JPH0684550B2 - Method for producing high-purity electrolytic iron - Google Patents

Method for producing high-purity electrolytic iron

Info

Publication number
JPH0684550B2
JPH0684550B2 JP63035070A JP3507088A JPH0684550B2 JP H0684550 B2 JPH0684550 B2 JP H0684550B2 JP 63035070 A JP63035070 A JP 63035070A JP 3507088 A JP3507088 A JP 3507088A JP H0684550 B2 JPH0684550 B2 JP H0684550B2
Authority
JP
Japan
Prior art keywords
chamber
electrolytic
cathode
iron
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63035070A
Other languages
Japanese (ja)
Other versions
JPH01212788A (en
Inventor
喜充 沢田
好章 長尾
進 斎藤
敏夫 福王寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63035070A priority Critical patent/JPH0684550B2/en
Publication of JPH01212788A publication Critical patent/JPH01212788A/en
Publication of JPH0684550B2 publication Critical patent/JPH0684550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高純度電解鉄の製法に係り、特に高純度電解
鉄の製法において銅、コバルト、ニッケルなどの重金属
不純物を低減する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing high-purity electrolytic iron, and more particularly to a method for reducing heavy metal impurities such as copper, cobalt and nickel in the method for producing high-purity electrolytic iron.

(従来の技術) 電解鉄は通常の軟鋼、純鉄等に比べ各種不純物の含有量
が格段と少ないため、軟磁性材料、電子材料、合金材料
及び試験研究用ベースメタル材料等高品位を要求される
分野に賞用されている。
(Prior art) Electrolytic iron has a much smaller content of various impurities than ordinary mild steel, pure iron, etc., so high quality such as soft magnetic materials, electronic materials, alloy materials, and base metal materials for testing and research are required. It is used in various fields.

高純度電解鉄のニーズは金属材料の機能性向上の為によ
り高純度なものあるいは特定元素の少ないものが望まれ
てきている。例えば鉄本来の性質を示すには残留抵抗比
RRRHで3000以上即ち金属成分の合計として10wtppm以下
が目的とされていた。詳細については、「鉄と鋼」Vol.
72(3)(1986)第361〜367頁、特に第363頁を参照さ
れたい。
As for the needs of high-purity electrolytic iron, there is a demand for high-purity electrolytic iron or those with few specific elements in order to improve the functionality of metal materials. For example, to show the original properties of iron, the residual resistance ratio
RRR H was set to be 3000 or more, that is, 10 wtppm or less as the total of metal components. For more information, see Iron and Steel Vol.
72 (3) (1986) pp. 361-367, especially 363.

上記RRRH値を有する純鉄は、超高真空中の電子ビームゾ
ーンメルト法などの特殊な方法によれば得られるが、か
かる方法を工業的に実施することは期待できない。
Pure iron having the above RRR H value can be obtained by a special method such as an electron beam zone melting method in an ultrahigh vacuum, but it cannot be expected to carry out such a method industrially.

従来の電解鉄を得る方法としては、軟鋼、純鉄などの原
料鉄を陽極とし、硫酸ナトリウム、硫酸カリウム、硫酸
アンモニウムなどの硫酸酸性水溶液、あるいは塩化ナト
リウム、塩化カリウム、塩化アンモニウムなどの水溶性
塩酸性水溶液などの支持電解液と硫酸鉄塩及び塩酸鉄塩
などから成る水溶液を電解液としてステンレス鋼などの
陰極上に電析して得る方法が公知であり、例えば新金属
データブック(金属時評社、1975年12月12日発行第455
〜457頁)にフローシートと電解法の概要が記載されて
いる。この方法では、陽極材(粗金属)の中の目的金属
よりもイオン化傾向の小さい元素及び粗金属中の不溶性
あるいは難溶性物質は溶解せずに陽極に付着して残る
か、あるいは沈殿物になって槽底に溜る。一方、イオン
化傾向が目的金属よりも大きいものは陽極から溶解はす
るが、陰極には析出しないで電解液中に溜る。つまり目
的金属のみが陽極で溶解して陰極に都合よく析出し、他
の不純物は陽極に付着するか、槽底にスライムとして沈
殿するか、あるいは液中に分散する状態を保って陰極に
析出しないので、純度の高い電解鉄を得ることができ
る。
As a conventional method for obtaining electrolytic iron, raw material iron such as mild steel and pure iron is used as an anode, and an aqueous sulfuric acid solution such as sodium sulfate, potassium sulfate, and ammonium sulfate, or water-soluble hydrochloric acid such as sodium chloride, potassium chloride, and ammonium chloride. A method is known in which a supporting electrolyte such as an aqueous solution and an aqueous solution containing an iron sulfate and an iron chloride is electrolytically deposited on a cathode such as stainless steel as an electrolytic solution, and for example, a new metal data book (Metal Jikkensha, Issued December 12, 1975, Issue 455
Pp. 457), a flow sheet and an outline of the electrolysis method are described. In this method, the element having a smaller ionization tendency than the target metal in the anode material (crude metal) and the insoluble or sparingly soluble substance in the crude metal do not dissolve but remain attached to the anode or become a precipitate. Collect at the bottom of the tank. On the other hand, those having an ionization tendency higher than that of the target metal are dissolved from the anode, but are not deposited on the cathode and are accumulated in the electrolytic solution. That is, only the target metal is dissolved at the anode and conveniently deposited at the cathode, and other impurities adhere to the anode, precipitate as slime at the bottom of the tank, or remain dispersed in the liquid and do not deposit at the cathode. Therefore, electrolytic iron with high purity can be obtained.

従来、電解法で得られた純鉄の重金属含有量に関して、
前掲金属時評社発行の文献において、A社製品ではCu=
0.0001%(1ppm)以下、B社製品ではNi=0.020%(200
ppm)以下、Co=0.006%(60ppm)以下の社内規格が記
載されている。これらの重金属元素は以下説明するよう
に従来の電解法では除去し難いという問題がある。
Conventionally, regarding the heavy metal content of pure iron obtained by the electrolysis method,
In the document issued by Metals Co., Ltd., Cu =
0.0001% (1ppm) or less, Ni = 0.020% (200
ppm) or less and Co = 0.006% (60 ppm) or less, internal standards are described. There is a problem that these heavy metal elements are difficult to remove by the conventional electrolytic method as described below.

(発明が解決しようとする問題点) 電解法で高純度鉄を製造する場合は、第2図に示した電
解鉄製造用電解槽1に収容した電解液2中に陰極3と陽
極4とを対置させ、電解を行なう。この例では陰極4は
板状体であるが、水平回転軸を有した回転ドラム型でも
よく、あるいはその他の構成であってもよい。電解鉄が
電析する陰極には、コスト及び電析物の剥離性などの取
扱性の良さからSUS304などのステンレス鋼が好んで用い
られる。陽極は一般に軟鋼などの鉄材を用いるが、すこ
しでも純度を上げる目的で工業用純鉄を用いる必要があ
る。電解液は、第1鉄イオンと硫酸ナトリウム、硫酸カ
リウム、硫酸アンモニウムなどの水溶性硫酸塩の硫酸酸
性水溶液、あるいは塩化ナトリウム、塩化カリウム、塩
化アンモニウムなどの水溶性塩酸塩の塩酸酸性水溶液な
どを支持電解液とする。
(Problems to be Solved by the Invention) When high-purity iron is produced by an electrolytic method, a cathode 3 and an anode 4 are placed in an electrolytic solution 2 contained in an electrolytic bath 1 for producing electrolytic iron shown in FIG. Place them in opposition and perform electrolysis. In this example, the cathode 4 is a plate-shaped member, but may be a rotating drum type having a horizontal rotating shaft, or may have another structure. For the cathode on which electrolytic iron is electrodeposited, stainless steel such as SUS304 is preferably used because of its good handling properties such as cost and peelability of the electrodeposit. Generally, an iron material such as mild steel is used for the anode, but it is necessary to use industrial pure iron for the purpose of improving the purity even a little. The electrolytic solution supports electrolysis of ferrous ions and aqueous sulfuric acid solutions of water-soluble sulfates such as sodium sulfate, potassium sulfate, and ammonium sulfate, or aqueous hydrochloric acid solutions of water-soluble hydrochlorides such as sodium chloride, potassium chloride, and ammonium chloride. Use as liquid.

前記方法において不純物を低減するには、陽極に比較的
高品位の軟鋼や純鉄を用いる方法がある。しかし、銅、
ニッケル、コバルト等は通常の純鉄精錬法では除去でき
ないから、軟鋼等に微量含まれている。陽極材中に微量
に含まれている銅、コバルト、ニッケル等の重金属はイ
オン化され、溶解し、一部は電析して電解鉄中に必ず取
り込まれる。従って陽極材からの汚染が防止できないた
め高純度の電解鉄は得ることはできない。
In order to reduce impurities in the above method, there is a method of using relatively high-grade mild steel or pure iron for the anode. But copper,
Since nickel, cobalt, etc. cannot be removed by the ordinary pure iron refining method, they are contained in trace amounts in mild steel, etc. Heavy metals such as copper, cobalt, and nickel contained in a trace amount in the anode material are ionized and dissolved, and a part of them is electrodeposited and always taken into electrolytic iron. Therefore, high-purity electrolytic iron cannot be obtained because contamination from the anode material cannot be prevented.

さらに、不純物を低減させる方法としては、電解液を構
成する鉄塩を予め、例えば、イオン交換樹脂精製、溶媒
抽出精製、予備電解などにより精製する方法がある。こ
の方法を実施しても陽極中の重金属が溶解することによ
り電解液が汚れてしまい、それら重金属が電析すること
により、高純度の電解鉄が得られない。
Further, as a method of reducing impurities, there is a method of previously purifying the iron salt constituting the electrolytic solution by, for example, ion exchange resin purification, solvent extraction purification, preliminary electrolysis, or the like. Even if this method is carried out, the heavy metal in the anode is dissolved to contaminate the electrolytic solution, and these heavy metals are electrodeposited, so that high-purity electrolytic iron cannot be obtained.

また、一般に鉄の電解液は酸性条件にあるために、酸性
液に接触する部分は腐食が避けられない。そのため、陰
極を防食することが不純物低減に効果をもつ。しかしな
がら、陰極と接する電解液と発生気体との気液界面ある
いは陰極構成材料の欠陥である微細間隙では防食に必要
な電流が流れないので、ニッケル、クロム、銅等の重金
属が陰極から溶解し、陰極に再析出してしまう。
Further, since the iron electrolytic solution is generally in an acidic condition, corrosion is unavoidable in the portion in contact with the acidic solution. Therefore, anticorrosion of the cathode is effective in reducing impurities. However, since a current necessary for anticorrosion does not flow in the gas-liquid interface between the electrolyte in contact with the cathode and the generated gas or in the fine gap which is a defect of the cathode constituent material, nickel, chromium, heavy metals such as copper are dissolved from the cathode, Redeposit on the cathode.

電解法によりCo,Ni,Cuなどの不純物含有量が極めて低い
電解鉄を提供できると、コスト面で有利であり、純鉄の
用途の一層の拡大が図られるが、従来これは成就できな
かった。
Providing electrolytic iron with an extremely low content of impurities such as Co, Ni, and Cu by the electrolytic method is advantageous in terms of cost, and the application of pure iron can be further expanded, but this has not been achieved in the past. .

また、従来電解法により得られた純鉄の重金属の含有量
がかなり低いと言えるものの、これを再び従来の電解法
で再処理しても重金属含有量を一層低下させることはで
きなかった。そこで従来法で鉄の不純物5元素であるC,
Si,Mn,P,Sを低下させ、次に再処理によりCo,Ni,Cuなど
の不純物重金属を低下させることができると、純鉄製造
技術は格段の進展を遂げる。
Further, although it can be said that the heavy metal content of pure iron obtained by the conventional electrolysis method is considerably low, the heavy metal content could not be further reduced even if it was retreated by the conventional electrolysis method. Therefore, in the conventional method, C, which is the five elements of iron impurities,
If it is possible to reduce Si, Mn, P, S, and then reduce heavy metal impurities such as Co, Ni, and Cu by reprocessing, the pure iron manufacturing technology will make remarkable progress.

(問題点を解決するための手段および作用) 本発明者らは、前記問題点を解決するために鋭意努力し
た結果、次の電解方法の発明を完成した。
(Means and Actions for Solving Problems) The present inventors completed the invention of the following electrolysis method as a result of diligent efforts to solve the problems.

即ち、本発明方法は、陽極からの不純物溶解を少なくす
るために不溶性電極を使用するとともに、陽極反応に関
与する電解質中に存在する微量の重金属イオンが陰極に
到達し陰極に電析するのを阻止するために、陰極室およ
び陽極室のそれぞれと隔膜で隔てられた中間室を設け、
また不純物の電析を少なくするため予め重金属濃度を20
μg/以下に精製した電解液を陰極室に供給することを
要旨とする。
That is, the method of the present invention uses an insoluble electrode to reduce the dissolution of impurities from the anode, and a small amount of heavy metal ions present in the electrolyte involved in the anodic reaction reach the cathode and are electrodeposited on the cathode. In order to prevent it, an intermediate chamber separated from each of the cathode chamber and the anode chamber by a diaphragm is provided,
In addition, in order to reduce the electrodeposition of impurities, the heavy metal concentration was set to 20
The gist is to supply the electrolytic solution purified to less than μg / to the cathode chamber.

すなわち本発明の方法は、陰極室、陽極室及び中間室を
備え、陰極室と中間室との間の隔膜が陰イオン交換膜で
あり、陽極室と中間室との間の隔膜が陽イオン交換膜で
ある電解槽を用い、陰極室には重金属濃度が20μg/以
下に精製された鉄イオン担体と支持電解質を主成分とす
る水溶液からなる電解液を供給し、陽極室には希硫酸か
らなる電解液を供給し、陰極としてTi基板上に白金族及
びその酸化物からなる皮膜を被覆した不溶性電極を使用
し、電解採取中に中間室の電解液を流出させながら純水
を補給しつつ電解採取することを特徴とする高純度電解
鉄の製造方法である。
That is, the method of the present invention comprises a cathode chamber, an anode chamber and an intermediate chamber, the diaphragm between the cathode chamber and the intermediate chamber is an anion exchange membrane, and the diaphragm between the anode chamber and the intermediate chamber is cation exchange membrane. Using an electrolytic cell that is a membrane, the cathode chamber is supplied with an electrolytic solution consisting of an aqueous solution containing iron ion carriers and supporting electrolyte purified to a heavy metal concentration of 20 μg / or less, and the anode chamber is composed of dilute sulfuric acid. An electrolytic solution is supplied, and an insoluble electrode coated with a film made of platinum group and its oxide on a Ti substrate is used as a cathode, and electrolytic solution is supplied while supplying electrolytic solution in an intermediate chamber during electrolytic extraction while supplying pure water. It is a method for producing high-purity electrolytic iron, which is characterized by collecting.

この方法を実施する際に、第1鉄イオンと支持電解質を
主成分とする水溶液を陰極室への供給電解液とすること
が好ましい。
When carrying out this method, it is preferable to use an aqueous solution containing ferrous ions and a supporting electrolyte as main components as an electrolyte to be supplied to the cathode chamber.

第1鉄イオンの担体材料に不純物として含有されるCo,N
i,Cuなどの重金属は予めできるだけ低下させて置く必要
がある。これらの不純物の含有量上限はそれぞれ20μg/
(電解液容量)以下とする電解鉄中の不純物の含有量
上限はそれぞれ1ppm以下とすることができる。なお、こ
れらの不純物の精製はイオン交換樹脂精製法、溶媒抽出
精製法などにより行うことができる。
Co and N contained as impurities in the ferrous ion carrier material
It is necessary to reduce heavy metals such as i and Cu in advance as much as possible. The upper limit of the content of these impurities is 20 μg /
The upper limit of the content of impurities in electrolytic iron that is less than or equal to (electrolytic solution capacity) can be 1 ppm or less. The impurities can be purified by an ion exchange resin purification method, a solvent extraction purification method, or the like.

陽極室に供給する電解液は陰イオンあるいは水を放電さ
せ、ハロゲンガスあるいは酸素及びプロトン(H+)を発
生させる電解質である。この電解質としては高純度の硫
酸等が使用される。
The electrolyte supplied to the anode chamber is an electrolyte that discharges anions or water to generate halogen gas or oxygen and protons (H + ). High-purity sulfuric acid or the like is used as this electrolyte.

中間室に供給する液体は次の条件を満足することが必要
である。
The liquid supplied to the intermediate chamber must satisfy the following conditions.

(イ)電解に必要なイオン電導性のある電解質イオンを
発生させる媒体である。
(A) It is a medium for generating electrolyte ions having ionic conductivity necessary for electrolysis.

(ロ)陰極室が過度の酸性になると陰極が溶解され、陰
極が溶解し、陰極室の電解液が汚染されたりあるいはプ
ロトン(H+)の放電により水素ガスが発生し電解鉄析出
の電流効率が低下するおそれがあるので、過度のプロト
ン(H+)移動が中間室の電解液から起こらない媒体であ
る。
(B) If the cathode chamber becomes excessively acidic, the cathode will dissolve, the cathode will dissolve, the electrolyte in the cathode chamber will be contaminated, or hydrogen gas will be generated by the discharge of protons (H + ) and the current efficiency of electrolytic iron deposition Is a medium in which excessive proton (H + ) transfer does not occur from the electrolytic solution in the intermediate chamber, since it may decrease.

(ハ)陰極室および陽極室における電解反応の進行によ
るpH変化により沈殿生成等を起こさない媒体である。
(C) A medium that does not cause precipitation or the like due to pH change due to the progress of electrolytic reaction in the cathode chamber and the anode chamber.

(ニ)中間室に供給後に陰極室よりもpHを高くする媒体
である。
(D) It is a medium that makes the pH higher than that of the cathode chamber after being supplied to the intermediate chamber.

(ホ)陽極室の電解液に微量含有されるCo,Ni,Cuなどの
重金属が陽極室においてイオン化され、中間室に移動し
蓄積した際には、これら重金属を中間室において電解反
応系に関して無害の状態にする。この無害化の方策とし
て、中間室液体を一部抜き取りながら希釈または更新を
行い、必要に応じて中間室液体中の重金属の濃度を希釈
したり、中間室液体を新液あるいは純水で更新する。
(E) When heavy metals such as Co, Ni, Cu contained in the electrolytic solution in the anode chamber are ionized in the anode chamber and moved to the intermediate chamber and accumulated, these heavy metals are harmless to the electrolytic reaction system in the intermediate chamber. To the state of. As a detoxification measure, dilution or renewal is performed while partially removing the intermediate chamber liquid, and if necessary, the concentration of heavy metals in the intermediate chamber liquid is diluted, or the intermediate chamber liquid is renewed with a new liquid or pure water. .

(ヘ)重金属イオンを実質的に含有しないこと。(F) Substantially free of heavy metal ions.

上記要件を満足する液体としては、純水、弱酸、弱塩
基、支持塩、陰極供給液中のHCl,NH4OHが好ましい。
As the liquid satisfying the above requirements, pure water, a weak acid, a weak base, a supporting salt, and HCl and NH 4 OH in the cathode supply liquid are preferable.

また、上記方法において、中間室を画成する隔膜は陽極
・陰極間に必要な浴電圧を発生させるのを妨げず、また
上記した各室液体を相互に隔離する。
Further, in the above method, the diaphragm that defines the intermediate chamber does not prevent generation of a necessary bath voltage between the anode and the cathode, and also separates the above-mentioned chamber liquids from each other.

以下、本発明の実施例を図面を参照として説明する。Embodiments of the present invention will be described below with reference to the drawings.

(実施例) 第1図は本発明法の実施例を示す。(Example) FIG. 1 shows an example of the method of the present invention.

この図面において、1は電解鉄製造用電解槽、3は陰
極、4は陽極、5は電解鉄、6は陰極室、7は中間室、
8はアニオン交換膜、10はカチオン交換膜、11は陰極室
電解液、12は中間室液体、13は陽極室電解液をそれぞれ
示す。
In this drawing, 1 is an electrolytic cell for producing electrolytic iron, 3 is a cathode, 4 is an anode, 5 is electrolytic iron, 6 is a cathode chamber, 7 is an intermediate chamber,
8 is an anion exchange membrane, 10 is a cation exchange membrane, 11 is a cathode chamber electrolyte, 12 is an intermediate chamber liquid, and 13 is an anode chamber electrolyte.

第1図において、陰極室電解液11には、例えばイオン交
換樹脂処理、溶媒抽出処理、キレート樹脂処理、鉄粉、
あるいは鉄よりイオン化傾向の大きいアルミニウムや亜
鉛などの金属粉末による置換析出処理により精製された
第1鉄イオン水溶液と支持電解質からなる電解液を配置
する。この電解液としては、Fe2+として15〜60g/のFe
Cl2の他に電導度調整任意添加剤として30g/以下のNH4
Clを含有し、pHが1.5〜5.0の溶液が好ましい。
In FIG. 1, the cathode chamber electrolyte 11 includes, for example, ion exchange resin treatment, solvent extraction treatment, chelate resin treatment, iron powder,
Alternatively, an electrolytic solution composed of a ferrous iron aqueous solution purified by a substitution precipitation treatment with a metal powder such as aluminum or zinc having a higher ionization tendency than iron and a supporting electrolyte is arranged. As this electrolyte, 15-60 g / Fe of Fe 2+
In addition to Cl 2 , 30 g / or less NH 4 as an optional additive for conductivity adjustment
A solution containing Cl and having a pH of 1.5 to 5.0 is preferable.

中間室7に純水または酸、好ましくは塩酸溶液を使用す
る。塩酸溶液は、HClの濃度が0.3〜0.5g/であり、pH
が5.00〜1.86のものが好ましい。電解の進行とともに、
中間室7にはプロトン(H+)およびCl-イオンが蓄積す
るので純水を追加してオーバーフローを起こさせ、HCl
を追い出す。オーバーフローの量は電解槽中間室体積l
当たり、5−30倍が好ましい。
Pure water or an acid, preferably a hydrochloric acid solution is used in the intermediate chamber 7. The hydrochloric acid solution has a HCl concentration of 0.3-0.5 g /
Is preferably 5.00 to 1.86. With the progress of electrolysis,
Proton (H + ) and Cl ions are accumulated in the intermediate chamber 7, so pure water is added to cause overflow, and
Drive out. The amount of overflow is the volume of the intermediate chamber of the electrolytic cell 1
Therefore, 5 to 30 times is preferable.

陽極室9には高純度の希硫酸8を供給する。陽極室と陰
極室の陰極イオンの形態を変えることによりCl2ガスの
発生をなくすることにより膜の劣化防止及び安全性を高
める。
The highly pure dilute sulfuric acid 8 is supplied to the anode chamber 9. By preventing the generation of Cl 2 gas by changing the form of the cathode ions in the anode chamber and the cathode chamber, the deterioration of the film is prevented and the safety is improved.

陽極4には、例えば電極材として耐食性が良好な不溶性
電極、即ち食塩電解等で実績のあるTi基板上に白金族及
びその酸化物からなる寸法安定性電極を用いる。不溶性
電極の具体的例としてはTi基板上に0.3〜3.0μmの厚み
のPt及びIrO2を被覆したものが挙げられる。
For the anode 4, for example, an insoluble electrode having good corrosion resistance as an electrode material, that is, a dimensionally stable electrode made of platinum group and its oxide on a Ti substrate, which has a proven record in salt electrolysis, is used. A specific example of the insoluble electrode is a Ti substrate coated with Pt and IrO 2 having a thickness of 0.3 to 3.0 μm.

不溶性陽極上での水溶液の反応は、一般に塩酸系では
2Cl-→Cl2+2e に示す様に塩素ガスを発生し、この塩
素ガスが水と反応して Cl2+H2O→HCl+HClO を生成する。また、硫酸系では 2H2O→4H++O2+4e に示す様に酸素ガスを発生し、プロトンを生成する。従
っていずれに於ても陽極室は強酸性になる。よって、陽
極4と陰極3との間に隔膜10により、できるだけプロト
ンの陰極室6への混入を防止し、水素発生による電解鉄
の電流効率低下を防止する必要がある。陰極室6と中間
室7の隔膜8としては、陰極室へ供給する精製された電
解液11に銅、ニッケル、コバルトなどのカチオンが混入
することや、第1鉄イオンが陰極室6から逃散すること
を防止するため陰イオン交換膜を使用する。また、陽極
室4と中間室7との隔膜10には陽イオン交換膜を使用し
Cl-イオンの移動をできるだけ抑制する。イオン交換膜
を通過してプロトンは陰極室へ移動するので、中間室7
に純水を供給し、プロトンの陰極室6への移動を低減せ
しめ、pH低下の防止を計り、安定した電解条件が維持す
る。
The reaction of the aqueous solution on the insoluble anode is generally performed in hydrochloric acid system.
Chlorine gas is generated as shown by 2Cl → Cl 2 + 2e, and this chlorine gas reacts with water to generate Cl 2 + H 2 O → HCl + HClO. In the sulfuric acid system, oxygen gas is generated and protons are generated as shown in 2H 2 O → 4H + + O 2 + 4e. Therefore, in either case, the anode chamber becomes strongly acidic. Therefore, it is necessary to prevent the protons from mixing into the cathode chamber 6 as much as possible by the diaphragm 10 between the anode 4 and the cathode 3 and prevent the current efficiency of the electrolytic iron from lowering due to hydrogen generation. As the diaphragm 8 between the cathode chamber 6 and the intermediate chamber 7, cations such as copper, nickel, and cobalt are mixed in the purified electrolytic solution 11 supplied to the cathode chamber, and ferrous ions escape from the cathode chamber 6. An anion exchange membrane is used to prevent this. Also, a cation exchange membrane is used for the diaphragm 10 between the anode chamber 4 and the intermediate chamber 7.
It suppresses the movement of Cl - ions as much as possible. Since the protons move to the cathode chamber through the ion exchange membrane, the intermediate chamber 7
Pure water is supplied to reduce the migration of protons to the cathode chamber 6, prevent the pH from decreasing, and maintain stable electrolysis conditions.

陰極3には不溶性陽極4に用いられる材料を用いる。The material used for the insoluble anode 4 is used for the cathode 3.

以下説明する実験例において電解条件は次の通りであっ
た。
The electrolysis conditions in the experimental examples described below were as follows.

陰極室と中間室との隔膜:アニオン交換膜 (セレミオンAMV(旭硝子(株)製) 陽極室と中間室との隔膜:カチオン交換膜 (NAFLON324(デュポン社製) 電流密度:0.5〜2.0A/dm2 浴温:50〜70℃ 陰極液組成:FeCl234〜136g/ (Fe2+として15〜60g/) NH4Cl 0〜30g/ 不純物濃度:Ni 5μg/ Co 8μg/ Cu 4μg/ pH 1.5〜5.5 FeCl2予備精製方法: イオン交換樹脂法;(Ni=7μg/ Co=11μg/、Cu=5μg/、 Mn≦1μg/) 陽極液組成:H2SO4 20〜50μg/ 硫酸純度(ELグレード) 中間室液組成:HCl0.3〜0.5μg/ 塩酸純度(ELグレード) 不溶性陽極:Pt.IrO2/Ti (Ti基板上にPtとIrO2を厚さ1μm被覆) 陰極:SUS304 (発明の効果) 本発明は上述のように構成されているため電解鉄中への
重金属混入量を著しく低減することができ、高純度電解
鉄を容易に得ることができる。本発明による高純度鉄を
H2ガス中焼鈍(800〜900℃、24〜48H)または電子ビー
ム溶解処理すればガス成分も低減し更に高純度のものと
なる。得られた高純度鉄は益々高純度のものが要求され
る磁性材料、電子材料の分野、さらには鉄の基礎研究分
野に賞用されるので、本発明の工業的価値は極めて高
い。
Diaphragm between cathode chamber and intermediate chamber: Anion exchange membrane (Selemion AMV (Asahi Glass Co., Ltd.) Diaphragm between anode chamber and intermediate chamber: Cation exchange membrane (NAFLON324 (DuPont) Current density: 0.5-2.0A / dm 2 Bath temperature: 50-70 ° C Catholyte composition: FeCl 2 34-136g / (15-60g / as Fe 2+ ) NH 4 Cl 0-30g / Impurity concentration: Ni 5μg / Co 8μg / Cu 4μg / pH 1.5- 5.5 FeCl 2 pre-purification method: Ion exchange resin method; (Ni = 7 μg / Co = 11 μg /, Cu = 5 μg /, Mn ≦ 1 μg /) Anolyte composition: H 2 SO 4 20-50 μg / sulfuric acid purity (EL grade) Intermediate chamber liquid composition: HCl 0.3-0.5 μg / hydrochloric acid purity (EL grade) Insoluble anode: Pt.IrO 2 / Ti (Ti substrate coated with Pt and IrO 2 to a thickness of 1 μm) Cathode: SUS304 (Effect of the Invention) Since the present invention is configured as described above, the amount of heavy metal mixed into electrolytic iron can be significantly reduced, and high-purity electrolytic iron can be easily obtained. High purity iron according to the present invention
Annealing in H 2 gas (800 to 900 ° C, 24 to 48H) or electron beam melting treatment will reduce the gas components and make it even more pure. The obtained high-purity iron is used in the fields of magnetic materials and electronic materials, which require ever-increasingly high-purity, and in the basic research field of iron, so that the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電解採取法の実施例と電解プロセスの
概念を説明する図面、 第2図は従来の電解法を説明する図面である。 1……電解鉄製造用電解浴槽、3……陰極、4……陽
極、5……電解鉄、6……陰極室、7……中間室、8…
…アニオン交換膜、10……カチオン交換膜、11……陰極
室電解液、12……中間室液体、13……陽極室電解液。
FIG. 1 is a drawing for explaining an embodiment of an electrolytic extraction method of the present invention and the concept of an electrolytic process, and FIG. 2 is a drawing for explaining a conventional electrolytic method. 1 ... Electrolytic bath for producing electrolytic iron, 3 ... Cathode, 4 ... Anode, 5 ... Electrolytic iron, 6 ... Cathode chamber, 7 ... Intermediate chamber, 8 ...
… Anion exchange membrane, 10 …… Cation exchange membrane, 11 …… Cathode chamber electrolyte, 12 …… Intermediate chamber liquid, 13 …… Anode chamber electrolyte.

フロントページの続き (72)発明者 斎藤 進 福島県河沼郡河東町大字東長原字村北乙 180―1 昭和電工株式会社東長原工場内 (72)発明者 福王寺 敏夫 福島県河沼郡河東町大字東長原字村北乙 180―1 昭和電工株式会社東長原工場内 (56)参考文献 特開 昭62−161987(JP,A) 特開 昭59−118892(JP,A)Continued Front Page (72) Inventor Susumu Saito Fukushima Prefecture Kawanuma-gun Kato-cho Oji Nagamura Harajuku 180-1 Showa Denko Co., Ltd. Higashi-Nagahara Factory (72) Inventor Fukuoji Toshio Kawanuma-gun Kawato-cho Ogata Nagahara-ji Village Kitaoto 180-1 Showa Denko Co., Ltd. Higashi Nagahara Factory (56) Reference JP 62-161987 (JP, A) JP 59-118892 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陰極室、陽極室及び中間室を備え、陰極室
と中間室との間の隔膜が陰イオン交換膜であり、陽極室
と中間室との間の隔膜が陽イオン交換膜である電解槽を
用い、陰極室には重金属濃度が20μg/以下に精製され
た鉄イオン担体と支持電解質を主成分とする水溶液から
なる電解液を供給し、陽極室には希硫酸からなる電解液
を供給し、陰極としてTi基板上に白金族及びその酸化物
からなる皮膜を被覆した不溶性電極を使用し、電解採取
中に中間室の電解液を流出させながら純水を補給しつつ
電解採取することを特徴とする高純度電解鉄の製造方
法。
1. A cathode chamber, an anode chamber, and an intermediate chamber, wherein the diaphragm between the cathode chamber and the intermediate chamber is an anion exchange membrane, and the diaphragm between the anode chamber and the intermediate chamber is a cation exchange membrane. Using a certain electrolytic cell, the cathode chamber is supplied with an electrolytic solution consisting of an aqueous solution containing iron ion carrier and supporting electrolyte purified to a heavy metal concentration of 20 μg / or less, and the anode chamber is composed of dilute sulfuric acid. Is supplied, and an insoluble electrode coated with a film of platinum group and its oxide on the Ti substrate is used as the cathode, and electrolytic extraction is performed while supplying pure water while flowing out the electrolytic solution in the intermediate chamber during electrolytic extraction. A method for producing high-purity electrolytic iron characterized by the above.
JP63035070A 1988-02-19 1988-02-19 Method for producing high-purity electrolytic iron Expired - Lifetime JPH0684550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035070A JPH0684550B2 (en) 1988-02-19 1988-02-19 Method for producing high-purity electrolytic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035070A JPH0684550B2 (en) 1988-02-19 1988-02-19 Method for producing high-purity electrolytic iron

Publications (2)

Publication Number Publication Date
JPH01212788A JPH01212788A (en) 1989-08-25
JPH0684550B2 true JPH0684550B2 (en) 1994-10-26

Family

ID=12431748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035070A Expired - Lifetime JPH0684550B2 (en) 1988-02-19 1988-02-19 Method for producing high-purity electrolytic iron

Country Status (1)

Country Link
JP (1) JPH0684550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551052B2 (en) 2005-07-15 2017-01-24 Hitachi Metals, Ltd. Rare earth sintered magnet and method for production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661306B1 (en) * 2004-12-06 2006-12-27 한국지질자원연구원 Electroleaching apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118892A (en) * 1982-12-27 1984-07-09 Showa Denko Kk Production of electrolytic iron
JPS62161987A (en) * 1986-01-11 1987-07-17 Showa Denko Kk Manufacture of high purity electrolytic iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551052B2 (en) 2005-07-15 2017-01-24 Hitachi Metals, Ltd. Rare earth sintered magnet and method for production thereof

Also Published As

Publication number Publication date
JPH01212788A (en) 1989-08-25

Similar Documents

Publication Publication Date Title
EP0307161B1 (en) Process for electroplating metals
JP3131648B2 (en) Copper plating method using non-cyanating bath
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
GB2173215A (en) Process for recovering copper from an aqueous acidic solution thereof
CA1310294C (en) Process for electrolytically producing metals of ni, co, zn, cu, mn, andcr from a solution thereof
US4256557A (en) Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes
US4832812A (en) Apparatus for electroplating metals
JP2005076103A (en) Method of treating plating waste liquid
JP2007254800A (en) Method for manufacturing high purity nickel and high purity nickel obtained by using the method
JPH0684550B2 (en) Method for producing high-purity electrolytic iron
JP2019052329A (en) Electrorefining method of low-grade copper anode, and electrolytic solution used therefor
JP5822235B2 (en) Method for removing oxidized nitrogen
JPH11229172A (en) Method and apparatus for producing high-purity copper
JP5908372B2 (en) Electrolysis electrode
US3755112A (en) Electrowinning of copper
JP2007290937A (en) Method of purifying nickel chloride aqueous solution
US4310395A (en) Process for electrolytic recovery of nickel from solution
JP2965442B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
US4276134A (en) Method for removing chlorate from caustic solutions with electrolytic iron
EP0501547B1 (en) Method of electrolytically coating a steel strip with a metal layer at least partly of zinc
JPH08966A (en) Purification by electrodialysis
JPS62161982A (en) Manufacture of electrolytic iron
JPH06240475A (en) Treatment of iron chloride based etchant containing nickel
JP2011042820A (en) Method for producing sulfur-containing electrolytic nickel