JPH0682601B2 - Mirror for X-ray exposure system - Google Patents

Mirror for X-ray exposure system

Info

Publication number
JPH0682601B2
JPH0682601B2 JP60271458A JP27145885A JPH0682601B2 JP H0682601 B2 JPH0682601 B2 JP H0682601B2 JP 60271458 A JP60271458 A JP 60271458A JP 27145885 A JP27145885 A JP 27145885A JP H0682601 B2 JPH0682601 B2 JP H0682601B2
Authority
JP
Japan
Prior art keywords
mirror
ray
rays
ray exposure
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60271458A
Other languages
Japanese (ja)
Other versions
JPS62131518A (en
Inventor
泉 和気
康晴 平井
和延 早川
勝久 宇佐美
邦裕 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60271458A priority Critical patent/JPH0682601B2/en
Publication of JPS62131518A publication Critical patent/JPS62131518A/en
Publication of JPH0682601B2 publication Critical patent/JPH0682601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、X線露光装置用ミラーに係り、特に、シンク
ロトロン放射光を利用したX線リソグラフイに好適なミ
ラーに関する。
Description: TECHNICAL FIELD The present invention relates to a mirror for an X-ray exposure apparatus, and more particularly to a mirror suitable for X-ray lithography using synchrotron radiation.

〔発明の背景〕[Background of the Invention]

サブミクロン寸法のパターン転写を目的としたX線リソ
グラフイの最も有望の方式の一つは、第1図に示すよう
に、電子蓄積リング1より放射される高輝度のシンクロ
トロン放射光2を、全反射ミラー3にて反射させ、マス
ク5のパターンをウエハ6上に転写するものである。全
反射ミラー3は、主に2つの目的に使われる。一つは、
指向性の高い放射光2を拡大することにより、反射放射
光4をウエハ上に均一に露光することである。もう一つ
は、パターン転写の分解能を劣化させてしまう波長数Å
以下の短波長X線を除去することにある。電子エネルギ
が10億電子ボルト以上の電子蓄積リングの放射光では、
このような短波長X線が多く含まれるため、全反射ミラ
ーによるその除去が必須である。
As shown in FIG. 1, one of the most promising methods of X-ray lithography for the purpose of transferring patterns of submicron dimensions is to use a high-intensity synchrotron radiation 2 emitted from an electron storage ring 1 as shown in FIG. The pattern of the mask 5 is transferred onto the wafer 6 by being reflected by the total reflection mirror 3. The total reflection mirror 3 is mainly used for two purposes. one,
By expanding the radiated light 2 having a high directivity, the reflected radiated light 4 is uniformly exposed on the wafer. The other is the number of wavelengths that degrades the resolution of pattern transfer Å
The purpose is to remove the following short wavelength X-rays. In the synchrotron radiation of the electron storage ring with electron energy of 1 billion eV or more,
Since many such short-wavelength X-rays are included, it is essential to remove them by a total reflection mirror.

(たとえば、プロシーデイングス・オブ・エス・ピー・
アイ・イー(Proceedings of SPIE)448巻50〜59頁,同
プロシーデイングス83〜92頁,ならびにハンドブツク・
オン・シンクロトロン・レデイエーシヨン(Handbook o
n Synchrotron Radiation)1133−1141頁。) このようなX線リソグラフイにおけるX線露光装置用ミ
ラーに要求される性能としては、リソグラフイに使用す
る波長域0.5〜1.5nmのX線に対して大きな反射率を示
し、より短い波長のX線に対しては小さい反射率を示す
こと、すなわち、短波長除去能力に優れることが要求さ
れる。
(For example, Proceedings of SP
Volume 448, 50-59, Proceedings of SPIE, 83-92, and Handbook
On Synchrotron Modification (Handbook o
n Synchrotron Radiation) 1133-1141. ) As the performance required for the X-ray exposure apparatus mirror in such X-ray lithography, a large reflectance is exhibited for X-rays in the wavelength range of 0.5 to 1.5 nm used for lithography, and a shorter wavelength is used. It is required to exhibit a low reflectance for X-rays, that is, to be excellent in the ability to remove short wavelengths.

さらに、高スループットのX線露光装置では、ミラーに
照射するX線量は数10W/cm2にも達し、これに耐えるた
めにミラーの素材は、耐放射線性,高熱伝導性、低熱膨
張率を有することが要求される。
Furthermore, in a high-throughput X-ray exposure apparatus, the X-ray dose to the mirror reaches several tens of W / cm 2 , and to withstand this, the material of the mirror has radiation resistance, high thermal conductivity, and low thermal expansion coefficient. Is required.

しかるに、従来提案されているシンクロトロン放射光を
用いたX線露光装置用ミラーは、人工石英(SiO2)・化
学蒸着炭化ケイ素(CVD−SiC)等の基板の上に、金,又
は白金を蒸着したもの、もしくは、人工石英をそのまま
反射面に用いたものであり、これらの、いずれも、以下
のように、欠点を持つ。
However, the conventionally proposed mirror for an X-ray exposure apparatus using synchrotron radiation emits gold or platinum on a substrate such as artificial quartz (SiO 2 ) or chemical vapor deposited silicon carbide (CVD-SiC). It is vapor-deposited or artificial quartz is used as it is for the reflecting surface, and each of them has the following drawbacks.

下記第1表にこれら素材の利想的平面に、入射角89゜と
88゜で入射したX線の反射率の計算値を示す。金,白金
等の重元素では、入射角89゜の場合0.23nmの短波長X線
に対して8〜11%もの反射率を示すので、短波長成分の
除去能力が十分ではない。入射角を88゜にすると0.23nm
X線の反射率は0.2〜0.3%となり、効率良く短波長成分
を除去できるが、リソグラフイに必要な0.8〜1.6nmX線
の反射率も50〜60%に低下してしまう。すなわち、短波
長X線に対しては小さい反射率を示し、かつ長波長X線
に対して大きな反射率を示すということを両立させるこ
とが難しいという欠点を持つ。
The following Table 1 shows the ideal plane of these materials with an incident angle of 89 °.
The calculated value of the reflectance of X-rays incident at 88 ° is shown. Heavy elements such as gold and platinum show a reflectance of 8 to 11% for 0.23 nm short-wavelength X-rays at an incident angle of 89 °, so that the ability to remove short-wavelength components is not sufficient. 0.23 nm at an incident angle of 88 °
The reflectivity of X-rays is 0.2 to 0.3%, and short wavelength components can be removed efficiently, but the reflectivity of 0.8 to 1.6 nm X-rays required for lithography is also reduced to 50 to 60%. That is, it has a drawback that it is difficult to achieve both a low reflectance for short wavelength X-rays and a high reflectance for long wavelength X-rays.

さらに、蒸着膜を用いたミラーでは、長時間のX線照射
により、膜、又は、膜と基板の界面が劣化して、反射率
が低下する恐れがある。
Furthermore, in a mirror using a vapor-deposited film, there is a risk that the film or the interface between the film and the substrate will deteriorate due to long-term X-ray irradiation, and the reflectance will decrease.

これに対して、人工石英は、入射角89゜で、0.23nmX線
の反射率は0.08%,0.8〜1.6nmX線の反射率は80%と、短
波長除去能力に優れているが、一方、ガラス質であるた
めに放射線損傷を受けやすいという欠点がある。
On the other hand, artificial quartz is excellent in short-wavelength removal capability, with a reflectance of 0.23 nm X-rays of 0.08% and a reflectance of 0.8 to 1.6 nm X-rays of 80% at an incident angle of 89 °. Since it is vitreous, it has the drawback of being susceptible to radiation damage.

〔発明の目的〕 本発明の目的は、上記従来技術の欠点を解決し、短波長
X線を効率良く除去でき、かつシンクロトロン放射光等
の高輝度X線源に十分対応できる耐放射線性を持つX線
露光装置用ミラーを提供することにある。
[Object of the Invention] An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to efficiently remove short-wavelength X-rays, and to have sufficient radiation resistance capable of coping with high-intensity X-ray sources such as synchrotron radiation. An object of the present invention is to provide a mirror for the X-ray exposure apparatus.

〔発明の概要〕[Outline of Invention]

本発明は、セラミツクス鏡面をそのまま反射面として用
いることを特徴とするX線露光装置用ミラーを要旨とす
るものである。
The gist of the present invention is a mirror for an X-ray exposure apparatus, which is characterized in that the ceramic mirror surface is used as it is as a reflecting surface.

一般にシンクロトロン放射光を利用したX線リソグラフ
イ装置用ミラーは、優れた短波長X線除去能力,耐放射
線性,高熱伝導性,そして低熱膨張性を有しなくてはな
らない。一般に、セラミツクスは、物理的,化学的に安
定なため耐放射線性に優れ、低熱膨張性を有することで
良く知られている。本発明は、このセラミツクスそのま
ま反射面に用いることによつて、X線リソグラフイに不
要な短波長X線を効率良く除去できるようにし、かつ、
長寿命化させた反射鏡に関するものである。
Generally, a mirror for an X-ray lithography apparatus using synchrotron radiation must have excellent short-wavelength X-ray removal ability, radiation resistance, high thermal conductivity, and low thermal expansion. Generally, ceramics are well known to have excellent radiation resistance and low thermal expansion because they are physically and chemically stable. The present invention makes it possible to efficiently remove short wavelength X-rays unnecessary for X-ray lithography by using the ceramics as it is for the reflecting surface, and
The present invention relates to a reflecting mirror having a long life.

即ち、第2表に示すX射角89゜の例では、各セラミツク
スともに、0.23nmX線の反射率は、0.3%以下と小さいの
に対し、0.8〜1.6nmでは、80〜90%と高く、優れた短波
長除去能力を有している。
That is, in the example of the X-ray angle of 89 ° shown in Table 2, the reflectance of 0.23 nm X-ray is 0.3% or less for both ceramics, while it is 80-90% for 0.8-1.6 nm. It has an excellent ability to remove short wavelengths.

さらに、第3表に示す如く、セラミツクスは熱膨張率が
低く、特に、ベリリア(BeO)等を添加した高熱伝導SiC
は、熱伝導が0.7cal/cm・sと高く熱膨張率が3.7×10-6
l/℃と小さいために、長時間使用に際しても熱変形を受
けにくく、ミラー素材として最も有効である。
Furthermore, as shown in Table 3, ceramics have a low coefficient of thermal expansion, and in particular, high thermal conductivity SiC containing beryllia (BeO), etc. added.
Has a high thermal conductivity of 0.7 cal / cm · s and a coefficient of thermal expansion of 3.7 × 10 -6
Since it is as small as l / ° C, it is hardly affected by thermal deformation even when used for a long time and is most effective as a mirror material.

尚、このようなセラミツクスは焼結によつて製作される
が、加圧などにより、気孔率が2%以下の高密度に焼結
することが望ましい。
Although such a ceramic is manufactured by sintering, it is desirable to sinter it to a high density with a porosity of 2% or less by pressing or the like.

また、反射面は表面粗さ1nm以下に研磨することが望ま
しい。
Further, it is desirable to polish the reflecting surface to have a surface roughness of 1 nm or less.

〔発明の実施例〕Example of Invention

以下に本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

第1図のX線露光装置におけるX線露光装置用ミラーで
ある全反射ミラー3の素材は、高熱伝導SiCセラミツク
スであり、2%のベリリアを添加したSiCを真空中、300
kg/mm2の加圧条件下で、2050℃×1hrの焼結を行い、170
mm×400mm、厚さ40mmの素板を製作したのち、ダイヤモ
ンド研磨により、反射面を表面粗さ1nm以下に研磨す
る。この状態での高熱伝導SiCの相対密度は98%以上
で、ほとんど気孔は存在しない。熱伝導度は約0.7cal/c
m・s・℃、熱張率は約3.7×10-6l/℃である。
The material of the total reflection mirror 3 which is the mirror for the X-ray exposure apparatus in the X-ray exposure apparatus of FIG. 1 is a high thermal conductive SiC ceramics, and SiC containing 2% beryllia is added in a vacuum of 300
Under the pressure condition of kg / mm 2 , sinter at 2050 ℃ × 1hr and perform 170
After manufacturing a blank plate with a size of mm × 400 mm and a thickness of 40 mm, the reflective surface is polished to a surface roughness of 1 nm or less by diamond polishing. In this state, the high thermal conductivity SiC has a relative density of 98% or more and almost no pores. Thermal conductivity is about 0.7 cal / c
m · s · ° C, thermal expansion coefficient is about 3.7 × 10 -6 l / ° C.

本実施例のミラーによれば、第2表のSiCセラミツクス
のX線反射率よりわかるように、短波長X線を有効に除
去することができる。又、放射線の直節照射を受ける鏡
面がセラミツクスであるため、放射線損傷を受けにく
く、鏡面が炭化水素等で汚染しても金属の蒸着膜に比べ
て洗浄が容易であり、長寿命の反射鏡が得られる。さら
に、高熱伝導SiCであるため、さらに水冷構造にするこ
とにより、温度上昇が小さくなり、また熱膨張率が小さ
いために、シンクロトロン放射光等の高輝度X線源にお
いて長時間使用しても、ミラーの変形が極く微量に抑え
られる。
According to the mirror of this embodiment, as can be seen from the X-ray reflectance of SiC ceramics in Table 2, short wavelength X-rays can be effectively removed. In addition, since the mirror surface that receives direct irradiation of radiation is ceramics, it is less susceptible to radiation damage, and even if the mirror surface is contaminated with hydrocarbons etc., it is easier to clean than a metal vapor deposition film and has a long life. Is obtained. Furthermore, since it is a high heat conductive SiC, the temperature rise is small by adopting a water cooling structure, and the coefficient of thermal expansion is small, so even if it is used for a long time in a high brightness X-ray source such as synchrotron radiation. The deformation of the mirror can be suppressed to an extremely small amount.

〔発明の効果〕〔The invention's effect〕

本発明によれば、短波長X線の除去効率が高く、耐放射
線性が強いX線露光装置用ミラーが製作できるので、X
線リソグラフイの解像度を向上させることができ、その
高スループツト化、ミラーの長寿命化にも極めて有効で
ある。
According to the present invention, it is possible to manufacture a mirror for an X-ray exposure apparatus which has a high efficiency of removing short-wavelength X-rays and a strong radiation resistance.
It is possible to improve the resolution of the line lithography, and it is very effective for the high throughput and the long life of the mirror.

【図面の簡単な説明】[Brief description of drawings]

第1図は、シンクロトロン放射光を利用したX線リソグ
ラフイにおけるX線露光装置用ミラーの使用例を示す構
成図である。 1……電子蓄積リング、2,4……放射光束、3……全反
射ミラー、5……マスク、6……ウエーハ。
FIG. 1 is a configuration diagram showing an example of use of a mirror for an X-ray exposure apparatus in X-ray lithography using synchrotron radiation. 1 ... Electron storage ring, 2, 4 ... Radiant flux, 3 ... Total reflection mirror, 5 ... Mask, 6 ... Wafer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇佐美 勝久 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 前田 邦裕 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhisa Usami 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitate Works, Ltd., Hitachi Research Laboratory (72) Kunihiro Maeda 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Nitate Works Co., Ltd. Hitachi Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミツクス鏡面をそのまま反射面として
利用するX線露光装置用ミラー。
1. A mirror for an X-ray exposure apparatus, which uses the ceramic mirror surface as it is as a reflecting surface.
JP60271458A 1985-12-04 1985-12-04 Mirror for X-ray exposure system Expired - Lifetime JPH0682601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271458A JPH0682601B2 (en) 1985-12-04 1985-12-04 Mirror for X-ray exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271458A JPH0682601B2 (en) 1985-12-04 1985-12-04 Mirror for X-ray exposure system

Publications (2)

Publication Number Publication Date
JPS62131518A JPS62131518A (en) 1987-06-13
JPH0682601B2 true JPH0682601B2 (en) 1994-10-19

Family

ID=17500311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271458A Expired - Lifetime JPH0682601B2 (en) 1985-12-04 1985-12-04 Mirror for X-ray exposure system

Country Status (1)

Country Link
JP (1) JPH0682601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831349B2 (en) * 1986-12-25 1998-12-02 キヤノン株式会社 Multilayer reflector for X-ray or vacuum ultraviolet
JP2731955B2 (en) * 1989-09-07 1998-03-25 キヤノン株式会社 X-ray exposure equipment
TW548524B (en) * 2000-09-04 2003-08-21 Asm Lithography Bv Lithographic projection apparatus, device manufacturing method and device manufactured thereby

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EXTENDED ABSTRACTS OF THE 17TH CONFERENCE ON SOLID STATE DEVICES AND MATERIALS=1985 *
NUCLEAR INSTRUMENTS AND METHODS IN PHISICS RESEARCH222=1984 *
PHOTON FACTORY ACTIVITY REPORT 1983/84=S54 *

Also Published As

Publication number Publication date
JPS62131518A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
US5052033A (en) Reflection type mask
TWI235245B (en) SiO2-coated mirror substrate for EUV
TW548336B (en) Protective overcoat for replicated diffraction gratings
JP2003505876A5 (en)
TW454208B (en) X-ray exposure device, X-ray exposure method and semiconductor device
TWI595309B (en) Method of fabricating pellicle
JP2918860B2 (en) Specular
JPH0864524A (en) Preparation of x-ray absorption mask
JPH0682601B2 (en) Mirror for X-ray exposure system
JPH0868897A (en) Reflection mirror and its production method
JP4868675B2 (en) Reflective lithography mask structure and manufacturing method thereof
JP3607454B2 (en) X-ray transmission film for X-ray mask, X-ray mask blank, X-ray mask, manufacturing method thereof, and polishing method of silicon carbide film
US5733688A (en) Lithographic mask structure and method of producing the same comprising W and molybdenum alloy absorber
RU2004103474A (en) SUBSTANCE MATERIAL FOR X-RAY OPTICAL COMPONENTS
JPH0868898A (en) Reflection mirror and its production method
JPH11326598A (en) Reflecting mirror and its manufacture
JPH08152499A (en) X-ray mirror
JPH11329918A (en) Soft x-ray projection aligner
JP2615741B2 (en) Reflection type mask, exposure apparatus and exposure method using the same
JP2560126B2 (en) Synchrotron radiation reflection mirror
JPS62113104A (en) Mirror for high luminance radiant light
JPH0778559B2 (en) Synchrotron radiation. SiC mirror for X-ray reflection
KR102617884B1 (en) Method for manufacturing reflective layer for lithography mask
JP3774801B2 (en) Synchrotron radiation, X-ray reflecting SiC mirror and method of manufacturing the same
JPH03251370A (en) Diamond grindstone for superfine grinding and manufacture thereof