JPH0683036B2 - Complementary signal amplifier circuit for semiconductor memory - Google Patents

Complementary signal amplifier circuit for semiconductor memory

Info

Publication number
JPH0683036B2
JPH0683036B2 JP61307010A JP30701086A JPH0683036B2 JP H0683036 B2 JPH0683036 B2 JP H0683036B2 JP 61307010 A JP61307010 A JP 61307010A JP 30701086 A JP30701086 A JP 30701086A JP H0683036 B2 JPH0683036 B2 JP H0683036B2
Authority
JP
Japan
Prior art keywords
load
driving transistor
circuit
connection point
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61307010A
Other languages
Japanese (ja)
Other versions
JPS63158908A (en
Inventor
賢司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61307010A priority Critical patent/JPH0683036B2/en
Publication of JPS63158908A publication Critical patent/JPS63158908A/en
Publication of JPH0683036B2 publication Critical patent/JPH0683036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Manipulation Of Pulses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリ用相補信号増幅回路に関し、特に
カレントミラー型センス増幅器を複数個使用する半導体
メモリ用相補信号増幅回路に関する。
The present invention relates to a complementary signal amplifier circuit for semiconductor memory, and more particularly to a complementary signal amplifier circuit for semiconductor memory that uses a plurality of current mirror type sense amplifiers.

〔従来の技術〕[Conventional technology]

従来、カレントミラー型センス増幅器を複数個使用する
半導体メモリ用相補信号増幅回路のイコライズ回路は第
3図及び第4図のような回路構成のものが知られてい
る。
Conventionally, an equalizer circuit of a complementary signal amplifier circuit for a semiconductor memory using a plurality of current mirror type sense amplifiers has a circuit configuration as shown in FIGS. 3 and 4.

次に、第4図および第5図を参照して従来の技術を説明
する。第4図は2つのカレントミラー型センス増幅器で
構成された相補信号増幅回路で、T31〜T34はそれぞれ2
つのカレントミラー型センス増幅器の負荷用のpチャネ
ルMOSFETで、T35〜T38はそれぞれ2つのカレントミラー
型センス増幅器の駆動用のnチャネルのMOSFETでT39,T4
0はそれぞれ2つのカレントミラー型センス増幅器の選
択用のnチャネルのMOSFETで、T31は前述した各MOSFET
で構成された相補信号増幅回路の出力イコライズ用のp
チャネルMOSFETである。
Next, a conventional technique will be described with reference to FIGS. 4 and 5. FIG. 4 shows a complementary signal amplifier circuit composed of two current mirror type sense amplifiers, each of T31 to T34 has two
P-channel MOSFETs for load of two current mirror type sense amplifiers, T35 to T38 are n-channel MOSFETs for driving two current mirror type sense amplifiers, respectively, T39, T4
0 is an n-channel MOSFET for selecting two current mirror sense amplifiers, and T31 is each MOSFET described above.
P for equalizing the output of the complementary signal amplification circuit configured by
It is a channel MOSFET.

まず、イコライズ用のTE31を接続しない場合の動作につ
いて説明する。今、活性化信号φ31によってこの相補信
号増幅回路が活性化され互いに相補関係にある第1,第2
の入力信号φ3232Bが第5図の一点鎖線で示した曲線
のように変化する。このような変化は半導体メモリにお
けるアドレスの変化によって、選択されるメモリセルが
異なることによって起こる。相補信号増幅回路は半導体
メモリのディジット線対の信号を増幅する場合などに使
用される。この場合、一段とは限らず、多段接続して使
用してもよい。次に、駆動用MOSFET T35〜T38が動作
し、まずカレントミラー回路の入力回路の端子SR3,SR3B
の電位が破線で示した曲線のように変化する。次に、カ
レントミラー回路の出力回路の端子S3,S3Bの電位が三点
鎖線で示した曲線のように変化する。この変化の始点の
電位は端子S3,S3Bの飽和電位であり、S3,S3Bの負荷容量
が大きいほど信号の反転は遅れる。
First, the operation when the equalizing TE31 is not connected will be described. Now, the complementary signal amplifier circuit is activated by the activation signal φ 31 and the first and second complementary signals are complementary to each other.
Input signals φ 32 and φ 32B change as shown by the chain line in FIG. Such a change occurs because a selected memory cell is different due to a change in address in the semiconductor memory. The complementary signal amplifier circuit is used when amplifying a signal on a digit line pair of a semiconductor memory. In this case, the number of stages is not limited to one, and multiple stages may be connected and used. Next, the driving MOSFETs T35 to T38 operate, and first the terminals SR3 and SR3B of the input circuit of the current mirror circuit are input.
Potential changes like the curve shown by the broken line. Next, the potentials of the terminals S3 and S3B of the output circuit of the current mirror circuit change like the curves shown by the three-dot chain line. The potential at the starting point of this change is the saturation potential of the terminals S3 and S3B, and the inversion of the signal is delayed as the load capacitance of S3 and S3B increases.

アドレス変化に伴なう入力信号の変化を受けて出力信号
が変化を完了する(このことは以後アクセスという)ま
での時間を短縮する(このことを以後アクセス高速化と
いう)ため、イコライズ用のトランジスタTE31を端子S
3,S3B間に挿入する。イコライズ用信号φE3は、アドレ
ス変化に伴なって入力信号が変化し、続いて端子SR3,SR
3Bの端子の電位レベルが反転するタイミングに合わせて
端子S3,S3Bの電位を強制的に中間電位に設定する。すな
わち、アドレス変化を検知して発生し、端子SR3,SR3Bの
電位レベルが反転する迄アクティブとなる単一パルスで
あり、二点鎖線で示した曲線のようになる。出力端子S
3,S3Bの出力信号φ3232Bは実線で示した曲線のよう
に変化する。このようにして時間Δ分のアクセス高速化
を図ることができる。
A transistor for equalization in order to shorten the time required to complete the change of the output signal in response to the change of the input signal accompanying the address change (this is referred to as access hereinafter) (this is referred to as access speedup). TE31 to terminal S
Insert between 3, S3B. The input signal of the equalizing signal φ E3 changes as the address changes, and then the terminals SR3 and SR
The potentials of the terminals S3 and S3B are forcibly set to the intermediate potential at the timing when the potential level of the 3B terminal is inverted. That is, it is a single pulse that is generated by detecting an address change and is active until the potential levels of the terminals SR3 and SR3B are inverted, and becomes a curve shown by a chain double-dashed line. Output terminal S
The output signals φ 32 and φ 32B of 3, S3B change like the curve shown by the solid line. In this way, the access speed can be increased by the time Δ.

次に、相補信号増幅回路の他の従来例とその動作を第3
図,第6図を用いて説明する。
Next, another conventional example of the complementary signal amplifier circuit and its operation will be described in the third section.
This will be described with reference to FIGS.

第3図においてT21〜T24は、相補信号増幅回路を構成す
る2つのカレントミラー型センス増幅器の負荷用MOSFET
で、T25〜T28はカレントミラー型センス増幅器の駆動用
MOSFETで、T29,T30はカレントミラー型センス増幅器の
選択用MOSFETで、TE21〜TE23は相補信号増幅回路のイコ
ライズ用MOSFETである。今、活性化信号φ21によって相
補信号増幅回路が活性化され、互いに相補関係にある入
力信号φ2222Bが第6図の一点鎖線で示した曲線のよ
うに変化すると、φ2222Bをゲート入力する駆動用MO
SFET T25〜T28が動作し、相補信号増幅回路の出力端子
S2,S2Bの出力信号φ2323Bは実線で示した曲線のよう
に変化する。このとき、出力イコライズ用MOSFET TE2
1,TE22,TE23は相補信号増幅回路のアクセス高速化のた
め、イコライズ用信号φE2を受けて、相補信号増幅回路
の出力端子S2,S2B端子SR2,SR2Bを強制的に同電位とす
る。イコライズ用信号φE2はアドレス変化を検知して発
生する単一パルスで、その後縁が入力信号φ2222B
反転に同期し、端子S2とS2Bとを同電位にし、かつ端子S
2とSR2,S2BとSR2Bとを同電位にするに足るパルス幅を有
している。カレントミラー回路の出力側だけでなく入力
側も強制的に中間電位にするので、このパルス幅は、第
4図の従来例より短くてよく、一層のアクセス高速化を
図ることができる。
In FIG. 3, T21 to T24 are load MOSFETs of two current mirror type sense amplifiers forming a complementary signal amplifier circuit.
, T25 to T28 are for driving the current mirror type sense amplifier
In the MOSFET, T29 and T30 are selection MOSFETs for a current mirror type sense amplifier, and TE21 to TE23 are equalization MOSFETs for a complementary signal amplifier circuit. Now, when the complementary signal amplifier circuit is activated by the activation signal φ 21 , and the complementary input signals φ 22 and φ 22B change as shown by the dotted line in FIG. 6, φ 22 and φ 22 Drive MO for gate input of 22B
SFET T25 to T28 operate, output terminal of complementary signal amplifier circuit
The output signals φ 23 and φ 23B of S2 and S2B change like the curve shown by the solid line. At this time, output equalizing MOSFET TE2
1, TE22 and TE23 receive the equalizing signal φ E2 to force access to the complementary signal amplifier circuit, and force the output terminals S2, S2B terminals SR2, SR2B of the complementary signal amplifier circuit to the same potential. The equalizing signal φ E2 is a single pulse generated by detecting an address change, and its trailing edge is synchronized with the inversion of the input signals φ 22 and φ 22B to make the terminals S2 and S2B have the same potential, and the terminal S
It has a pulse width sufficient to make 2 and SR2, S2B and SR2B the same potential. Since the input side as well as the output side of the current mirror circuit is forcibly set to the intermediate potential, this pulse width may be shorter than that of the conventional example of FIG. 4, and the access speed can be further increased.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述したように従来の相補信号増幅回路では、第4図に
示すような回路構成の場合、端子SR3,SR3Bの電位は相補
信号増幅回路の駆動MOSFET T35,T38の能力によっての
み逆転する。そして、SR3,SR3Bの電位が逆転しないかぎ
り出力端子S3,S3Bの出力データも逆転しない。したがっ
て、出力イコライズ信号φE3は第5図に示すようにSR3,
SR3Bが逆転する時まで、TE31を活性化しておかなければ
ならず、相補信号増幅回路のアクセスがあまり高速化さ
れない欠点がある。
As described above, in the conventional complementary signal amplifying circuit, in the case of the circuit configuration shown in FIG. 4, the potentials of the terminals SR3 and SR3B are reversed only by the capabilities of the driving MOSFETs T35 and T38 of the complementary signal amplifying circuit. The output data of the output terminals S3 and S3B does not reverse unless the potentials of SR3 and SR3B reverse. Therefore, the output equalize signal φ E3 is, as shown in FIG.
TE31 must be activated until SR3B reverses, which has the disadvantage that the complementary signal amplifier circuit is not accessed very fast.

また、第3図に示すような回路構成の場合、SR2,SR2Bは
TE21,TE22,TE23を通してイコライズされるため、前述し
た第4図に示すような回路構成の場合に比べイコライズ
期間が短くなりアクセスは速くなるが、イコライズ用MO
SFETが3つ必要であり、そのため回路の構成素子数が増
加し、かつ出力端子S2,S2BにはTE21,TE22,TE23の拡散層
が接続されるため、寄生容量が増加し、イコライズ後の
出力信号の電位差がつきにくいと言う欠点がある。
In the case of the circuit configuration shown in Fig. 3, SR2 and SR2B are
Since it is equalized through TE21, TE22, and TE23, the equalization period is shorter and access is faster than in the case of the circuit configuration shown in FIG. 4 described above.
Since three SFETs are required, the number of circuit elements increases, and the output terminals S2 and S2B are connected to diffusion layers TE21, TE22, and TE23, increasing parasitic capacitance and increasing the output after equalization. There is a drawback in that it is difficult for the potential difference of signals to be made.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体メモリ用相補信号増幅回路は、第1のカ
レントミラー回路の入力回路を負荷として接続された第
1の駆動用トランジスタ及び前記第1のカレントミラー
回路の出力回路を負荷として接続された第2の駆動用ト
ランジスタからなる第1のダイナミック型差動増幅器
と、第2のカレントミラー回路の入力回路を負荷として
接続された第3の駆動用トランジスタ及び前記第2のカ
レントミラー回路の出力回路を負荷として接続された第
4の駆動用トランジスタからなる第2のダイナミック型
差動増幅器と、前記第1,第4の駆動用トランジスタのゲ
ートに共通に第1の入力信号を加える第1の入力信号供
給手段と、前記第2,第3の駆動用トランジスタのゲート
に共通に前記第1の入力信号と相補関係にある第2の入
力信号を加える第2の入力信号供給手段と、前記第1の
駆動用トランジスタとその負荷との接続点及び前記第3
の駆動用トランジスタとその負荷との接続点間に挿入さ
れた第1の半導体スイッチと、前記第2の駆動用トラン
ジスタとその負荷との接続点及び前記第4の駆動用トラ
ンジスタとその負荷との接続点間に挿入された第2の半
導体スイッチと、アドレス変化を検知して発生し前記第
1,第2の半導体スイッチを導通させる単一パルスである
イコライズ用信号を供給する制御信号印加手段とを含
み、前記イコライズ用信号の後縁が前記第1,第2の入力
信号の反転に同期し、パルス幅が前記第1の半導体スイ
ッチをして前記第1の駆動用トランジスタとその負荷と
の接続点と前記第3の駆動用トランジスタとその負荷と
の接続点の電位を等電位にさせかつ前記第2の半導体ス
イッチをして前記第2の駆動用トランジスタとその負荷
との接続点及び前記第4の駆動用トランジスタとその負
荷との接続点の電位を等電位にさせるのに足る時間に設
定されているというものである。
A complementary signal amplifier circuit for semiconductor memory according to the present invention is connected with a first driving transistor connected with an input circuit of a first current mirror circuit as a load and an output circuit of the first current mirror circuit as a load. A first dynamic differential amplifier including a second driving transistor, a third driving transistor connected with the input circuit of the second current mirror circuit as a load, and an output circuit of the second current mirror circuit A second dynamic differential amplifier composed of a fourth driving transistor connected as a load, and a first input for commonly applying a first input signal to the gates of the first and fourth driving transistors. A second input signal commonly applied to the signal supply means and the gates of the second and third driving transistors, the second input signal having a complementary relationship with the first input signal. An input signal supply means, a connection point between the first driving transistor and its load, and the third
A first semiconductor switch inserted between the connection point between the driving transistor and the load thereof, the connection point between the second driving transistor and the load, and the fourth driving transistor and the load. The second semiconductor switch inserted between the connection points and the first semiconductor switch generated when an address change is detected.
Control signal applying means for supplying an equalizing signal which is a single pulse for conducting the first and second semiconductor switches, and the trailing edge of the equalizing signal is synchronized with the inversion of the first and second input signals. Then, the pulse width causes the first semiconductor switch to make the potential at the connection point between the first driving transistor and its load and the potential at the connection point between the third driving transistor and its load equal. And sufficient time for the second semiconductor switch to have equal potentials at the connection point between the second driving transistor and its load and the connection point between the fourth driving transistor and its load. Is set to.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の回路図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

この実施例は、pチャネルMOSFET T11,T12で構成され
る第1のカレトミラー回路1の入力回路を負荷として接
続された第1の駆動用トランジスタT16及び第1のカレ
ントミラー回路1の出力回路を負荷として接続された第
2の駆動用トランジスタT15からなる第1のダイナミッ
ク型差動増幅器2と、pチャネルMOSFET T13,T14で構
成される第2のカレントミラー回路3の入力回路を負荷
として接続された第3の駆動用トランジスタT17及び第
2のカレントミラー回路3出力回路を負荷として接続さ
れた第4の駆動用トランジスタT18からなる第2のダイ
ナミック型差動増幅器4と、第1,第4の駆動用トランジ
スタT16,T18のゲートに共通に第1の入力信号φ12を加
える第1の入力信号供給手段と、第2,第3の駆動用トラ
ンジスタT15,T17のゲートに共通に第1の入力信号φ12
と相補関係にある第2の入力信号φ12Bを加える第2の
入力信号供給手段と、第1の駆動用トランジスタとその
負荷との接続点SR1及び第3の駆動用トランジスタT17
その負荷との接続点SR1B間に挿入されたPチャネルMOSF
ET TE1からなる第1の半導体スイッチと、第2の駆動
用トランジスタT15とその負荷との接続点S1及び第4の
駆動用トランジスタT18とその負荷との接続点S1B間に挿
入されたpチャネルMOS FET TE2からなる第2の半導
体スイッチと、アドレス変化を検知して発生し第1,第2
の半導体スイッチTE1,TE2を導通させる単一パルスであ
るイコライズ用信号を供給する制御信号印加手段とを含
み、前述のイコライズ用信号の後縁が第1,第2の入力信
号φ1212Bの反転に同期し、パルス幅が第1の半導体
スイッチTE1をして第1の駆動用トランジスタT16とその
負荷との接続点と第3の駆動用トランジスタT17とその
負荷との接続点の電位を等電位にさせ、かつ第2の半導
体スイッチTE2をして第2の駆動用トランジスタT15とそ
の負荷との接続点及び第4の駆動用トランジスタT18
その負荷との接続点の電位を等電位にさせるのに足る時
間に設定されている。
In this embodiment, the output of the first driving transistor T 16 and the first current mirror circuit 1 connected with the input circuit of the first carreto mirror circuit 1 composed of p-channel MOSFETs T 11 and T 12 as a load. An input circuit of a first dynamic differential amplifier 2 composed of a second driving transistor T 15 connected with the circuit as a load, and a second current mirror circuit 3 composed of p-channel MOSFETs T 13 and T 14. A second dynamic type differential amplifier 4 comprising a third driving transistor T 17 connected as a load and a fourth driving transistor T 18 connected as an output circuit of the second current mirror circuit 3; , First input signal supply means for commonly applying the first input signal φ 12 to the gates of the first and fourth driving transistors T 16 and T 18 , and the second and third driving transistors T 15 and 1st common to the gates of T 17 Input signal φ 12
A second input signal supply means for adding a second input signal φ 12B complementary to the connection point, a connection point SR1 between the first driving transistor and its load, and a third driving transistor T 17 and its load. P-channel MOSF inserted between the connection points SR1B of
ET T E1 is inserted between the first semiconductor switch, the connection point S1 between the second driving transistor T 15 and its load, and the connection point S1B between the fourth driving transistor T 18 and its load. The second semiconductor switch consisting of p-channel MOS FET T E2 and the first and second
Control signal applying means for supplying an equalizing signal which is a single pulse for turning on the semiconductor switches TE1 and TE2, and the trailing edge of the equalizing signal is the first and second input signals φ 12 and φ 12B. In synchronism with the inversion of, the pulse width of the first semiconductor switch TE1 is set to the connection point between the first driving transistor T 16 and its load and the connection point between the third driving transistor T 17 and its load. is a potential to equipotential, and the potential at the connection point between the second of the second driving transistor T 15 and the semiconductor switch TE2 and the connection point and the fourth and the load of the driving transistor T 18 and its load It is set to a time sufficient to bring the electric potentials to equipotential.

第2図は第1図の回路の動作信号波形図である。FIG. 2 is an operation signal waveform diagram of the circuit of FIG.

今、活性化信号φ11によって相補信号増幅回路が活性化
され、第1,第2の入力信号φ1212Bが一点鎖線で示し
た曲線のように変化する時、例えば半導体メモリのアド
レス変化に伴って発生される単一パルスであるイコライ
ズ用の制御信号φE1が、二点鎖線で示したように発生す
るとS1とS1BおよびSR1とSR1Bがイコライズされ、φE1
単一パルスの終了から増幅を開始する。この時、S1,S1B
およびSR1,SR1Bは同電位となった電位から増幅を開始す
るため、イコライズを行なわない場合に比べ高速な増幅
ができる。また、SR1,SR1Bをイコライズするため、φE1
のパルス幅も第4図に示すような構成の相補信号増幅回
路に比べ短くてよく、また第3図に示すような構成の相
補信号増幅回路に比べ構成素子数が少なく、かつ出力端
子の寄生容量も小さくできるので、イコライズ後の出力
信号の電位差がつき易くできる。
Now, when the complementary signal amplifier circuit is activated by the activation signal φ 11 , and the first and second input signals φ 12 and φ 12B change like the curves shown by the one-dot chain line, for example, the address change of the semiconductor memory When the control signal φ E1 for equalizing, which is a single pulse generated in accordance with, is generated as shown by the chain double-dashed line, S1 and S1B and SR1 and SR1B are equalized, and from the end of the single pulse of φ E1 Start amplification. At this time, S1, S1B
Since SR1 and SR1B start amplification from the same potential, higher-speed amplification can be performed compared to the case where equalization is not performed. In order to equalize SR1 and SR1B, φ E1
Pulse width may be shorter than that of the complementary signal amplifier circuit having the configuration shown in FIG. 4, and the number of constituent elements is smaller than that of the complementary signal amplifier circuit having the configuration shown in FIG. Since the capacitance can be reduced, the potential difference between the output signals after equalization can be easily made.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、相補信号増幅回路を構成
するカレントミラー型センス増幅器である第1,第2のダ
イナミック型差動増幅器の正相出力端子S1,S1B,逆相出
力端子SR1,SR1Bのうち、互いに逆相の出力信号が表われ
るS1とS1B,SR1とSR1Bをそれぞれイコライズすることに
より回路構成素子を多く用いることなく、高速な相補信
号増幅を行なうことができる効果がある。
As described above, according to the present invention, the positive phase output terminals S1 and S1B and the negative phase output terminals SR1 and SR1B of the first and second dynamic differential amplifiers, which are the current mirror type sense amplifiers forming the complementary signal amplifying circuit, are provided. Among these, by equalizing S1 and S1B and SR1 and SR1B in which output signals of mutually opposite phases appear, high-speed complementary signal amplification can be performed without using many circuit components.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の回路図、第2図は第1図に
示した回路の動作信号波形図、第3図は従来例の回路
図、第4図は他の従来例の回路図、第5図,第6図はそ
れぞれ第4図,第3図に示した回路の動作信号波形図で
ある。 1……第1のカレントミラー回路、2……第1のダイナ
ミック型差動増幅器、3……第2のカレントミラー回
路、4……第2のダイナミック型差動増幅器、S1,S1B,S
2,S2B,S3,S3B……カレントミラー回路の出力側と駆動用
トランジスタとの接続点、SR1,SR1B,SR2,SR2B,SR3,SR3B
……カレントミラー回路の入力側と駆動用トランジスタ
との接続点、T11,T12,T13,T14,T21,T22,T23,T24,T31,T
32,T33,T34,TE1,TE2,TE21,TE22,TE23,TE31……pチャネ
ルMOSFET、T15,T16,T17,T18,T19,T20,T25,T26,T27,T28,
T29,T30,T35,T36,T37,T38,T39,T40……nチャネルMOSFE
T、φ122232……第1の入力信号、φ12B22B,
φ32B……第2の入力信号、φ132333……第1の
出力信号、φ13B23B33B……第2の出力信号、φ
112131……活性化信号、φE1E2E3……制御
信号(イコライズ用信号)。
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is an operation signal waveform diagram of the circuit shown in FIG. 1, FIG. 3 is a circuit diagram of a conventional example, and FIG. 4 is another conventional example. Circuit diagrams, FIGS. 5 and 6 are operation signal waveform diagrams of the circuits shown in FIGS. 4 and 3, respectively. 1 ... First current mirror circuit, 2 ... First dynamic differential amplifier, 3 ... Second current mirror circuit, 4 ... Second dynamic differential amplifier, S1, S1B, S
2, S2B, S3, S3B ... Connection point between output side of current mirror circuit and driving transistor, SR1, SR1B, SR2, SR2B, SR3, SR3B
...... The connection point between the input side of the current mirror circuit and the driving transistor, T 11 , T 12 , T 13 , T 14 , T 21 ,, T 22 ,, T 23 , T 24 , T 31 , T
32 , T 33 , T 34 , T E1 , T E2 , T E21 , T E22 , T E23 , T E31 ...... p channel MOSFET, T 15 ,, T 16 ,, T 17 ,, T 18 ,, T 19 ,, T 20 ,, T 25 , T 26 , T 27 , T 28 ,
T 29 , T 30 ,, T 35 , T 36 , T 37 , T 38 , T 39 , T 40 ...... n channel MOSFE
T, φ 12 , φ 22 , φ 32 …… First input signal, φ 12B , φ 22B ,
φ 32B ...... second input signal, φ 13 , φ 23 , φ 33 ...... first output signal, φ 13B , φ 23B , φ 33B ...... second output signal, φ
11 , φ 21 , φ 31 ...... Activation signal, φ E1 , φ E2 , φ E3 ...... Control signal (equalizing signal).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1のカレントミラー回路の入力回路を負
荷として接続された第1の駆動用トランジスタ及び前記
第1のカレントミラー回路の出力回路を負荷として接続
された第2の駆動用トランジスタからなる第1のダイナ
ミック型差動増幅器と、第2のカレントミラー回路の入
力回路を負荷として接続された第3の駆動用トランジス
タ及び前記第2のカレントミラー回路の出力回路を負荷
として接続された第4の駆動用トランジスタからなる第
2のダイナミック型差動増幅器と、前記第1,第4の駆動
用トランジスタのゲートに共通に第1の入力信号を加え
る第1の入力信号供給手段と、前記第2,第3の駆動用ト
ランジスタのゲートに共通に前記第1の入力信号と相補
関係にある第2の入力信号を加える第2の入力信号供給
手段と、前記第1の駆動用トランジスタとその負荷との
接続点及び前記第3の駆動用トランジスタとその負荷と
の接続点間に挿入された第1の半導体スイッチと、前記
第2の駆動用トランジスタとその負荷との接続点及び前
記第4の駆動用トランジスタとその負荷との接続点間に
挿入された第2の半導体スイッチと、アドレス変化を検
知して発生し前記第1,第2の半導体スイッチを導通させ
る単一パルスであるイコライズ用信号を供給する制御信
号印加手段とを含み、前記イコライズ用信号の後縁が前
記第1,第2の入力信号の反転に同期し、パルス幅が前記
第1の半導体スイッチをして前記第1の駆動用トランジ
スタとその負荷との接続点と前記第3の駆動用トランジ
スタとその負荷との接続点の電位を等電位にさせかつ前
記第2の半導体スイッチをして前記第2の駆動用トラン
ジスタとその負荷との接続点及び前記第4の駆動用トラ
ンジスタとその負荷との接続点の電位を等電位にさせる
のに足る時間に設定されていることを特徴とする半導体
メモリ用相補信号増幅回路。
1. A first driving transistor connected to an input circuit of a first current mirror circuit as a load, and a second driving transistor connected to an output circuit of the first current mirror circuit as a load. A first dynamic differential amplifier, a third driving transistor connected to the input circuit of the second current mirror circuit as a load, and a third driving transistor connected to the output circuit of the second current mirror circuit as a load. A second dynamic differential amplifier including four driving transistors; first input signal supply means for commonly applying a first input signal to the gates of the first and fourth driving transistors; Second input signal supply means for applying a second input signal having a complementary relationship to the first input signal to the gates of the second and third driving transistors in common; A first semiconductor switch inserted between a connection point between a driving transistor and its load and a connection point between the third driving transistor and its load, and a connection between the second driving transistor and its load Point and a second semiconductor switch inserted between the connection point between the fourth driving transistor and its load, and a single semiconductor switch that conducts the first and second semiconductor switches by detecting an address change. Control signal applying means for supplying an equalizing signal which is a pulse, a trailing edge of the equalizing signal is synchronized with the inversion of the first and second input signals, and a pulse width of the first semiconductor switch. Then, the potentials of the connection point between the first driving transistor and its load and the connection point between the third driving transistor and its load are set to the same potential, and the second semiconductor switch is set to the Two For the semiconductor memory, the potential of the connection point between the driving transistor and the load thereof and the potential of the connection point between the fourth driving transistor and the load is set to an equal potential. Complementary signal amplifier circuit.
JP61307010A 1986-12-22 1986-12-22 Complementary signal amplifier circuit for semiconductor memory Expired - Lifetime JPH0683036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307010A JPH0683036B2 (en) 1986-12-22 1986-12-22 Complementary signal amplifier circuit for semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307010A JPH0683036B2 (en) 1986-12-22 1986-12-22 Complementary signal amplifier circuit for semiconductor memory

Publications (2)

Publication Number Publication Date
JPS63158908A JPS63158908A (en) 1988-07-01
JPH0683036B2 true JPH0683036B2 (en) 1994-10-19

Family

ID=17963928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307010A Expired - Lifetime JPH0683036B2 (en) 1986-12-22 1986-12-22 Complementary signal amplifier circuit for semiconductor memory

Country Status (1)

Country Link
JP (1) JPH0683036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780064A (en) * 1993-06-28 1995-03-28 Kyowa Shinku Gijutsu Kk Syringe of injector in common use as drug container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780064A (en) * 1993-06-28 1995-03-28 Kyowa Shinku Gijutsu Kk Syringe of injector in common use as drug container

Also Published As

Publication number Publication date
JPS63158908A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
EP0408031B1 (en) Data read circuit for semiconductor storage device
EP0329910B1 (en) Double stage sense amplifier for random access memories
USRE36264E (en) Read circuit for accessing dynamic random access memories (DRAMs)
EP0166540B1 (en) A semiconductor memory device
JPH0713857B2 (en) Semiconductor memory device
US4133049A (en) Memory circuit arrangement utilizing one-transistor-per-bit memory cells
US6023436A (en) Integrated circuit memory devices having synchronized bit line selection and I/O line precharge capability and methods of operating same
US4903238A (en) Semiconductor memory device with improved immunity to supply voltage fluctuations
JPS63146293A (en) Semiconductor memory device
JPH0683036B2 (en) Complementary signal amplifier circuit for semiconductor memory
US5278788A (en) Semiconductor memory device having improved controlling function for data buses
US4584493A (en) Self referenced sense amplifier
JP3317270B2 (en) SRAM device and control method thereof
KR100366523B1 (en) Sense amplifying circuit
JPS6286599A (en) Semiconductor memory device
KR0186102B1 (en) Data input circuit of semiconductor memory
JPH054753B2 (en)
USRE33725E (en) Self referenced sense amplifier
KR100434482B1 (en) Split gate control circuit and control method thereof and semiconductor memory device using the same, especially improve sensing speed of a bit line sense amplifier
US5734271A (en) Wideband power driver with separate setting delays of leading and trailing edges
JPH0291886A (en) Semiconductor memory device
US6201413B1 (en) Synchronous integrated circuit device utilizing an integrated clock/command technique
JP2972297B2 (en) Semiconductor integrated circuit device
JP2937154B2 (en) Amplifier circuit
JPH02304797A (en) Semiconductor memory