JPH0684159B2 - Propulsion device for seawater vessels - Google Patents

Propulsion device for seawater vessels

Info

Publication number
JPH0684159B2
JPH0684159B2 JP60204522A JP20452285A JPH0684159B2 JP H0684159 B2 JPH0684159 B2 JP H0684159B2 JP 60204522 A JP60204522 A JP 60204522A JP 20452285 A JP20452285 A JP 20452285A JP H0684159 B2 JPH0684159 B2 JP H0684159B2
Authority
JP
Japan
Prior art keywords
seawater
propulsion device
vessels
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60204522A
Other languages
Japanese (ja)
Other versions
JPS62160991A (en
Inventor
和平 井上
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP60204522A priority Critical patent/JPH0684159B2/en
Publication of JPS62160991A publication Critical patent/JPS62160991A/en
Publication of JPH0684159B2 publication Critical patent/JPH0684159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は電磁ポンプの機構を利用して船舶を推進させる
海水船舶用推進装置に関する。
The present invention relates to a propulsion device for seawater vessels that uses an electromagnetic pump mechanism to propel a vessel.

「従来の技術」 従来、船舶の推進装置は殆どが機械的推進装置によるも
のであって、その他には通常のポンプによる排出水を利
用した推進装置がある。次に電気的推進装置については
その緒についたばかりのものであり、その一例として電
源を直流とした電磁ポンプというよりは寧ろ船体そのも
のに電磁線輪、電極等を設けて海水を導体とし、磁界と
の電磁力によって船舶の推進を行わせるようにしたもの
がある。(例えば特公昭60−60409) 「発明が解決しようとする課題」 然し、その推進力は小さく、また効率も低く実用化には
程遠いものである。これは直流電源によって海水中に直
流電流を流すために電極が腐蝕、消耗するので高価な特
殊耐蝕性金属による電極構造を必要とし、また海水の電
気分解も行われてガス発生のために各種の障害を引き起
すなど大電流の通電を困難にしてしまっているものであ
る。更に、これは船体の外方に面して電磁力発生機構が
装備されているので、海水中における磁束分布と海水中
に流れる電流分布とが開放的で分散化され、磁束及び電
流の漏洩が大きな値となりその結果として海水中に電磁
力としての推進力の集号化を計ることが困難となり、強
力な推進力が得られないからである。
"Prior Art" Conventionally, most of the propulsion devices for ships are mechanical propulsion devices, and there are other propulsion devices that use the discharge water of a normal pump. Next, the electric propulsion device is just a beginning, and as an example, rather than an electromagnetic pump that uses a direct current as a power source, rather than providing an electromagnetic coil, electrodes, etc. on the hull itself, seawater is used as a conductor, and magnetic field and There is a thing that the propulsion of the ship is performed by the electromagnetic force of. (For example, Japanese Examined Patent Publication No. 60-60409) “Problems to be solved by the invention” However, its propulsive force is small, its efficiency is low, and it is far from practical use. This requires an electrode structure made of expensive special corrosion-resistant metal because the electrodes are corroded and consumed because a direct current is passed through the seawater by a DC power source, and seawater is also electrolyzed to generate various gases. This makes it difficult to carry a large current such as causing a failure. Furthermore, since this is equipped with an electromagnetic force generation mechanism facing the outside of the hull, the magnetic flux distribution in seawater and the current distribution flowing in seawater are open and dispersed, and leakage of magnetic flux and current is prevented. This is because it becomes a large value, and as a result, it is difficult to collect the propulsive force as electromagnetic force in seawater, and a strong propulsive force cannot be obtained.

また、内部を海水が通水可能にされた電気的絶縁体から
なる開放筒の外周に励磁線輪が巻装された鉄心を装着
し、該鉄心により海水中に生ずる磁束と直交する電流を
流す電極を開放筒の内壁に設け、前記励磁線輪及び電極
に直流電流を流して開放筒内の海水中に電磁力を発生さ
せ、この電磁力により開放筒内の海水を長手方向に送水
せしめて船舶を推進する船舶用推進装置が特公昭50−77
号において提供されている。しかしながら、かかる推進
装置においては、直流電流を使用していることから、海
水中に含まれるナトリウムイオンのために電気分解が生
起されてガスが発生し、この結果大電流の通電を困難に
する各種障害を引き起こす。
Further, an iron core having an excitation coil wound around the outer circumference of an open cylinder made of an electrical insulator capable of passing seawater inside is mounted, and a current flowing perpendicular to the magnetic flux generated in seawater is caused by the iron core. An electrode is provided on the inner wall of the open cylinder, and a direct current is applied to the exciting wire and the electrode to generate an electromagnetic force in the seawater in the open cylinder, which causes the seawater in the open cylinder to be fed in the longitudinal direction. A propulsion device for ships that propels ships is published in Japanese Patent Publication Sho 50-77.
Issue. However, in such a propulsion device, since direct current is used, electrolysis occurs due to sodium ions contained in seawater to generate gas, which results in difficulty in energizing large currents. Cause disability.

本発明の目的は、かかる技術的課題を達成するために、
海水の電気分解を引起こす事なく円滑に推進力を得る事
の出来る海水船舶用推進装置を提供する事にある。
The object of the present invention is to achieve such technical problems.
(EN) It is intended to provide a propulsion device for seawater vessels, which can smoothly obtain propulsive force without causing electrolysis of seawater.

又本発明の他の目的は強力な推進力を得る事の出来る海
水船舶用推進装置を提供する事にある。
Another object of the present invention is to provide a propulsion device for seawater vessels which can obtain a strong propulsive force.

「課題を解決する為の手段」 本発明は海水の通水可能な電気的絶縁性のある両端面開
放筒の外周に励磁線輪の巻かれた励磁鉄心を装着してお
き、前記開放筒の断面にそって海水中に生ずる磁束と前
記断面で直交する方向に電流を流すための電極を前記開
放筒内部に配装し、前記線輪を励磁してなる海水船舶用
推進装置において、 略2Hz以上で且つ商用電源より大幅に低い周波数(例え
ば30Hz以下)の周波数で更に前記励磁線輪と電極に同一
位相の交流電流を通電し相互の電磁気力により前記筒内
の軸心方向に生ずる送水力で船舶を推進させることを特
徴とした電磁ポンプによる海水船舶用推進装置を提案
し、特に好ましくは前記開放筒を船体進行方向に沿って
船体を貫通させて設けてなるものである。
"Means for Solving the Problem" The present invention has an excitation core wound with an excitation coil attached to the outer circumference of an open cylinder with electrically insulating both ends capable of passing seawater. A propulsion device for seawater vessels, in which an electrode for flowing a current in a direction orthogonal to the magnetic flux generated in seawater along the cross section is provided inside the open cylinder, and the wire ring is excited, approximately 2 Hz Above, and at a frequency significantly lower than the commercial power source (for example, 30 Hz or less), AC currents of the same phase are further applied to the excitation coil and the electrodes, and mutual electromagnetic force causes a water feeding force generated in the axial direction in the cylinder. A propulsion device for seawater vessels using an electromagnetic pump, which is characterized in that the vessel is propelled by means of, and particularly preferably, the open cylinder is provided so as to penetrate the hull in the traveling direction of the hull.

この場合に又前記線輪と前記電極とよりなるユニットの
配列方式としては前記筒の周囲に複数個並置する並列方
式、或は前記ユニットを串状に配列する直列方式とし、
多相交流電源の各相電圧で励磁、通電を行わせることに
より一層強力な推進力を得ることが出来る。
In this case, again, as a system for arranging the unit composed of the wire wheel and the electrode, a parallel system in which a plurality of units are arranged side by side around the cylinder, or a series system in which the units are arranged in a skewer,
A stronger propulsive force can be obtained by exciting and energizing each phase voltage of the polyphase AC power supply.

「作用」 第1図より明らかな如く前記電磁推進方式を海水中で使
用する場合について、発明者は次のことに着目した。即
ち、直流電流を使用した場合は海水中に含まれるナトリ
ウムイオン等の為に、電気分解が起こりガスが発生し、
この結果各種の障害を引き起すなど大電流の通電を困難
にしてしまう。
[Operation] As is clear from FIG. 1, when the electromagnetic propulsion system is used in seawater, the inventor has paid attention to the following. That is, when a direct current is used, due to sodium ions contained in seawater, electrolysis occurs and gas is generated.
As a result, it becomes difficult to carry a large current such as causing various troubles.

一方交流電流を使用した場合は少なくとも2Hz以上、好
ましくは数Hz前後で前記ガスの発生がほとんどなくなり
前記欠点が解消される。
On the other hand, when an alternating current is used, the generation of the gas is almost eliminated at least at 2 Hz or more, preferably around several Hz, and the above-mentioned drawback is solved.

一方船舶では蓄電池により交流電源を使用するものであ
るために周波数の設定は任意に出来るが、商業電源の様
に50Hz前後の周波数を使用した場合、励磁線輪によって
発生される磁束を前記電極間の海水を流れる交流電流と
同一位相化する事が困難となり、強力な交番磁界発生と
共に励磁線輪の超電導化も不可能になってしまう。
On the other hand, in ships, an AC power supply is used with a storage battery, so the frequency can be set arbitrarily, but when using a frequency of around 50 Hz as in a commercial power supply, the magnetic flux generated by the exciter ring is applied between the electrodes. It becomes difficult to make it the same phase as the alternating current flowing through the seawater, and it becomes impossible to make the exciter wheel superconducting as well as generate a strong alternating magnetic field.

そこで本発明は商用周波数50或は60Hzに較べて遥かに低
い、例えば30Hz以下好ましくは数Hz前後の周波数を用い
ている。
Therefore, the present invention uses a frequency much lower than the commercial frequency of 50 or 60 Hz, for example, 30 Hz or less, preferably around several Hz.

これにより励磁線輪によって発生される磁束を前記電極
間の海水を流れる交流電流と同一位相化する事が容易と
なり、強力な交番磁界発生と共に励磁線輪の超電導化可
能となり、船舶推進に必要な強力な推進力を得る事が出
来る。
This makes it easy to make the magnetic flux generated by the excitation coil in phase with the alternating current flowing through the seawater between the electrodes, and with the generation of a strong alternating magnetic field, the excitation coil can be made superconducting, which is necessary for ship propulsion. You can get a strong driving force.

次に電気分解作用によって生ずるガス発生の制限につい
て説明する。
Next, the limitation of gas generation caused by electrolysis will be described.

一般に電解液中に電極を挿入して、これに通電すること
が電気分解であって、電極の極性を定めて直流電圧が印
加され、電気分解を行わせ、そしてそれぞれの電極は電
解液中のイオンとの間で電荷の授受を行わせるが、これ
を交流にすることにより電極の極性が変化し、前記電気
分解が生じないか大幅に低減される。
Generally, electrolysis is to insert an electrode into an electrolytic solution and to apply electricity to it.The polarity of the electrode is determined and a DC voltage is applied to cause electrolysis. Electric charges are exchanged with the ions, but the polarity of the electrodes is changed by making this alternating current, and the electrolysis is not generated or is greatly reduced.

即ち、電極と液との境界では電極反応の反応速度を
、反応物をA、B、C濃度とし、K0を速度定義とす
れば、 V=K0〔A〕〔B〕〔C〕 l、m、nは反応次数、 K0=Aexp(−En/RT) となる。
That is, at the boundary between the electrode and the liquid, if the reaction rate of the electrode reaction is V 1 , the reactants are A, B and C concentrations, and K 0 is the rate definition, then V = K 0 [A] 1 [B] n [C] m l, m, n is the reaction order, K 0 = Aexp (-En / RT).

即ちその時間内でそれぞれの電極において化学変化が行
われる。即ち、ガスの発生、電極の腐蝕等が発生するも
のである。従って、この反応速度に対して電極の極性を
変換することは電極及びその界面に対して変る化学変化
に影響を及ぼすもので、電気極性の変換の速さが早い
程、化学変化はこれに追従できなくなる。従って略2Hz
以上で且つ商用電源より大幅に低い周波数が好ましいこ
とはいうもでもない。
That is, a chemical change takes place at each electrode within that time. That is, gas generation, electrode corrosion, and the like occur. Therefore, changing the polarity of the electrode with respect to this reaction rate has an effect on the chemical change that changes with respect to the electrode and its interface, and the faster the conversion of electrical polarity, the more the chemical change follows this. become unable. Therefore, about 2Hz
Needless to say, the above frequency and a frequency significantly lower than that of the commercial power source are preferable.

一方反応速度は物質で異なるもので、その一例の測定値
が第1図に示されている。図に示すように周波数の増加
に対して反応速度は追従することができなくなり、周波
数の増加に対して化学変化、即ち発生ガスの量が減少し
て図の様な曲線となる。
On the other hand, the reaction rate differs depending on the substance, and the measured values of one example are shown in FIG. As shown in the figure, the reaction rate cannot follow the increase of the frequency, and the chemical change, that is, the amount of generated gas decreases with the increase of the frequency, resulting in a curve as shown in the figure.

ここで重要なことは、電極面及びその界面で生ずる電解
液における化学変化としての電気分解と電解液そのも
の、導電性とは別の現象であることである。従ってガス
発生、電極の腐蝕による消耗と、電解液中を流れる交流
電流の両者の間において化学変化をおさえて電流を流す
ことは互に全く矛盾を生じることはない。
What is important here is that electrolysis as a chemical change in the electrolytic solution that occurs on the electrode surface and its interface, and the electrolytic solution itself and conductivity are phenomena different from each other. Therefore, there is no contradiction between passing the current by suppressing the chemical change between the generation of gas, the consumption of the electrode due to corrosion, and the alternating current flowing in the electrolytic solution.

この事実は電解液中に於いて無電極で交流電流の導通の
行われる渦電流などについても化学作用を起こすことな
く、通電を行わせることが出来るものである。
This fact makes it possible to energize an eddy current, etc., in which an alternating current is conducted without electrodes in an electrolytic solution, without causing a chemical action.

繰り返せば、ガスの発生が電極の腐蝕による消耗は電極
やその界面で生ずる化学作用であり、電解液を流れる電
流は導電率で定まる電流である。
If it is repeated, the generation of gas is the chemical action that is consumed at the electrode and its interface due to the corrosion of the electrode, and the current flowing through the electrolytic solution is the current determined by the conductivity.

以上の様な作用により、大電流を流すことの阻害要因と
なっている電気分解によるガスの発生や、電極の腐蝕を
抑制することができる。これにより大電流の通電が可能
になるとともに、磁束及び電流の漏洩によって生ずる各
種障害の発生も防止でき、従って、上記大電力を有効に
送液用の電磁力に変換することができ、推進装置の効率
が向上する。また、、直列配置した電磁ポンプによる水
力の集中化により推進力の倍化を図ることが出来ること
は明らかである。
Due to the above-mentioned actions, it is possible to suppress the generation of gas due to electrolysis and the corrosion of the electrodes, which are factors that hinder the flow of large currents. As a result, a large amount of current can be applied, and various kinds of obstacles caused by leakage of magnetic flux and current can be prevented. Therefore, the large amount of electric power can be effectively converted into an electromagnetic force for liquid feeding, and the propulsion device Improves efficiency. Further, it is clear that the propulsive force can be doubled by concentrating the hydraulic power by the electromagnetic pumps arranged in series.

「実施例」 以下図面に基づいて本発明の実施例を説明する。第1図
は海水の通電時の電極における周波数特性、第2図は電
磁ポンプ機構の略図で(イ)は正面図、(ロ)は側面
図、第3図は電磁力ユニットを並列にした電磁ポンプの
略図で、(イ)は平面図、(ロ)は側面図、第4図は直
並列電磁ポンプによる海水船舶用推進装置の略図であ
る。
[Examples] Examples of the present invention will be described below with reference to the drawings. Fig. 1 shows the frequency characteristics of the electrodes during energization of seawater, Fig. 2 is a schematic diagram of an electromagnetic pump mechanism, (a) is a front view, (b) is a side view, and Fig. 3 is an electromagnetic force unit in parallel. FIG. 4 is a schematic diagram of a pump, (a) is a plan view, (b) is a side view, and FIG. 4 is a schematic diagram of a propulsion device for seawater vessels using a series-parallel electromagnetic pump.

第1図において横軸(f)は単位時間に電流の方向の変
換する数、即ち周波数で、縦軸は単位時間に一対の電極
より発生するガス量の和(g)を示す。周波数0、即ち
直流電流を使用した場合に対し、周波数が漸増するにし
たがい電極よりの発生するガスの量(g)は急激に減少
することが判る。此の場合の周波数は数Hz程度であって
周波数の影響が最も大きく影響される範囲である。
In FIG. 1, the horizontal axis (f) represents the number of conversions of the direction of the current per unit time, that is, the frequency, and the vertical axis represents the sum (g) of the gas amounts generated by the pair of electrodes per unit time. It can be seen that the amount (g) of gas generated from the electrode sharply decreases as the frequency gradually increases as compared with the case where the frequency is 0, that is, the direct current is used. The frequency in this case is about several Hz, which is the range where the influence of the frequency is most greatly affected.

これは商用周波数50或は60Hzに較べて遥かに低い周波数
で励磁線輪の励磁には好適の周波数である。
This is a much lower frequency than the commercial frequency of 50 or 60 Hz, and is a preferable frequency for exciting the excitation coil.

第2図において1は電気的絶縁性のある両端面開放筒
で、その外周には励磁線輪2の巻かれた励磁鉄心3の磁
極4が対向するように装着される。従って励磁鉄心3よ
りの磁束5は前記開放筒1内の海水を通して発生する。
これに対し前記断面で前記磁束5と直交するように海水
中に電流を流すための一対の電極6が前記開放筒1の内
側に取りつけられる。したがって一対の電極6に電圧を
印加することで海水中に電流7が前記磁束5と直交して
流れることになる。これはフレミングの法則によって海
水は前記開放筒の軸心方向に電磁気力によって送水力が
生じて海水が移動し、電磁ポンプが構成される。此の場
合に励磁線輪2を励磁する電流及び電極6による海水中
を流れる電流は第1図の周波数特性曲線のような数Hz前
後の低い交流周波数即ち、略2Hz〜30Hzの周波数の電源
によって行われる。9は励磁線輪2と並列共振を行わせ
る蓄電器で、更に磁束5と電流7とは位相差をなくすこ
とが効率の上から重要なことである。
In FIG. 2, reference numeral 1 designates an electrically insulating cylinder having open end surfaces, on the outer circumference of which a magnetic pole 4 of an exciting iron core 3 wound with an exciting wire ring 2 is mounted so as to face each other. Therefore, the magnetic flux 5 from the exciting iron core 3 is generated through the seawater in the open cylinder 1.
On the other hand, a pair of electrodes 6 for passing an electric current in seawater are attached inside the open cylinder 1 so as to be orthogonal to the magnetic flux 5 in the cross section. Therefore, by applying a voltage to the pair of electrodes 6, a current 7 flows in the seawater perpendicularly to the magnetic flux 5. According to Fleming's law, seawater moves in the axial direction of the open cylinder due to an electromagnetic force to move the seawater to form an electromagnetic pump. In this case, the current for exciting the excitation coil 2 and the current flowing in the seawater by the electrode 6 are generated by a low AC frequency of about several Hz as shown in the frequency characteristic curve of FIG. Done. Reference numeral 9 is a capacitor that causes parallel resonance with the excitation coil 2, and it is important for efficiency to eliminate the phase difference between the magnetic flux 5 and the current 7.

第3図は第2図の1対の励磁鉄心1と電極6とのユニッ
トを両端開放筒の周囲に2対配設したもので、電源は2
相交流電源に依って電力が供給され、並列方式である。
したがってその送水力も倍加される。
FIG. 3 shows two pairs of the unit of the exciting iron core 1 and the electrode 6 shown in FIG.
Electric power is supplied by a phase alternating current power supply, and it is a parallel system.
Therefore, its water supply capacity is also doubled.

第4図は、両端開放筒1に第3図で示した並列ユニット
を串状に配列した直列方式を船舶の推進装置としたもの
で船首より海水を吸込み、船尾方向に海水を放出するこ
とになる。
FIG. 4 shows a propulsion device for a ship that uses a series system in which the parallel units shown in FIG. 3 are arranged in a skewer shape on the open-ended cylinder 1 as a propulsion device for a ship. The seawater is sucked in from the bow and discharged in the stern direction. Become.

更に励磁線輪を超電導線輪とし、並列に接続された蓄電
器と電源周波数とで並列共振状態におくことにより強力
な磁束を発生させることができる。
Furthermore, a strong magnetic flux can be generated by using a superconducting coil as the exciting coil and placing the capacitor connected in parallel and the power supply frequency in parallel resonance.

「効果」 本発明は以上のように励磁及び電極電流を商用電源より
大幅に低い周波数略2Hz〜30Hzという低周波の多相交流
電源で電力を供給するようにしたために電気分解作用に
よって生ずるガス発生も制限し、電極の腐蝕量も減少さ
せ、高価な金属による電極も必要とすることがなくな
り、大電流を流すことも可能になって大きな推進力と効
率の向上をもたらすことが可能となる。また磁束及び電
流の漏洩によって生ずる各種の障害も発生することはな
く、直並列化した電磁ポンプによる推力の集中化により
推進力の倍化も計ることができる。これは特にガス発生
の禁じられる潜水艇の如きものに対し好適なものである
ことはいうまでもない。
[Effect] As described above, according to the present invention, the excitation and the electrode current are supplied by the low-frequency multi-phase AC power supply whose frequency is substantially lower than that of the commercial power supply, that is, about 2 Hz to 30 Hz. It also limits the amount of corrosion of the electrode, eliminates the need for an electrode made of an expensive metal, and allows a large current to flow, resulting in a large propulsive force and improved efficiency. In addition, various obstacles caused by leakage of magnetic flux and current do not occur, and thrust can be doubled by concentration of thrust by an electromagnetic pump in series and parallel. It is needless to say that this is particularly suitable for a submersible, which is prohibited from generating gas.

【図面の簡単な説明】[Brief description of drawings]

第1図は電極における周波数特性、第2図は電磁ポンプ
の機構の略図で(イ)は正面図、(ロ)は側面図、第3
図は並列型電磁ポンプの略図で(イ)は正面図、(ロ)
は側面図、第4図は直並列電磁ポンプを搭載した海水船
舶用推進装置の略図。 1……両端開放絶縁筒、2……励磁線輪、 3……励磁鉄心、4……磁極、5……磁束、 6……電極、7……電流、8……船体、9……蓄電器
FIG. 1 is a frequency characteristic of an electrode, FIG. 2 is a schematic diagram of a mechanism of an electromagnetic pump, (a) is a front view, (b) is a side view, and FIG.
The figure is a schematic view of a parallel type electromagnetic pump, (a) is a front view, (b)
Is a side view, and FIG. 4 is a schematic view of a propulsion device for seawater vessels equipped with a series-parallel electromagnetic pump. 1 ... Both ends open insulation cylinder, 2 ... Excitation coil, 3 ... Excitation core, 4 ... Magnetic pole, 5 ... Magnetic flux, 6 ... Electrode, 7 ... Current, 8 ... Hull, 9 ... Condenser

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−60409(JP,A) 特開 昭55−161075(JP,A) 特開 昭51−110704(JP,A) 特開 昭47−18010(JP,A) 特公 昭50−77(JP,B2) ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-52-60409 (JP, A) JP-A-55-161075 (JP, A) JP-A-51-110704 (JP, A) JP-A-47- 18010 (JP, A) Japanese Patent Sho 50-77 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】両端が開放されて内部を海水が通水可能に
され、電気的絶縁性を有する材料からなる開放筒の外周
に励磁線輪が巻装された鉄心を装着し、 前記鉄心により前記開放筒中の海水中に生ずる磁束と直
交する電流を流す対をなす電極を前記開放筒の内壁に設
けてなる海水船舶用推進装置において、 前記励磁線輪と前記電極とに商用電源よりも大幅に低い
2Hz以上でかつ30Hz以下の周波数を有し同一位相の交流
電流を通電する手段を備え、 前記交流電流の通電により発生する電磁力により前記開
放筒内の軸線方向に生ずる送水力で船舶を推進せしめる
ように構成したことを特徴とする海水船舶用推進装置。
1. An iron core having an exciting coil wound around the outer circumference of an open cylinder made of a material having an electrical insulation property, the both ends of which are open so that seawater can pass through the inside of the open core. In a propulsion device for seawater vessels, which comprises a pair of electrodes on the inner wall of the open cylinder, the electrodes forming a pair that allows a current that is orthogonal to the magnetic flux generated in the seawater in the open cylinder to be provided, the excitation coil and the electrode being significantly larger than a commercial power source. Very low
A means for energizing an alternating current having a frequency of 2 Hz or more and 30 Hz or less and having the same phase is provided, and the electromagnetic force generated by energizing the alternating current is used to propel the ship by the water feeding force generated in the axial direction in the open cylinder. A propulsion device for seawater vessels, which is configured as described above.
【請求項2】前記開放筒を、船体の進行方向に沿って船
体内を貫通させて設けてなる請求項1記載の海水船舶用
推進装置。
2. The propulsion device for seawater vessels according to claim 1, wherein the open cylinder is provided so as to pass through the inside of the hull along the traveling direction of the hull.
JP60204522A 1985-09-18 1985-09-18 Propulsion device for seawater vessels Expired - Lifetime JPH0684159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204522A JPH0684159B2 (en) 1985-09-18 1985-09-18 Propulsion device for seawater vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204522A JPH0684159B2 (en) 1985-09-18 1985-09-18 Propulsion device for seawater vessels

Publications (2)

Publication Number Publication Date
JPS62160991A JPS62160991A (en) 1987-07-16
JPH0684159B2 true JPH0684159B2 (en) 1994-10-26

Family

ID=16491925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204522A Expired - Lifetime JPH0684159B2 (en) 1985-09-18 1985-09-18 Propulsion device for seawater vessels

Country Status (1)

Country Link
JP (1) JPH0684159B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447263A (en) * 1987-08-12 1989-02-21 Hitachi Ltd Water pump
JPH058795Y2 (en) * 1988-02-05 1993-03-04
DE3924996A1 (en) * 1989-07-28 1991-02-07 Laukien Guenther METHOD AND DEVICE FOR DRIVING WATER VEHICLES
US5314311A (en) * 1989-11-10 1994-05-24 Koatsu Gas Kogyo Co., Ltd. Thrust generator
JP3045754B2 (en) * 1990-09-21 2000-05-29 栄一 多田 Thrust generator
JP7173501B2 (en) * 2020-12-09 2022-11-16 ヤマハ発動機株式会社 Electromagnetic pump for conductive liquid
CN115056958A (en) * 2022-07-01 2022-09-16 武汉水灵环保科技有限公司 Transport ship using all-vanadium redox flow battery as power and operation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077A (en) * 1973-04-30 1975-01-06

Also Published As

Publication number Publication date
JPS62160991A (en) 1987-07-16

Similar Documents

Publication Publication Date Title
DK174030B1 (en) Anti-fouling system
O'brien et al. Magnetic field assisted convection in an electrolyte of nonuniform magnetic susceptibility
EP0500970B1 (en) Thrust generator
US20090205971A1 (en) Method and apparatus for producing combustible fluid
JPH0684159B2 (en) Propulsion device for seawater vessels
US3106058A (en) Propulsion system
JPS62136596A (en) Continuous electrolytic treatment device for metallic web
Saji et al. Basic study of superconducting electromagnetic thrust device for propulsion in seawater
US5352139A (en) Method and apparatus for the propulsion of water vehicles
WO1995006144A1 (en) Water electrolyzing method and apparatus
Takezawa et al. Operation of the thruster for superconducting electromagnetohydrodynamic propu1sion ship “YAMATO 1”
EP0453567A1 (en) Thrust generator
KR101534164B1 (en) Panel-type magnetohydrodynamic propulsion apparatus and the ship comprising the apparatus
EP0036302A1 (en) Electromagnetic stirring apparatus
JPS6137158B2 (en)
JPS623240B2 (en)
JPH01109195A (en) Electromagnetic propulsion device
GB2563478A (en) A device and variants for electroylsts
CN116065176B (en) Electrolysis device and system directly powered by alternating current
JP2677286B2 (en) Water moving device
RU81189U1 (en) INDUCTION ELECTROCHEMICAL INSTALLATION
RU2340996C1 (en) Pulse electromechanical source of supply
JPH0948389A (en) Gas generating device for reducing hull frictional resistance
JPH0785999B2 (en) Electromagnetic propulsion device
SU1186549A1 (en) Arrangement for collecting petroleum from water surface