JPH0684611B2 - Method of discharging gravel in a reservoir - Google Patents

Method of discharging gravel in a reservoir

Info

Publication number
JPH0684611B2
JPH0684611B2 JP1278695A JP27869589A JPH0684611B2 JP H0684611 B2 JPH0684611 B2 JP H0684611B2 JP 1278695 A JP1278695 A JP 1278695A JP 27869589 A JP27869589 A JP 27869589A JP H0684611 B2 JPH0684611 B2 JP H0684611B2
Authority
JP
Japan
Prior art keywords
water
surge tank
sand
reservoir
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1278695A
Other languages
Japanese (ja)
Other versions
JPH03140517A (en
Inventor
典夫 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1278695A priority Critical patent/JPH0684611B2/en
Publication of JPH03140517A publication Critical patent/JPH03140517A/en
Publication of JPH0684611B2 publication Critical patent/JPH0684611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、水力発電用の貯水池に堆積した砂礫や底泥
を排出する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for discharging gravel and bottom mud accumulated in a reservoir for hydroelectric power generation.

従来のダムは、土砂による水車や水圧鉄管の摩耗を防止
するため、貯水池の表層流を主に導水路に流し、土砂は
貯水池に沈積させている。したがって貯水池には次第に
土砂が堆積し、その有効貯水量が減少し、発電能力、洪
水調整能力および水資源保有能力などの諸機能の低下を
まねき、ダム上流の川床上昇による洪水増加やダム下流
側の土砂供給遮断による河床低下、海岸後退等、種々の
問題を誘発している。
In the conventional dam, in order to prevent the abrasion of the water wheel and the penstock by the sediment, the surface flow of the reservoir is mainly flowed to the headrace, and the sediment is deposited in the reservoir. Therefore, the sediment gradually accumulates in the reservoir, the effective storage amount of which decreases, leading to the deterioration of various functions such as power generation capacity, flood control capacity and water resource holding capacity. It has caused various problems such as riverbed degradation and coastal retreat due to the sediment supply cutoff.

また貯水池の底には動植物の遺骸や腐敗物等の有機物も
沈積し、湖底では溶存酸素が不足しているため自然浄化
が行われず、貯水池を富栄養化し、例えば水道水の悪臭
の原因となる藍藻(アオコ)を多発させ、飲料水汚染と
して問題となっている。
In addition, the remains of animals and plants and organic matter such as spoilage are also deposited at the bottom of the reservoir, and dissolved oxygen is insufficient at the bottom of the lake, so natural purification is not performed and the reservoir is eutrophic, causing, for example, malodorous tap water. It causes a lot of blue-green algae and is a problem as drinking water pollution.

仮に上記のダムによる滞水がなければ、土砂や動植物の
遺骸や腐敗物等の有機物は下流へ流れ、土砂や礫は建設
材料として有効利用され、また有機物は溶存酸素の豊富
な河川で自然浄化され、農林業に最適の有機肥料となっ
たり、魚介類の餌となるプランクトンの栄養源とするこ
とができる。
If there is no water retention due to the above dams, organic matter such as sediments and remains of animals and plants and putrefaction will flow to the downstream, soils and gravel will be effectively used as construction materials, and organic matter will be purified naturally in a river rich in dissolved oxygen. Therefore, it can be used as an optimal organic fertilizer for agriculture and forestry, or as a nutrient source for plankton, which is a food for seafood.

(従来の技術) そこでダムに排砂門を設けたり、貯水池の岸に排砂管を
設置し、洪水時にこれらの弁を開いて水とともに土砂を
流す工夫が施されているが、次のような問題点があり、
充分な成果をあげていない。すなわち砂を流水によって
排出するためには、多量の水が必要であり、貯水池を空
にするまで流さないと有効な排砂はできない。
(Prior art) Therefore, a sand removal gate was installed on the dam, a sand removal pipe was installed on the shore of the reservoir, and these valves were opened to flush the sand with water during a flood. There are some problems,
Not getting enough results. That is, a large amount of water is required to discharge sand by running water, and effective sand removal cannot be performed without flowing the water until the reservoir is emptied.

したがって貯水池を元の満水状態にするには洪水減衰期
の流入量で貯水しなければならないので、小、中規模の
調整池以外は適用できない。また発電に供し得る水力を
無駄に捨てる結果となり、上水用、農水用等利水用ダム
ではこの方法は採用できない。
Therefore, in order to return the reservoir to its original full state, it is necessary to store water at the inflow during the flood attenuation period, so it is not possible to apply it to anything other than small and medium-sized reservoirs. In addition, this results in waste of the hydraulic power that can be used for power generation, and this method cannot be used for dams for water supply such as tap water and agricultural water.

(発明が解決しようとする課題) 上記のように、貯水池における堆砂の排出に有効な方法
は見当たらず、したがってこの発明は、堆砂の排出を確
実に行うことのできる新規な方法について提案すること
を目的とする。
(Problems to be Solved by the Invention) As described above, there is no effective method for discharging sediment in a reservoir, and therefore, the present invention proposes a novel method capable of reliably discharging sediment. The purpose is to

(課題を解決するための手段) 発明者は、在来方式のように表層流を優先的に取水する
のではなく、逆に貯水池に流入する土砂や礫を優先的に
圧力式の導入管に流入させれば、堆砂の排出を確実に行
えることを見い出し、この発明を完成するに至った。
(Means for Solving the Problem) The inventor does not preferentially take in surface water as in the conventional method, but conversely preferentially uses sediment or gravel flowing into a reservoir as a pressure-type introduction pipe. It was found that the sediment can be surely discharged if it is made to flow in, and the present invention has been completed.

すなわちこの発明は、貯水池底部に取水口を配した導水
管から、砂礫を含む流水を主サージタンクに導き、この
主サージタンクの底部に取水中の砂を沈澱させる一方、
主サージタンクの上部に接続した水圧鉄管を介して発電
用水車に取水を導き、次いで主サージタンク内および主
サージタンクの底部と排砂管を介して連通する副サージ
タンク内の水に、水車運転中の圧力変動、発電機の負荷
変動、そして水車運転開始および停止時の水衝撃に起因
した振動を付与し、主サージタンク底部の沈砂を液状化
し、排砂管へ流し込むことを特徴とする貯水池における
砂礫の排出方法およびさらに主サージタンクの中間部に
傾斜させて設置したふるいにて、取水中から岩石をふる
い分けるとともに、このふるいを主サージタンク内の水
の振動によって振動させ、岩石を主サージタンクに接続
した岩石排出管へ導くことを特徴とする貯水池における
砂礫の排出方法である。
That is, the present invention guides running water containing sand and gravel to a main surge tank from a water pipe having an intake port at the bottom of the reservoir, while precipitating sand in the intake water at the bottom of the main surge tank.
Water is guided to the turbine for power generation via the penstock connected to the upper part of the main surge tank, and then to the water in the main surge tank and in the sub-surge tank communicating with the bottom of the main surge tank via the sand discharge pipe. It is characterized by applying pressure fluctuations during operation, fluctuations in generator load, and vibrations caused by water shocks at the start and stop of turbine operation, liquefying the sediment at the bottom of the main surge tank and pouring it into the sand discharge pipe. The method of draining gravel in the reservoir and the sieve installed in the middle of the main surge tank with an inclination to screen rocks from the intake water, and this sieve is vibrated by the vibration of the water in the main surge tanks. It is a method of discharging gravel in a reservoir characterized by leading to a rock discharge pipe connected to a main surge tank.

次に第1図を参照して、この発明を具体的に説明する。Next, the present invention will be described in detail with reference to FIG.

図中1は圧力式の導水管で、第2図に示すようにその取
水口2を、貯水池3の底部、好ましくは土砂が沈積し始
める付近(河川の流心)に設置する。取水口2には、導
水管1を詰まらせるおそれのある流木や巨礫を除去する
脱着自在の柵4を配置するが、柵4は土砂や礫が通過し
易い構造とする。また、湖底布設の導水管は可撓性のあ
るメカニカル継手で接続し、後述の特願昭63-135409号
明細書に記載のライニングを施すとよい。このようにす
れば取水口位置を堆積の多い場所に移動して堆砂を効果
的に吸引できる。また取水口を更に上流側に延長したい
場合は、取水口を湖岸まで引き上げ延長用の導水管を接
続できるようにする。また底泥を吸引するのに適した多
数の孔明き管を複数本接続する。このようにして堆砂お
よび底泥を堆積させることなく積極的に吸引排出する。
In the figure, 1 is a pressure type water conduit, and its intake 2 is installed at the bottom of a reservoir 3, preferably near the start of sedimentation (streamline of the river), as shown in FIG. The intake 2 is provided with a detachable fence 4 for removing driftwood and boulders that may clog the water conduit 1. The fence 4 has a structure that allows easy passage of earth and sand and gravel. Further, the water conduits laid in the lake bottom may be connected by flexible mechanical joints, and may be lined as described in Japanese Patent Application No. 63-135409. In this way, the intake position can be moved to a place with a large amount of sediment and the sediment can be effectively sucked. In addition, if it is desired to extend the intake further upstream, the intake will be pulled up to the shore so that extension pipes can be connected. Also, connect a number of perforated tubes suitable for sucking bottom mud. In this way, sediment and bottom mud are positively sucked and discharged without depositing.

次に導水管1からの取水を、発電用水車5へ流水を導く
水圧鉄管6の上流に設置した主サージタンク7に導入す
る。ここで取水中の土砂や礫は水と分離される。
Next, the water intake from the water conduit 1 is introduced into the main surge tank 7 installed upstream of the penstock 6 that guides the running water to the power generation turbine 5. Here, the sediment and gravel in the intake water are separated from the water.

すなわち粒径が10mmをこえる礫は、主サージタンク7内
のふるい8によりふるい分け、主サージタンク7に接続
した岩石排出管9へ移動する。岩石排出管9の先端には
サージタンク10および仕切弁11を設置し、ここに岩石を
溜めておく。
That is, the gravel having a particle size of more than 10 mm is sieved by the sieve 8 in the main surge tank 7 and moved to the rock discharge pipe 9 connected to the main surge tank 7. A surge tank 10 and a sluice valve 11 are installed at the tip of the rock discharge pipe 9, and the rock is stored therein.

また粒径が10mm以下の砂礫は、ふるい8を通過し主サー
ジタンク7の底部に沈澱する。主サージタンク7の底部
は排砂管12を介して副サージタンク13と連通し、さらに
排砂管12の先端に仕切弁14を設置してなる。
Gravel with a particle size of 10 mm or less passes through the sieve 8 and settles on the bottom of the main surge tank 7. The bottom of the main surge tank 7 communicates with the sub-surge tank 13 through the sand discharging pipe 12, and the sluice valve 14 is installed at the tip of the sand discharging pipe 12.

一方水圧鉄管6から発電用水車5に導いた流水にて水圧
発電の運転を開始し、この運転中は上記の仕切弁11およ
び14を締めておくと、脈動が生じて各サージタンク7,10
および13内の水位が上下に振動する。
On the other hand, when the hydraulic power generation is started with running water guided from the penstock 6 to the power generation turbine 5, and the sluice valves 11 and 14 are closed during this operation, pulsation occurs and each surge tank 7,10
And the water level in 13 vibrates up and down.

この発明では、この振動を利用して取水中より砂礫を効
率良く分離し、分離後の砂礫を所定の場所へと流送する
ことに特徴がある。
The present invention is characterized in that the vibration is utilized to efficiently separate the gravel from the intake water, and the separated gravel is sent to a predetermined place.

まずふるい8は主サージタンク7の内壁にばね15を介し
て固定し、上記した振動によってふるい8にも振動を与
え、ふるい8上の粒径が10mmをこえる岩石を転動させ、
岩石を岩石排出管9へ確実に送り込む。
First, the sieve 8 is fixed to the inner wall of the main surge tank 7 via the spring 15, and the vibration is also given to the sieve 8 by the above-mentioned vibration to roll the rock having a grain size of 10 mm or more on the sieve 8.
The rock is surely sent to the rock discharge pipe 9.

一方粒径10mm以下の砂礫は、ふるい8の目詰まりを起こ
すことなくふるい8を通過し、主サージタンク7の底部
に沈澱する。
On the other hand, gravel with a particle size of 10 mm or less passes through the sieve 8 without causing clogging of the sieve 8 and settles on the bottom of the main surge tank 7.

上記した水車運転中に生じる脈動は、サージタンク7,10
および13の水面を上下に振動させ、上部の空間7a,10aお
よび13aの容量を増減する。すると、副サージタンク13
の空間13aの増減に等しい容量にて排砂管12内の水が前
後に流動し、この水の振動が主サージタンク7の底部に
沈澱した砂を液状化し、砂は排砂管12が水平であって
も、その内壁に沿って、あたかも液体のように流動す
る。主サージタンク7の底部における沈砂16と滞砂17と
の境界は水平となり、この水平面は沈砂の増加とともに
上昇し、水平面がふるい8の直下に達したならば、仕切
弁14を開いて沈砂16を放出する。また排砂管12は洪水吐
として機能させ得るので、洪水が予想されダム水位を下
げる必要が生じた場合は、仕切弁14を開いて沈砂ととも
に排水を行う。
The pulsation that occurs during operation of the water turbine described above is
The water surfaces of and 13 are vibrated up and down to increase or decrease the capacity of the upper spaces 7a, 10a and 13a. Then, the sub surge tank 13
The water in the sand discharge pipe 12 flows back and forth with a capacity equal to the increase / decrease of the space 13a, and the vibration of this water liquefies the sand that has settled at the bottom of the main surge tank 7, so that the sand discharge pipe 12 is horizontal. Even so, it flows along its inner wall as if it were a liquid. At the bottom of the main surge tank 7, the boundary between the settling sand 16 and the settling sand 17 becomes horizontal, and this horizontal surface rises with the increase in the settling sand. When the horizontal surface reaches just below the sieve 8, the sluice valve 14 is opened and the settling sand 16 To release. Further, since the sand discharging pipe 12 can function as a spillway, when a flood is expected and it is necessary to lower the dam water level, the sluice valve 14 is opened to discharge sand together with sand.

なお粒径10mm以上の礫は液状化しがたいので岩石排出管
9は排砂管12よりは管の勾配を大きくしなければならな
いが、サージタンク10の空間10aの増減に相当する管内
流体の正逆方向での繰返し流動があり、これが岩石の転
動または滑動を助け、この繰返し流動のない場合と比較
すれば小さい勾配で転動させることができる。
Since the gravel with a particle size of 10 mm or more is difficult to liquefy, the rock discharge pipe 9 must have a larger gradient than the sand discharge pipe 12, but the fluid inside the pipe corresponding to the increase or decrease of the space 10a of the surge tank 10 must be corrected. There is repeated flow in the opposite direction, which aids in the rolling or sliding of the rock, allowing it to roll at a smaller gradient compared to the absence of this repeated flow.

そして岩石が岩石排出管9内に充満するか、洪水の際の
ダム水位調整時に仕切弁11を開いて岩石を排出すればよ
い。
Then, the rock may be filled in the rock discharge pipe 9, or the sluice valve 11 may be opened to discharge the rock when the dam water level is adjusted during a flood.

(作 用) この発明においては発電用水車運転時に生じる脈動を利
用するが、この脈動は下記の(1)〜(3)に起因して
生ずる。
(Operation) In the present invention, the pulsation generated during the operation of the water turbine for power generation is utilized, and the pulsation occurs due to the following (1) to (3).

記 (1)運転中の水車のランナーに流水が衝突してその反
力により圧力変動が生ずる。
Note (1) The running water collides with the runner of the running turbine, and the reaction force causes a pressure fluctuation.

(2)水車ドラフト管内中心部の渦流が揺れ動くことに
より圧力変動が生ずる。
(2) Pressure fluctuations occur due to the vortex flow in the central part of the water turbine draft pipe.

(3)水力発電の負荷の変動、発電の開始および停止時
の水衝撃(ウォーターハンマー)による圧力振動がおこ
る。
(3) Pressure fluctuations due to fluctuations in the load of hydropower generation and water impact (water hammer) at the start and stop of power generation.

この水圧鉄管に特有の脈動によって排砂管内の水を振動
させ、主サージタンク底部から排砂管内に至る間の沈砂
を液状化して有利な排砂を行うわけである。
The pulsation peculiar to this penstock causes the water in the sand discharge pipe to vibrate, and the sand between the bottom of the main surge tank and the inside of the sand discharge pipe is liquefied to perform advantageous sand discharge.

ここで砂の液状化とは、非排水状態で方向が何度も逆転
する剪断力を加えると砂粒子間に過剰間隙水圧が累積
し、砂粒子間の剪断抵抗力低下がゼロへ漸近し、液体の
特性を帯びる現象をいう。
Here, liquefaction of sand means that excessive shear water pressure accumulates between sand particles when a shearing force whose direction is reversed many times in a non-drained state is accumulated, and the decrease in shear resistance between sand particles asymptotically approaches zero. A phenomenon that takes on the characteristics of a liquid.

液状化を生じやすい砂礫の粒度は、平均粒径D50が0.075
〜2.0mmで均等係数10未満のものとされている。したが
って最大粒径を5〜10mmとするにはふるいの目開きを9.
5mm以下にするのが適当である。粒径10mm以上の礫が沈
砂の中に混入すると、その混入率の増加につれて液状化
が阻害されてくるので、ふるいによるふるい分けが必要
となる。
The particle size of gravel that tends to cause liquefaction has an average particle size D 50 of 0.075.
It is said that the uniformity coefficient is less than 10 at ~ 2.0 mm. Therefore, to make the maximum particle size 5 to 10 mm, open the sieve with 9.
It is suitable to be 5 mm or less. If gravel with a particle size of 10 mm or more is mixed in the settling sand, the liquefaction will be hindered as the mixing ratio increases, so sieving by sieving is necessary.

この発明を実施した場合、導水管、排砂管、および岩石
排出管等の管類の内面の磨耗が問題となるが、これら管
類の内面を、発明者が先に特願昭63-135409号明細書に
て提案した、「粘着材層を含む積層ライニングを供える
ラインパイプおよびその施工方法」にてライニングすれ
ば、この問題解決のほか次の効果が期待でき有利であ
る。
When this invention is carried out, abrasion of the inner surfaces of pipes such as water pipes, sand discharge pipes, and rock discharge pipes becomes a problem, but the inventor first applied the inner surface of these pipes to Japanese Patent Application No. 63-135409. Lining with the "line pipe provided with a laminated lining including an adhesive layer and its construction method" proposed in the specification of the specification is advantageous because it can expect the following effects in addition to solving this problem.

すなわち (i)各管の耐用年数を半永久的(メンテナンスフリ
ー)に延ばすことができる。
That is, (i) the service life of each tube can be extended semipermanently (maintenance-free).

(ii)ライニングが摩耗した場合、ライニングチューブ
だけを短時間に取替えることができる。
(Ii) If the lining becomes worn, only the lining tube can be replaced in a short time.

(iii)湖底に布設した導水管を可撓性のあるメカニカ
ル継手で接続してライニングすれば、ライニングチュー
ブが摩耗した場合ダム湖を空にすることなく短時間に取
替えられる。それは取水口を湖岸まで引き上げ排水後摩
耗チューブを引き出し新しいチケーブでランニングでき
るからである。
(Iii) If the water pipes laid on the bottom of the lake are connected by a flexible mechanical joint and lined, the dam lake can be replaced in a short time without emptying it if the lining tube is worn. This is because the intake tube can be pulled up to the shore of the lake, and after draining, the abrasion tube can be pulled out and the new chives can be run.

(iv)ライニング層に軟質のゴムを使うと、このゴム層
と管の間に介在する液体を含浸した補強布の層およびラ
イニング層が水の派動によって振動して、その面上の砂
礫の流動、滑動または転動を容易にする。
(Iv) When soft rubber is used for the lining layer, the liquid-impregnated reinforcing cloth layer and the lining layer interposed between the rubber layer and the pipe vibrate due to the force of water, and the gravel on the surface Facilitates flow, sliding or rolling.

(v)上記のライニングの各層は管壁に加わる衝撃的な
脈圧を緩和する機能を有する。
(V) Each layer of the above lining has a function of relieving an impulsive pulse pressure applied to the tube wall.

(発明の効果) この発明によれば、貯水池に流入する土砂および礫を優
先的に導水管内に導いて、ダムのもつ三機能(発電、利
水、洪水調整)を低下させずに、容易に排出できるの
で、ダム堆砂により発生する諸問題が解決する。また底
泥も排出すれば、河川を流下する動植物の遺骸や腐敗物
等の有機物がダム湖で遮られることなしに下流へ流され
るので、ダム湖の富栄養化の問題をも解決する。これら
有機物は溶存酸素の不足する湖底では、嫌気性菌によっ
て硫化水素やメルカカプタンなどの悪臭を放つガスが発
生し、腐水化して死の湖と化すが、これを大気中に放出
すると好気性菌により醗酵され、有機物中の炭素は炭酸
ガスとなり大気中に逃げ、水素は水となる。窒素やリン
は硝酸塩、リン酸塩など植物の重要な栄養塩とすること
ができる。
(Effects of the Invention) According to the present invention, the sediment and gravel flowing into the reservoir are preferentially guided into the water conduit, and the dam's three functions (power generation, water utilization, flood control) are not easily reduced and discharged easily. Therefore, various problems caused by dam sedimentation can be solved. If the bottom mud is also discharged, the remains of the flora and fauna flowing down the river and organic matter such as spoilage will be discharged downstream without being blocked by the dam lake, thus solving the problem of eutrophication in the dam lake. At the bottom of the lake where dissolved oxygen is deficient, anaerobic bacteria generate gas that gives off foul odors such as hydrogen sulfide and mercaptans, and they turn into water and become dead lakes. Fermentation, carbon in the organic matter becomes carbon dioxide gas and escapes to the atmosphere, and hydrogen becomes water. Nitrogen and phosphorus can be important plant nutrients such as nitrates and phosphates.

また、在来技術ではダムに堆積したままの砂礫を、殆ど
動力を使わずに、砂礫のもつ位置エネルギーを利用して
水力発電所より遥か下流の砂礫集積地などに流送するこ
とができ、これらを建設材料として有効利用できる。
Also, with conventional technology, the gravel as it is deposited on the dam can be sent to the gravel collection site far downstream from the hydroelectric power plant by using the potential energy of the gravel with almost no power. These can be effectively used as construction materials.

【図面の簡単な説明】[Brief description of drawings]

第1図は排砂方法を説明する水圧鉄管の上流付近の模式
図、 第2図は導水管の配置を示す貯水池の断面図である。 1……導水管、2……取水口 3……貯水池、4……柵 5……発電用水車、6……水圧鉄管 7……主サージタンク、8……ふるい 9……岩石排出管、10……サージタンク 11,14……仕切弁、12……排砂管 13……副サージタンク、15……ばね 16……沈砂、17……滞水
FIG. 1 is a schematic diagram near the upstream of a penstock for explaining the sand removal method, and FIG. 2 is a sectional view of a reservoir showing the arrangement of water conduits. 1 ... Water pipe, 2 ... Intake port, 3 ... Reservoir, 4 ... Fence, 5 ... Power turbine, 6 ... Hydraulic iron pipe, 7 ... Main surge tank, 8 ... Sieve, 9 ... Rock discharge pipe, 10 …… Surge tank 11,14 …… Silver valve, 12 …… Sand drainage pipe 13 …… Secondary surge tank, 15 …… Spring 16 …… Sand settling, 17 …… Standing water

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】貯水池底部に取水口を配した導水管から、
砂礫を含む流水を主サージタンクに導き、この主サージ
タンクの底部に取水中の砂を沈澱させる一方、主サージ
タンクの上部に接続した水圧鉄管を介して発電用水車に
取水を導き、次いで主サージタンク内および主サージタ
ンクの底部と排砂管を介して連通する副サージタンク内
の水に、水車運転中の圧力変動、発電機の負荷変動、そ
して水車運転開始および停止時の水衝撃に起因した振動
を付与し、主サージタンク底部の沈砂を液状化し排砂管
へ流し込むことを特徴とする貯水池における砂礫の排出
方法。
1. From a water conduit with an intake at the bottom of the reservoir,
The running water containing gravel is guided to the main surge tank, and the sand in the intake water is allowed to settle at the bottom of this main surge tank, while the intake water is introduced to the turbine for power generation via the penstock connected to the top of the main surge tank, and then the main Water in the surge tank and in the sub-surge tank that communicates with the bottom of the main surge tank through the sand removal pipe, pressure fluctuations during turbine operation, generator load fluctuations, and water shocks when starting and stopping the turbine operation. A method for discharging gravel in a reservoir, which is characterized by applying the resulting vibration to liquefy the settled sand at the bottom of the main surge tank and pour it into a sand discharge pipe.
【請求項2】請求項1の方法において、さらに主サージ
タンクの中間部に傾斜させて設置したふるいにて、取水
中から岩石をふるい分けるとともに、このふるいを主サ
ージタンク内の水の振動によって振動させ、岩石を主サ
ージタンクに接続した岩石排出管へ導くことを特徴とす
る貯水池における砂礫の排出方法。
2. The method according to claim 1, further comprising sieving rocks from the water intake with a sieve installed at an intermediate portion of the main surge tank, and the sieve is shaken by the vibration of water in the main surge tank. A method for discharging gravel in a reservoir, characterized by vibrating and guiding rock to a rock discharge pipe connected to a main surge tank.
JP1278695A 1989-10-27 1989-10-27 Method of discharging gravel in a reservoir Expired - Lifetime JPH0684611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278695A JPH0684611B2 (en) 1989-10-27 1989-10-27 Method of discharging gravel in a reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278695A JPH0684611B2 (en) 1989-10-27 1989-10-27 Method of discharging gravel in a reservoir

Publications (2)

Publication Number Publication Date
JPH03140517A JPH03140517A (en) 1991-06-14
JPH0684611B2 true JPH0684611B2 (en) 1994-10-26

Family

ID=17600893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278695A Expired - Lifetime JPH0684611B2 (en) 1989-10-27 1989-10-27 Method of discharging gravel in a reservoir

Country Status (1)

Country Link
JP (1) JPH0684611B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294805A (en) * 2014-10-22 2015-01-21 长江勘测规划设计研究有限责任公司 Semi-cylindrical surge chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294805A (en) * 2014-10-22 2015-01-21 长江勘测规划设计研究有限责任公司 Semi-cylindrical surge chamber

Also Published As

Publication number Publication date
JPH03140517A (en) 1991-06-14

Similar Documents

Publication Publication Date Title
CN103334469A (en) Processing system and processing technology for removing river pollution bottom silt in central urban area
CN109020091A (en) A kind of combined type artificial marsh sewage treatment system and its processing method
CN110171917A (en) A kind of integrated shore bank band system and its application of river and lake silt treatment in situ
CN206189368U (en) Floating gate irrigation equipment
WO2021098731A1 (en) Wastewater interception centralized treatment system and treatment method for river channel regulation
CN203498891U (en) Treatment system for removing polluted bed mud in river channel of central urban area
JP2007002437A (en) Transportation system of dredged sediment
CN108951545A (en) Porous box water purifying revetment system
CN207525045U (en) A kind of riverbank formula percolating device with water remediation
CN107651751A (en) A kind of riverbank formula filtration system and method with water remediation function
WO2002099202A1 (en) Hydroelectric power generating method
CN111139784A (en) Point source pollution enhanced retention and purification artificial wetland system at lake inlet and lake outlet
JPH0684611B2 (en) Method of discharging gravel in a reservoir
CN109868856A (en) The box feed ditch sand discharge apparatus of small reservoir
CN207986967U (en) A kind of pollutant fluxes for rainfall pumping station combine the unit
CN105800810A (en) Low-effect treatment method of good-quality rainwater
CN2679249Y (en) Sand discharging appts. for reservoir
JPH10252042A (en) Mechanism and method for discharging sand from dam reservoir
JP2002167740A (en) Hydraulic power generating method
CN210597426U (en) Box irrigation and drainage device for small reservoir
CN211774021U (en) Black and odorous water body desilting system
CN210711173U (en) Sewage treatment facility
CN208830258U (en) Porous box water purifying revetment system
CN112726772A (en) Wet pond system for sponge city and method for purifying rainwater by using wet pond system
CN107663848B (en) Water gate structure suitable for filtering and dividing sediment-laden river