of various shapes is required. To this end, a deposition technique (bias ECR-CVD) in which etching and deposition are performed simultaneously is performed.
Method is typical) can be preferably used. Bias E
The CR-CVD method can form high-density plasma at low pressure, can achieve high-speed growth at low temperature, and by applying an RF bias to a substrate such as a semiconductor wafer, not only deposition but also simultaneous etching can be performed. Therefore, it is possible to satisfactorily embed a miniaturized trench (groove),
It can be said that this technology is indispensable for embedding fine grooves.

【0004】しかしこの技術は、次の問題点を残してい
る。即ち、上記した利点を生かして溝2a〜2cの埋め
込みを行った場合、図2に示すように、形成される堆積
形状に下地パターン依存性が出る。図2の如く、Si基
板等の基体1の広い領域A上では、埋め込み部以外の除
去すべき余分の埋め込み材料31(SiO2 等)が厚く
残る。これは、この方法が、一般に、Arイオンのスパ
ッタエッチングを利用して平坦化を行うことにより、該
スパッタエッチングがエッチング速度の角度依存性を持
つため、水平部の所では、堆積速度>エッチング速度に
なるためである。
However, this technique has the following problems. That is, when the grooves 2a to 2c are filled by making use of the above-mentioned advantages, as shown in FIG. 2, the deposited shape to be formed is dependent on the underlying pattern. As shown in FIG. 2, on the large area A of the substrate 1 such as the Si substrate, the extra burying material 31 (SiO 2 or the like) to be removed except the burying portion remains thick. This is because this method generally uses sputter etching of Ar ions for flattening, and the sputter etching has an angle dependence of the etching rate. Therefore, at the horizontal portion, the deposition rate> the etching rate. This is because

【0005】よって、この埋め込み部以外に形成された
余分な埋め込み材料31を除去する必要がある。少なく
とも、まず、溝2aの周辺に、マスク合わせのマージン
をとるため、或る程度の除去は必須である。この要請に
対して、本出願人は、いわゆる水平戻しエッチングを用
いてレジスト合わせのマージンを確保し、しかる後に余
分の除去すべき埋め込み材料(SiO2 等)をエッチン
グ除去する方法を発明した。水平戻しとは、水平方向
(図の左右方向)ではエッチングが進行し、垂直方向
(図の上下方向)ではエッチングも堆積も進行しない条
件で堆積を行い、これにより水平方向で埋め込み材料3
1を部分的に除去する技術である(本出願人による特願
平1−277929号参照)。
Therefore, it is necessary to remove the extra embedding material 31 formed outside the embedding portion. At least, to some extent, a margin for mask alignment is provided around the groove 2a, and therefore some removal is indispensable. In response to this request, the present inventor has invented a method of securing a margin for resist alignment by using so-called horizontal return etching, and then etching and removing an extra filling material (SiO 2 etc.) to be removed. The horizontal return means that the deposition is performed under the condition that etching progresses in the horizontal direction (horizontal direction in the figure) and neither etching nor deposition progresses in the vertical direction (vertical direction in the figure).
1 is a technique for partially removing 1 (see Japanese Patent Application No. 1-277929 by the present applicant).

【0006】しかし、この水平戻しの手法は、広い領域
上の余分な埋め込み材料31除去のマスク合わせのた
め、ある程度時間をかけなければならず、よって生産効
率に劣るという問題があった。
However, this horizontal return method requires a certain amount of time because of mask alignment for removing the extra filling material 31 over a wide area, and thus has a problem of poor production efficiency.

【0007】そのため、本出願人は上述の問題点を解決
し、広い領域上に除去すべき余分な埋め込み材料が残る
場合も、これを速やかに除去する技術を提供すべく、エ
ッチングと堆積とを同時進行的に行う堆積手段により基
体上の溝を埋め込む工程を備えて半導体装置を製造する
に際して、製造時間を短縮して、生産性高く半導体装置
を得ることができる製造方法として、バイアスECR−
CVD技術を用いて溝を埋め込んだ後、研磨により、除
去すべき余分な埋め込み材料を除去する技術を提案した
(特願平3−89573)。しかし単に研磨により余分
な部分を削り取るという技術では、研磨にパターン依存
性があって、均一な研磨除去ができないという問題があ
る。即ち、図4に示すように、研磨のストッパー層43
a,43bを有する狭い基板凸部領域B(この上に除去
すべき材料35’がある)と広い埋め込み領域Cとが隣
り合わせになる場合、狭い基板凸部領域Bのストッパー
層43bの研磨速度が広い基板凸部領域A(この上に除
去すべき材料36’がある)のストッパー層43aの研
磨速度よりも大きくなる。従って、それぞれ隣接する埋
め込み領域C,Dでの研磨速度に差が出てきて、例えば
図にEで示すように埋め込み領域Cの方が多く研磨され
る結果平坦性に差が生じ、表面平坦度が不均一になると
言う問題があった。
[0007] Therefore, the present applicant solves the above-mentioned problems and, even if an excessive burying material to be removed remains on a large area, provides a technique for removing the burying material promptly. As a manufacturing method capable of shortening the manufacturing time and obtaining a semiconductor device with high productivity when manufacturing a semiconductor device including a step of filling a groove on a substrate with a deposition means that is performed simultaneously, a bias ECR-
After filling the groove by using the CVD technique, a technique of removing an excessive filling material to be removed by polishing has been proposed (Japanese Patent Application No. 3-89573). However, the technique of simply removing an excessive portion by polishing has a problem in that polishing is pattern-dependent and uniform polishing cannot be removed. That is, as shown in FIG. 4, the stopper layer 43 for polishing is used.
When the narrow substrate convex region B having a and 43b (the material 35 'to be removed is above this) and the large embedded region C are adjacent to each other, the polishing rate of the stopper layer 43b of the narrow substrate convex region B is The polishing rate is higher than the polishing rate of the stopper layer 43a in the wide substrate convex portion area A (the material 36 'to be removed is present thereon). Therefore, a difference appears in the polishing rate between the adjacent embedded regions C and D, and as a result, for example, as shown by E in the figure, the embedded region C is polished more, resulting in a difference in flatness and surface flatness. There was a problem that was uneven.

【0008】[0008]

【発明の目的】本発明は上述の問題点を解決して、エッ
チングと堆積とを同時進行的に行う堆積手段により基体
上の溝を埋め込む工程を備えて半導体装置を製造するに
際して、製造時間を短縮して、生産性高く半導体装置を
得ることができるとともに、除去すべき余分の埋め込み
材料の除去を均一に行うことが可能な半導体装置の製造
方法を提供せんとするものである。
It is an object of the present invention to solve the above problems and to reduce the manufacturing time when manufacturing a semiconductor device including a step of filling a groove on a substrate with a deposition means for simultaneously performing etching and deposition. It is an object of the present invention to provide a method of manufacturing a semiconductor device which can be shortened to obtain a semiconductor device with high productivity and which can uniformly remove an extra filling material to be removed.

【0009】[0009]

【問題点を解決するための手段】本出願の請求項1の発
明は、エッチングと堆積とを同時進行的に行う堆積手段
により基体上に形成した溝を埋め込む工程を有する半導
体装置の製造方法において、溝の埋め込みを行った後、
側壁のエッチング速度の大きい膜を形成し、この膜をマ
スクとして、埋め込み部以外の部分に形成された除去す
べき埋め込み材料を部分的に除去する工程と、除去すべ
き埋め込み材料の残りの部分を研磨により除去する工程
を備えることを特徴とする溝の埋め込み工程を有する半
導体装置の製造方法であって、これにより上記目的を達
成するものである。
The invention according to claim 1 of the present application provides a method of manufacturing a semiconductor device, which comprises a step of filling a groove formed on a substrate by a deposition means for simultaneously performing etching and deposition. After filling the groove,
A step of forming a film having a high etching rate on the side wall and using this film as a mask to partially remove the filling material to be removed formed in the portion other than the filling portion, and the remaining portion of the filling material to be removed A method of manufacturing a semiconductor device having a step of filling a groove, the method including a step of removing by polishing, which achieves the above object.

【0010】本出願の請求項2の発明は、水平方向にエ
ッチングが進行する条件で前記堆積手段を行って埋め込
み部以外の部分に形成された除去すべき埋め込み材料を
部分的に除去し、その後研磨により、除去すべき埋め込
み材料の残りの部分を除去する工程を行う請求項1に記
載の溝の埋め込み工程を有する半導体装置の製造方法で
あって、これにより上記目的を達成するものである。
According to the invention of claim 2 of the present application, the depositing means is carried out under the condition that the etching progresses in the horizontal direction to partially remove the filling material formed in the portion other than the filling portion, and thereafter. A method of manufacturing a semiconductor device having a step of burying a groove according to claim 1, wherein the step of removing the remaining portion of the burying material to be removed is carried out by polishing, and the above object is achieved thereby.

【0011】本発明の構成について、後記詳述する実施
例を示す図1の例示を用いて略述すると、次のとおりで
ある。図1(a)に例示するような、半導体基板等の基
体1上に形成した溝21〜23をエッチングと堆積とを
同時進行的に行う堆積手段により埋め込んで図(b)に
例示するように溝21〜23の埋め込みを行った後、水
平方向にエッチングが進行する条件で前記堆積手段を行
って埋め込み部以外の部分に形成された除去すべき埋め
込み材料34〜36を部分的に除去して図1(c)に例
示する構造とし(このときの除去により露出した部分を
符号10a〜10eで示す。この工程はなくてもよ
い)、その後側壁のエッチング速度の大きい膜4を形成
して図1(d)に例示のような構造とし、この膜4をマ
スクとして前記除去すべき埋め込み材料34′(図1
(d)参照)を除去して図1(e)に例示の構造とする
工程と、残りの除去すべき部分を研磨にて除去して図1
(g)に例示の構造とする工程を備えるものである。
The structure of the present invention will be briefly described below with reference to the example of FIG. 1 showing an embodiment which will be described later in detail. As illustrated in FIG. 1B, the grooves 21 to 23 formed on the substrate 1 such as a semiconductor substrate are embedded by a deposition unit that simultaneously performs etching and deposition as illustrated in FIG. After burying the grooves 21 to 23, the depositing means is performed under the condition that the etching proceeds in the horizontal direction to partially remove the burying materials 34 to 36 formed in the portions other than the burying portion. With the structure illustrated in FIG. 1C (the portions exposed by the removal at this time are shown by reference numerals 10a to 10e. This step may be omitted), the film 4 having a high etching rate on the sidewall is formed thereafter. 1 (d), the filling material 34 'to be removed is formed by using the film 4 as a mask (see FIG. 1).
1 (d)) to obtain the structure illustrated in FIG. 1E, and the remaining portion to be removed is removed by polishing.
(G) is provided with the step of forming the structure.

【0012】側壁のエッチング速度の大きい膜4とは、
側壁例えば図1(d)に示す破線で示された部分41が
容易にエッチング除去されるようなものを言い、例えば
P−SiN(プラズマシリコンナイトライド)膜、P−
SiO膜、P−SiON膜、P−PSG膜が好ましく、
また、P−BPSGや、P−BSGも使用することがで
きる。これらは膜質が粗なので、例えばウェットエッチ
ングの場合、エッチング液が付着した側壁部分だけが容
易にエッチング除去される。
The film 4 having a high etching rate on the side wall means
A side wall, for example, a portion 41 indicated by a broken line shown in FIG. 1D is easily etched away, and is, for example, a P-SiN (plasma silicon nitride) film, a P-SiN film.
A SiO film, a P-SiON film, and a P-PSG film are preferable,
Moreover, P-BPSG and P-BSG can also be used. Since these have a rough film quality, for example, in the case of wet etching, only the side wall portion to which the etching liquid is attached is easily removed by etching.

【0013】[0013]

【作用】本発明によれば、図1(c)に示したような水
平戻しは極く短時間行うか、あるいはこの工程を省略し
ても、図1(d)(e)で示す側壁のエッチング速度の
大きい膜4をマスクにしたエッチングにより埋め込み部
31〜33以外の余分な埋め込み材料の内、例えば狭い
領域上の埋め込み材料35(図1(c)以降は35′)
は容易に除去され(図1(d)(e)参照)、またその
後、研磨にて、残った除去すべき部分である、例えば図
1(b)の符号34,36に相当する広い領域上の埋め
込み材料が除去される。この結果、狭い領域上の埋め込
み材料はあらかじめ除去され、研磨による除去は残った
広い領域上の埋め込み材料についてのみなされるので、
研磨のパターン依存性がなくなる。従って、時間を要す
る水平戻しをわずかにし、あるいはこれを省略できるも
ので、工程時間を短縮でき、製造時間を少なくした効率
の良い生産性の高い半導体装置の製造が、パターン依存
性なく、信頼性の高い手法で実現できる。
According to the present invention, the horizontal return as shown in FIG. 1 (c) is performed for a very short time, or even if this step is omitted, the side wall shown in FIG. 1 (d) (e) is removed. Of the extra filling material other than the filling portions 31 to 33, for example, the filling material 35 on a narrow region (35 ′ in FIG. 1 (c) and thereafter) by the etching using the film 4 having a high etching rate as a mask.
Are easily removed (see FIGS. 1 (d) and (e)), and are then removed by polishing, which is a portion to be removed, for example, on a large area corresponding to reference numerals 34 and 36 in FIG. 1 (b). Embedded material is removed. As a result, the embedding material on the narrow area is pre-removed and the removal by polishing is only for the remaining embedding material on the large area,
The pattern dependence of polishing is eliminated. Therefore, the time-consuming horizontal return can be made small or can be omitted, so that the process time can be shortened, the manufacturing time can be shortened, and the highly efficient and highly productive semiconductor device can be manufactured without pattern dependence and reliability. It can be realized with a high method.

【0014】[0014]

【実施例】以下本発明の実施例について、図面を参照し
て説明する。但し当然のことではあるが、本発明は以下
述べる実施例により限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings. However, as a matter of course, the present invention is not limited to the examples described below.

【0015】実施例−1 この実施例は、超LSI装置等の微細化集積化した半導
体装置の製造であって、幅の異なるアクティブ領域を有
するトレンチをバイアスECR−CVD法を用いて埋め
込み平坦化を行ってトレンチアイソレーションを形成す
る工程を有する場合に、本発明を適用したものである。
Example 1 This example is for manufacturing a miniaturized and integrated semiconductor device such as a VLSI device, in which trenches having active regions with different widths are buried and planarized by using a bias ECR-CVD method. The present invention is applied to the case where the method includes the step of performing the above to form the trench isolation.

【0016】本実施例では、シリコン基板である基体1
(ポリシリコン膜などのエッチングストッパ層ー41、
及びこのポリシリコン膜除去の際のエッチングストッパ
ー層42となるSiO2 膜などを有している。ストッパ
ー層41は、除去すべき埋め込み材料部分を除去する際
のエッチングストッパー層となるとともに、同じく研磨
による除去の際のストッパー層となるものである)にト
レンチパターンを形成し、溝21〜23を有する図1
(a)の構造を得る。パターニングは、通常のレジスト
プロセスを用いたフォトリソグラフィー技術及びシリコ
ンエッチング技術を用いることができる。この時アクテ
ィブ領域に幅の広い所Aと狭い所Bができる。
In this embodiment, the substrate 1 which is a silicon substrate
(Etching stopper layer 41 such as polysilicon film,
And a SiO 2 film which will serve as an etching stopper layer 42 when the polysilicon film is removed. The stopper layer 41 serves as an etching stopper layer when removing the embedded material portion to be removed, and also serves as a stopper layer when removing by polishing.) A trench pattern is formed on the stopper layer 41 to form the grooves 21 to 23. Having FIG. 1
The structure of (a) is obtained. For patterning, a photolithography technique using a normal resist process and a silicon etching technique can be used. At this time, a wide area A and a narrow area B are formed in the active area.

【0017】次に、バイアスECR−CVDを用いて、
溝21〜23の埋め込み平坦化を行う。例えば次の条件
で堆積を行い、SiO2 を埋め込む。 使用ガス系 :SiH4 /N2 O=20/35SCCM 圧力 :7×10-4Torr RFバイアス:500W マイクロ波 :800W これにより、図1(b)の構造を得る。溝21〜23に
埋め込まれた埋め込み材料(この例ではSiO2 )を符
号31〜33で示し、埋め込み部以外の部分に堆積した
余分な埋め込み材料を符号34〜36で示す。
Next, using bias ECR-CVD,
The grooves 21 to 23 are embedded and flattened. For example, deposition is performed under the following conditions and SiO 2 is embedded. Gas system used: SiH 4 / N 2 O = 20/35 SCCM Pressure: 7 × 10 −4 Torr RF bias: 500 W Microwave: 800 W As a result, the structure of FIG. 1B is obtained. The filling material (SiO 2 in this example) embedded in the grooves 21 to 23 is indicated by reference numerals 31 to 33, and the extra filling material deposited on the portion other than the embedded portion is indicated by reference numerals 34 to 36.

【0018】次に必要に応じて水平戻しを行う。これに
より、図1(c)の構造とする。図に示すように、除去
すべき余分な埋め込み材料(ここではSiO2 )34〜
36が部分的に除去される。露出部を符号10a〜10
eで示すが、これは極く小部分でよく、マスク合わせの
マージンほどは要さない程度のわずかな量でよい(図で
は図示の明瞭のため誇張して示してある)。このときの
水平戻しの条件は、例えば以下のようにすることができ
る。 使用ガス系 :SiH4 /N2 O=7.5/35SCC
M 圧力 :7×10-4Torr マイクロ波 :800W RFバイアス:500W
Next, if necessary, horizontal return is performed. As a result, the structure shown in FIG. As shown in the figure, an extra filling material (here, SiO 2 ) 34 to be removed is used.
36 is partially removed. The exposed part is denoted by 10a to 10
Although indicated by e, this may be a very small portion, and may be a small amount that is not necessary as much as a mask alignment margin (in the figure, it is exaggerated for clarity). The conditions for horizontal return at this time can be set as follows, for example. Used gas system: SiH 4 / N 2 O = 7.5 / 35SCC
M Pressure: 7 × 10 −4 Torr Microwave: 800W RF bias: 500W

【0019】次に、側壁のエッチング速度の大きい膜4
を形成する。ここでは埋め込み材料であるSiO2 とエ
ッチング速度比のとれる材料であるP−SiNをCVD
して、この膜4とした。P−SiNのCVDによる形成
は、通常の条件を用いるのでよく、例えば次の条件を採
用できる。 使用ガス系 :SiH4 /NH3 /N2 =180/50
0/720SCCM 圧力 :0.3Torr 温度 :250℃ RF印加 :900W(380KHZ ) 電極ギャップ:5cm この時、余分な埋め込み材料34′であるSiO2 側壁
についたP−SiNは膜質が粗になっている。その部分
の膜質が粗になる機構は必ずしも明らかではないが、図
3に示すように、符号40で示す余分な埋め込み材料3
4の側壁に対応する部分については、イオンIの照射が
ないので、膜が緻密化しないのに対し、その他の領域
は、シースやプラズマポテンシャルによるエネルギーで
加速されたイオンが照射され、膜が緻密化するためと推
定される。なお、このような段差部のエッチング速度が
他の部分より速くなる性質を利用した技術として、日経
マグロウヒル社「日経エレクトロニクス」1982年3
月29日号の93〜94頁に記載のものがあり、同10
0頁に原文献が引用されている。よって、この性質を利
用し、この側壁部分である図1(d)の符号41の部分
を、希HF等で除去する。
Next, the film 4 having a high etching rate on the side wall is formed.
To form. Here, SiO 2 which is a filling material and P-SiN which is a material having an etching rate ratio can be used for CVD.
Then, this film 4 was obtained. The formation of P-SiN by CVD may be performed under normal conditions, for example, the following conditions can be adopted. Gas system used: SiH 4 / NH 3 / N 2 = 180/50
0/720 SCCM Pressure: 0.3 Torr Temperature: 250 ° C. RF application: 900 W (380 KH Z ) Electrode gap: 5 cm At this time, the quality of P-SiN attached to the SiO 2 side wall, which is the extra filling material 34 ′, becomes rough. There is. Although the mechanism by which the film quality of the portion becomes rough is not always clear, as shown in FIG.
The portion corresponding to the side wall of No. 4 is not irradiated with the ions I, so that the film is not densified, whereas the other regions are irradiated with ions accelerated by the energy of the sheath or the plasma potential and the film is densified. It is presumed that this is due to In addition, as a technique utilizing such a property that the etching rate of the step portion is higher than that of other portions, “Nikkei Electronics”, Nikkei McGraw-Hill 1982 Mar.
There is one described on pages 93 to 94 of the 29th issue of the month, 10
The original document is cited on page 0. Therefore, by utilizing this property, the side wall portion indicated by reference numeral 41 in FIG. 1D is removed by diluted HF or the like.

【0020】次に、この部分除去された後の膜4(P−
SiN膜)をマスク4′として、余分な埋め込み材料を
部分的に除去する。即ちここでは、狭い領域上に形成さ
れた符号35’で示される部分に代表されるSiO2
除去する。例えば希HFでエッチングする場合、SiN
とSiO2 の選択比は10位なので、このエッチングに
より図1(e)の構造が得られる。図中、符号10にて
除去部分を示す。このようにすれば、狭い領域上の余分
なSiO2 は総て除去でき、よって、次の研磨工程にお
いて、広い領域と狭い領域とが存在することに伴うパタ
ーン依存性の問題がなくなる。
Next, the film 4 (P-
Using the SiN film) as a mask 4 ', excess filling material is partially removed. That is, here, SiO 2 typified by a portion indicated by reference numeral 35 ′ formed on the narrow region is removed. For example, when etching with dilute HF, SiN
Since the selection ratio of SiO 2 and SiO 2 is about 10, the structure shown in FIG. 1E is obtained by this etching. In the figure, reference numeral 10 indicates a removed portion. In this way, all the surplus SiO 2 on the narrow region can be removed, so that the problem of pattern dependence due to the existence of the wide region and the narrow region is eliminated in the next polishing process.

【0021】次に、リン酸等で、膜4を構成するP−S
iNを除去し、図1(f)の構造とする。
Next, P-S which forms the film 4 is made of phosphoric acid or the like.
iN is removed to obtain the structure shown in FIG.

【0022】次に、研磨で残りの図1(b)における符
号34,36に相当する余分のSiO2 を除去する。こ
のときの研磨条件は、圧力7psi、キャリア回転数3
5rpm、プラテン回転数17rpmとした。研磨時に
用いたポリッシュ液(スラリー)は、商品名SC−1
(CABOT COOPORATION製)を使用し
た。その固形成分はシリカ(全重量の30%)である
(pH:10.5−10.7、シリカ粒度:25−35
nm、pH調整剤:KOH)。このSC−1を脱イオン
水で15−20倍に希釈し、希塩酸またはKOH、Na
OH溶液を用いてpHコントロールして使用した。この
研磨により、図1(d)の構造をえた。
Next, the remaining SiO 2 corresponding to the reference numerals 34 and 36 in FIG. 1B is removed by polishing. The polishing conditions at this time were: pressure 7 psi, carrier rotation speed 3
The rotation speed was 5 rpm and the platen rotation speed was 17 rpm. The polishing liquid (slurry) used during polishing is trade name SC-1
(Manufactured by CABOT COORATION) was used. Its solid component is silica (30% of total weight) (pH: 10.5-10.7, silica particle size: 25-35).
nm, pH adjuster: KOH). This SC-1 was diluted 15-20 times with deionized water and diluted with diluted hydrochloric acid or KOH, Na.
The pH was controlled using an OH solution before use. By this polishing, the structure shown in FIG. 1D was obtained.

【0023】更に、ストッパー層41,42であるSi
2 /ポリSi構造41,42を除去する。これによ
り、図1(h)のように、溝21,22の埋め込み部3
1,32が基体1よりやや突出した、素子分離として耐
圧性の良好な構造が得られる。
Further, the stopper layers 41 and 42 are made of Si.
The O 2 / poly Si structures 41, 42 are removed. As a result, as shown in FIG. 1H, the embedded portions 3 of the grooves 21, 22 are
A structure in which 1 and 32 are slightly projected from the substrate 1 and have good pressure resistance as element isolation can be obtained.

【0024】本実施例によれば、溝21〜23の埋め込
み後、その上に膜4を形成し、その膜4の余分な埋め込
み材料34′〜36′であるSiO2 の側壁についた分
のみを選択的に除去し、それをマスクに余分なSiO2
の全部または一部を除去するようにしたので、従来のC
VD法によって、余分な埋め込み材料部(SiO2 )除
去用のマスクを形成でき、よって水平戻しを不要にする
ことも可能で、(もしくは短縮でき)、かつその後の研
磨もパターン依存性が問題にならず、均一な研磨除去を
実現できる。
According to this embodiment, after the trenches 21 to 23 are filled, the film 4 is formed on the trenches 21 to 23, and only the portion of the film 4 attached to the side wall of SiO 2 which is the extra filling material 34 ′ to 36 ′ is attached. Is selectively removed, and excess SiO 2 is used as a mask.
Since all or part of the
By the VD method, a mask for removing an extra burying material portion (SiO 2 ) can be formed, so that it is possible to eliminate (or shorten) the horizontal return, and the subsequent polishing also has a problem of pattern dependence. Therefore, uniform polishing removal can be realized.

【0025】実施例2 本実施例は実施例1の変形例である。図1(c)の構造
を得るまでは、実施例1と同様に行う。但し、図1
(c)の構造を得るための水平戻しを継続して、図1
(c)の35’で示す余分な埋め込み材料も、この水平
戻しで除去してしまう。即ち、図1(b)における狭い
領域上の余分な埋め込み材料35は、水平戻しを用いて
除去するものとする。実施条件は実施例1に示したもの
と同じとした。
Second Embodiment This embodiment is a modification of the first embodiment. Until the structure of FIG. 1C is obtained, the same process as in Example 1 is performed. However, in FIG.
Continue horizontal return to obtain the structure of (c), and
The extra embedding material indicated by 35 'in (c) is also removed by this horizontal return. That is, the extra filling material 35 on the narrow region in FIG. 1B is removed by horizontal return. The operating conditions were the same as those shown in Example 1.

【0026】その後、実施例1と同様に側壁のエッチン
グ速度の大きい膜4としてP−SiN膜を形成し、余分
な埋め込み材料、即ちこの例では広い領域上に残った図
1(b)の符号34,36で示した材料部分に相当する
部分の側壁をエッチング除去して、更に残った部分を研
磨により除去した。具体的な方法は実施例1と同様にし
た。本実施例によっても、工程の時間を短縮できるとと
もに、研磨工程の前にあらかじめ狭い領域上の余分な埋
め込み材料は水平戻しによって除去しておくので、研磨
工程においてはパターン依存性のない研磨が可能とな
る。
After that, a P-SiN film is formed as the film 4 having a high etching rate on the side wall similarly to the first embodiment, and an excessive filling material, that is, the reference numeral of FIG. The sidewalls of the portions corresponding to the material portions indicated by 34 and 36 were removed by etching, and the remaining portions were removed by polishing. The specific method was the same as in Example 1. Also in this embodiment, the process time can be shortened, and the excess filling material on the narrow region is removed by horizontal return in advance before the polishing process, so that polishing can be performed without pattern dependence in the polishing process. Becomes

【0027】[0027]

【発明の効果】本発明によれば、エッチングと堆積とを
同時進行的に行う堆積手段により基体上の溝を埋め込む
工程を備えて半導体装置を製造するに際して、製造時間
を短縮して、生産性高く、かつ余分な部分の除去を均一
に行うことができ、よって信頼性の良いプロセスで半導
体装置を得ることができる。
According to the present invention, when a semiconductor device is manufactured with a step of filling a groove on a substrate with a deposition means for simultaneously performing etching and deposition, the manufacturing time is shortened and the productivity is improved. It is possible to uniformly remove the expensive and extra portions, and thus the semiconductor device can be obtained by a highly reliable process.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例−1の工程を順に断面図で示すものであ
る。
1A to 1C are sectional views showing steps of Example 1 in order.

【図2】問題点を示す図である。FIG. 2 is a diagram showing a problem.

【図3】作用説明図である。FIG. 3 is an operation explanatory view.

【図4】研磨のパターン依存性を示す図である。FIG. 4 is a diagram showing pattern dependence of polishing.

【符号の説明】[Explanation of symbols]

1 基体 21〜23 溝 34〜36,34′〜36′,34″ 除去すべき埋め
込み材料 4 側壁のエッチング速度の大きい膜 4′マスク
1 Substrate 21-23 Groove 34-36, 34'-36 ', 34 "Filling Material to be Removed 4 Film with High Sidewall Etching Rate 4'Mask

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月26日[Submission date] August 26, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エッチングと堆積とを同時進行的に行う堆
積手段により基体上に形成した溝を埋め込む工程を有す
る半導体装置の製造方法において、 溝の埋め込みを行った後、 側壁のエッチング速度の大きい膜を形成し、 この膜をマスクとして、埋め込み部以外の部分に形成さ
れた除去すべき埋め込み材料を部分的に除去する工程
と、 除去すべき埋め込み材料の残りの部分を研磨により除去
する工程を備えることを特徴とする溝の埋め込み工程を
有する半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising a step of filling a groove formed on a substrate by a deposition means that simultaneously performs etching and deposition, wherein a sidewall has a high etching rate after the groove is filled. Forming a film, and using this film as a mask, a step of partially removing the embedding material to be removed formed in a portion other than the embedding portion and a step of removing the remaining portion of the embedding material to be removed by polishing A method for manufacturing a semiconductor device, comprising a step of filling a groove, which comprises:
【請求項2】溝の埋め込みを行った後、 水平方向にエッチングが進行する条件で前記堆積手段を
行って埋め込み部以外の部分に形成された除去すべき埋
め込み材料を部分的に除去し、 その後研磨により、除去すべき埋め込み材料の残りの部
分を除去する工程を行う請求項1に記載の溝の埋め込み
工程を有する半導体装置の製造方法。
2. After burying the groove, the depositing means is performed under the condition that the etching proceeds in the horizontal direction to partially remove the burying material to be removed formed in a portion other than the burying portion. 2. The method for manufacturing a semiconductor device having a groove filling step according to claim 1, wherein the step of removing the remaining portion of the filling material to be removed is performed by polishing.
JP24470691A 1991-08-29 1991-08-29 Manufacture of semiconductor device including groove-filling-process Pending JPH0685049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24470691A JPH0685049A (en) 1991-08-29 1991-08-29 Manufacture of semiconductor device including groove-filling-process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24470691A JPH0685049A (en) 1991-08-29 1991-08-29 Manufacture of semiconductor device including groove-filling-process

Publications (1)

Publication Number Publication Date
JPH0685049A true JPH0685049A (en) 1994-03-25

Family

ID=17122716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24470691A Pending JPH0685049A (en) 1991-08-29 1991-08-29 Manufacture of semiconductor device including groove-filling-process

Country Status (1)

Country Link
JP (1) JPH0685049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361761B1 (en) * 1995-06-02 2003-02-05 주식회사 하이닉스반도체 Method for forming isolating layer of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361761B1 (en) * 1995-06-02 2003-02-05 주식회사 하이닉스반도체 Method for forming isolating layer of semiconductor device

Similar Documents

Publication Publication Date Title
US5923993A (en) Method for fabricating dishing free shallow isolation trenches
KR100279016B1 (en) Method of Planarizing Non-Conformal Device Layers in Semiconductor Manufacturing
US20020037629A1 (en) Chemical mechanical polishing for forming a shallow trench isolation structure
JP2874486B2 (en) Method for forming trench isolation with polishing step and method for manufacturing semiconductor device
JP3163719B2 (en) Method for manufacturing semiconductor device having polishing step
EP0954022B1 (en) Method for providing shallow trench isolation of transistors
JP3362397B2 (en) Manufacturing method of electronic device including polishing step by polishing
US20050142804A1 (en) Method for fabricating shallow trench isolation structure of semiconductor device
US6790742B2 (en) Chemical mechanical polishing in forming semiconductor device
US6387808B1 (en) Method of correcting topographical effects on a micro-electronic substrate
JP2000164690A (en) Manufacture of semiconductor device
US6103581A (en) Method for producing shallow trench isolation structure
US6087262A (en) Method for manufacturing shallow trench isolation structure
JPH0685049A (en) Manufacture of semiconductor device including groove-filling-process
JP3257511B2 (en) Method for manufacturing semiconductor device having polishing step
JP3132089B2 (en) Method for manufacturing semiconductor device
KR940009350B1 (en) Manufacturing method of semiconductor device
JPH0758104A (en) Manufacture of semiconductor device
JP3185274B2 (en) Method for manufacturing semiconductor device
JPH0669333A (en) Manufacture of semiconductor device including process for filling groove
US6291111B1 (en) Method of trench polishing
KR20010063731A (en) Method of forming an isolation layer in a semiconductor device
KR100954418B1 (en) Method for forming isolation layer of semiconductor device
KR100312647B1 (en) Planarization method of semiconductor device
JP2001210710A (en) Forming process of shallow trench isolation utilizing sacrificial layer