JPH0682181A - Heat pipe type conduit cooling apparatus - Google Patents

Heat pipe type conduit cooling apparatus

Info

Publication number
JPH0682181A
JPH0682181A JP4259022A JP25902292A JPH0682181A JP H0682181 A JPH0682181 A JP H0682181A JP 4259022 A JP4259022 A JP 4259022A JP 25902292 A JP25902292 A JP 25902292A JP H0682181 A JPH0682181 A JP H0682181A
Authority
JP
Japan
Prior art keywords
working fluid
heat
pipe
heat pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4259022A
Other languages
Japanese (ja)
Inventor
Shinichi Sugihara
伸一 杉原
Isao Kaji
功 加治
Masataka Mochizuki
正孝 望月
Koichi Masuko
耕一 益子
Masahiko Ito
雅彦 伊藤
Yuji Saito
祐士 斎藤
Fumiaki Aoyama
文明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4259022A priority Critical patent/JPH0682181A/en
Publication of JPH0682181A publication Critical patent/JPH0682181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

PURPOSE:To provide a small-sized cooling apparatus capable of uniform cooling the inside of a conduit passage for electric power transmission over a long distance of the same. CONSTITUTION:A heat pipe 10 absorbs heat in a conduit passage 2, so that a title apparatus is made small-sized and there is ensured uniform heat absorption longitudinally of the cavity passage 2. Further, a looped heat pipe is employed, so that there are prevented a working fluid liquefied in a condensation section 12 and flown back toward an evaporation tube 11 and a vapor stream of the working fluid moving from the evaporation tube 11 to the condensation part 12 from interferring to each other to ensure long distance reflux flow and hence a sufficient amount of the working fluid is supplied to the evaporation tube 11. Additionally, a circulation pump 20 is used for movement of the working fluid to the evaporation tube 11 for forced circulation of the working fluid, so that even further long distance reflux of the working fluid is facilitated. Thus, cooling in the conduit passage 2 over a long distance is ensured using the present heat pipe 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、地中送電ケーブル布
設用の洞道内を冷却するヒートパイプ式洞道冷却装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe type tunnel cooling device for cooling the inside of a cave for laying an underground power transmission cable.

【0002】[0002]

【従来の技術】地中の洞道内に多数の送電ケーブルを布
設した場合には、各ケーブルよりの放熱によって洞道内
の温度が上昇し、ケーブル温度も上昇する。そして、洞
道内の温度が高くなり過ぎると、ケーブルの送電容量が
制限されてくる。このため、洞道内に冷却装置を設置し
て、洞道内の温度を許容値内に保持する必要がある。
2. Description of the Related Art When a large number of power transmission cables are laid in an underground cavern, the temperature inside the cavern increases due to heat radiated from each cable, and the cable temperature also rises. If the temperature inside the cave becomes too high, the transmission capacity of the cable will be limited. Therefore, it is necessary to install a cooling device in the cave to keep the temperature in the cave within an allowable value.

【0003】図3および図4は洞道内に防災トラフを介
して送電ケーブルを布設した場合に、冷却水によって主
として防災トラフ内の吸熱を行なう冷却装置の一例を示
すものである。すなわち、この冷却装置100は冷却水
の供給される水冷管101を送電ケーブル4が付設され
る防災トラフ3内に設置し、帰路管102を防災トラフ
3外の洞道2内に設置すると共に、循環ポンプ103お
よび冷凍機104を所定場所に設置して冷凍機104に
よって冷却された冷却水を循環ポンプ103によりポリ
エチレン製の冷水管101および帰路管102を通して
循環させることにより、主として冷水管101により水
防災トラフ3内からの吸熱を行なうものである。
3 and 4 show an example of a cooling device which mainly absorbs heat in the disaster prevention trough by cooling water when a power transmission cable is laid in the cave through a disaster prevention trough. That is, in this cooling device 100, a water cooling pipe 101 to which cooling water is supplied is installed in a disaster prevention trough 3 to which a power transmission cable 4 is attached, and a return pipe 102 is installed in a cave 2 outside the disaster prevention trough 3. The circulation pump 103 and the refrigerator 104 are installed at predetermined locations, and the cooling water cooled by the refrigerator 104 is circulated through the polyethylene cold water pipe 101 and the return pipe 102 by the circulation pump 103. It absorbs heat from the disaster prevention trough 3.

【0004】なお、この冷却装置100は主として防災
トラフ3内の吸熱を行なうものであるが、この防災トラ
フ3自身が洞道2内に設置されているものであるから、
洞道2全体について考えれば、この冷却装置100は洞
道2内からの吸熱を行なう洞道2内の冷却装置と考える
ことができる。
The cooling device 100 mainly absorbs heat in the disaster prevention trough 3, but the disaster prevention trough 3 itself is installed in the cave 2.
Considering the entire cave 2, the cooling device 100 can be considered as a cooling device in the cave 2 that absorbs heat from the cave 2.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような冷却水の循環により洞道2内から吸熱を行なう装
置では、水の顕熱分しか吸熱ができないため、冷却水の
温度上昇が大きく、冷却水による冷却距離Lを長くする
ことができなかった。このため、洞道2が設けられてい
る変電所間に循環ポンプ103や冷凍機104を複数箇
所に設置する必要が生じ、コストアップの原因となって
いた。特に都市部では循環ポンプ103や冷凍機104
を設置する調整所の用地確保が難しいため、冷却距離L
の長尺化が望まれていた。
However, in the device that absorbs heat from the inside of the cave 2 by circulating the cooling water as described above, since only the sensible heat of the water can be absorbed, the temperature rise of the cooling water is large. The cooling distance L with the cooling water could not be increased. Therefore, it is necessary to install the circulation pumps 103 and the refrigerators 104 at a plurality of places between the substations where the stile 2 is provided, which causes a cost increase. Especially in urban areas, circulation pump 103 and refrigerator 104
It is difficult to secure a site for the adjustment station where the
Was desired.

【0006】また、冷却水の流量を多くして冷却水の温
度上昇をできるだけ抑え、冷却距離Lを長くすることも
考えられるが、このことにより循環ポンプ103、冷凍
機104、水冷管101および帰路管102の大型化お
よびコストアップを招くと共に、洞道2や防災トラフ3
の大型化およびコストアップを招いてしまうという問題
があった。さらに、冷却水は水冷管101の出入口で大
きな温度差が生じるため、洞道2内(この場合は特に防
災トラフ3内)の均一な冷却が行なえないという問題も
あった。
It is also conceivable to increase the flow rate of the cooling water to suppress the temperature rise of the cooling water as much as possible, and to lengthen the cooling distance L. However, by this, the circulation pump 103, the refrigerator 104, the water cooling pipe 101 and the return path. In addition to increasing the size and cost of the pipe 102, the cave 2 and the disaster prevention trough 3
However, there is a problem in that the size and cost of the device increase. Further, since there is a large temperature difference between the cooling water at the inlet and outlet of the water cooling pipe 101, there is a problem that the inside of the cave 2 (in this case, the disaster prevention trough 3 in particular) cannot be cooled uniformly.

【0007】また、ヒートパイプで冷却することもでき
るが、通常のヒートパイプを長尺化すると、ヒートパイ
プの蒸発部から凝縮部への蒸気流が、凝縮部から蒸発部
への作動流体の流れと干渉して、作動流体の還流が妨げ
られてしまい、蒸発部への作動流体の供給量が不足して
ドライアウト現象が発生し、冷却能力が不安定になり易
いという問題があった。
Although it can be cooled by a heat pipe, if the length of a normal heat pipe is lengthened, the vapor flow from the evaporation part to the condensation part of the heat pipe and the flow of the working fluid from the condensation part to the evaporation part. Therefore, there is a problem in that the working fluid is prevented from flowing back, the amount of the working fluid supplied to the evaporation portion is insufficient, a dryout phenomenon occurs, and the cooling capacity easily becomes unstable.

【0008】この発明は上記問題に鑑みてなされたもの
で、送電ケーブル布設用の洞道内を長距離に亘って均一
かつ効率的に冷却することのできる小型で低コストな冷
却装置を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a small-sized and low-cost cooling device capable of uniformly and efficiently cooling a cave for laying a power transmission cable over a long distance. With the goal.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の手段としてこの発明は、地中送電ケーブルが布設され
た洞道内を冷却する洞道冷却装置において、前記送電ケ
ーブルの布設方向と平行に蒸発部を前記洞道内に配設
し、この蒸発部の一端側に凝縮部を設け、この凝縮部と
前記蒸発部の他端側とを連通する液戻し管を設けてルー
プ状に形成し、その内部に凝縮性の作動流体を封入して
ヒートパイプとするとともに、前記液戻し管の凝縮部の
付近に循環ポンプを介設し、さらに前記凝縮部の外側に
冷却手段を近接配置したことを特徴としている。
Means for Solving the Problems As a means for solving the above problems, the present invention relates to a cavern cooling device for cooling the inside of a cavern with an underground power transmission cable installed, in which the power transmission cable is installed in parallel with the installation direction. An evaporator is provided in the cave, a condenser is provided at one end of the evaporator, and a liquid return pipe that connects the condenser and the other end of the evaporator is provided to form a loop. A condensable working fluid is enclosed in the interior of the liquid pipe to form a heat pipe, a circulation pump is provided near the condensation part of the liquid return pipe, and a cooling means is disposed close to the outside of the condensation part. It has a feature.

【0010】[0010]

【作用】洞道内から吸熱する手段として、蒸発部の一端
の凝縮部側と、蒸発部の他端側とを液戻し管で連通接続
してループ状に形成されるヒートパイプの前記蒸発部
を、送電ケーブルの布設方向と平行となるように洞道内
に配設してあるため、送電ケーブルからの発熱により蒸
発部が加熱される。蒸発部内で沸騰して蒸気となった作
動流体は、低温低圧の凝縮部に移動し、凝縮部で放熱し
て凝縮し、液相の作動流体に戻る。このとき、凝縮部に
は冷却手段が設けられているため、大量の蒸気が凝縮さ
れて大量に放熱させることができる。
As means for absorbing heat from the inside of the cave, the evaporating portion of the heat pipe formed in a loop shape by connecting the condensing portion side at one end of the evaporating portion and the other end side of the evaporating portion are connected by a liquid return pipe. Since the power transmission cable is arranged in the cave so as to be parallel to the installation direction of the power transmission cable, the heat generated from the power transmission cable heats the evaporation portion. The working fluid that has boiled into vapor in the evaporation unit moves to the low-temperature low-pressure condensation unit, radiates heat in the condensation unit, is condensed, and returns to the liquid-phase working fluid. At this time, since the condenser is provided with the cooling means, a large amount of vapor is condensed and a large amount of heat can be released.

【0011】そして、凝縮部で液相に戻った作動流体
は、液戻し管の凝縮部の付近に介設された循環ポンプに
よって、液戻し管内を蒸発部に向けて送られて還流す
る。したがって、循環ポンプを設けて作動流体を強制循
環させるため、洞道の長手方向に亘って長距離の熱輸送
が可能となり、その結果、長い洞道内が均一に冷却され
る。
The working fluid that has returned to the liquid phase in the condenser section is sent to the evaporation section in the liquid return tube for reflux by a circulation pump provided near the condenser section of the liquid return tube. Therefore, since the working fluid is forcedly circulated by providing the circulation pump, heat can be transported over a long distance in the longitudinal direction of the sinus, and as a result, the inside of the long sinus is uniformly cooled.

【0012】[0012]

【実施例】以下、この発明の一実施例を図面を参照して
説明する。図1は地中に形成された送電用の洞道2内等
の斜視図であり、図中3は洞道2内に設けられた例えば
コンクリート製の防災トラフである。そして、この防災
トラフ3は図示してない支持手段によって洞道2内の所
定位置に支持されており内部に高圧(例えば数十から数
百KV)の送電ケーブル4が複数本布設されている。な
お、防災トラフ3外の洞道2内にも支持台5上に低圧
(例えば数KVなど)の送電ケーブル6が複数本布設さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the inside of a cave 2 for power transmission formed in the ground, and 3 in the figure is a disaster prevention trough provided in the cave 2 and made of concrete, for example. The disaster prevention trough 3 is supported at a predetermined position in the cave 2 by a support means (not shown), and a plurality of high-voltage (for example, tens to hundreds of KV) power transmission cables 4 are laid inside. In addition, a plurality of low-voltage (for example, several KV) power transmission cables 6 are laid on the support 5 in the cave 2 outside the disaster prevention trough 3.

【0013】また、図1中の符号1はこの洞道2内から
直接熱吸収を行なうと共に、防災トラフ3内から熱吸収
を行なって、直接的にまたは間接的に数キロメートルに
およぶ長い洞道2内を一度に冷却可能なヒートパイプ式
冷却装置である。このヒートパイプ式冷却装置1は、長
尺な複数本の蒸発管11と、この複数の蒸発管11の一
端側を収束させるヘッダ管11aと、比較的短かい凝縮
部12と、ヘッダ管11bを介して凝縮部12と前記蒸
発管11の端部を結ぶ液戻し管15とからなるループ型
のヒートパイプ10と、このヒートパイプ10内の作動
流体を強制的に循環させる循環ポンプ20と、ヒートパ
イプ10の凝縮部12を冷却する冷凍機30とから構成
されている。
Reference numeral 1 in FIG. 1 directly absorbs heat from the inside of the cave 2 and also absorbs heat from the disaster prevention trough 3 to directly or indirectly extend a long cave for several kilometers. It is a heat pipe type cooling device capable of cooling the inside of 2 at once. This heat pipe type cooling device 1 includes a plurality of long evaporating pipes 11, a header pipe 11a for converging one end side of the plurality of evaporating pipes 11, a relatively short condensing portion 12, and a header pipe 11b. A loop type heat pipe 10 composed of a condenser 12 and a liquid return pipe 15 connecting the end of the evaporation pipe 11, a circulation pump 20 for forcibly circulating the working fluid in the heat pipe 10, and a heat It comprises a refrigerator 30 for cooling the condenser 12 of the pipe 10.

【0014】ヒートパイプ10は、例えば真空脱気した
コルゲート管の内部にフロンやアルコールなどの目的温
度範囲で蒸発・凝縮する流体を作動流体として封入し、
その作動流体を高温側の蒸発管11で蒸発させた後これ
を低温側の凝縮部12で凝縮させて、作動流体の潜熱の
移動により蒸発管11側から凝縮部12側に熱輸送を行
なうものである。なお、この実施例において、前記密閉
管(コンテナ管)はコルゲート管より構成されている。
ここで、一般に密閉管内における作動流体の還流は重力
または毛細管力等を使用して外部からの仕事なしでなさ
れるが、この実施例のように数キロメートルにも及ぶ長
い洞道2を冷却する長尺なヒートパイプ10としては、
前述したように通常の直管型のヒートパイプでは作動流
体の還流が難しいため、この実施例ではヒートパイプ1
0をループ型とし、循環ポンプ20によって作動流体の
循環、すなわち作動流体を強制的に還流させるようにな
っている。
The heat pipe 10 has, for example, a vacuum degassed corrugated pipe filled with a fluid such as CFC or alcohol which evaporates and condenses in a target temperature range as a working fluid.
After the working fluid is evaporated in the high temperature side evaporation tube 11, it is condensed in the low temperature side condensation section 12, and heat is transferred from the evaporation tube 11 side to the condensation section 12 side by the transfer of latent heat of the working fluid. Is. In this embodiment, the closed pipe (container pipe) is a corrugated pipe.
Here, in general, the working fluid is circulated in the closed tube by using gravity or capillary force without any external work, but as in this embodiment, a long cooling path for a long cavern 2 extending for several kilometers is used. As a lengthy heat pipe 10,
As described above, since it is difficult to circulate the working fluid in the normal straight pipe type heat pipe, the heat pipe 1 is used in this embodiment.
0 is a loop type, and the circulation pump 20 circulates the working fluid, that is, forcibly recirculates the working fluid.

【0015】ヒートパイプ10は、蒸気と液体との2相
の作動流体が流れるとともに、作動流体が加熱される蒸
発管11と、凝縮部12で液化した作動流体を蒸発管1
1の他端側へ戻す液戻し管15と、ヘッダー管11aを
介して複数(この場合は2本)の枝管に分けられた後、
防災トラフ3内の上部に設置されている。そして、防災
トラフ内を出た蒸発管11の枝管はヘッダー管11eを
介して再び一本にまとめられて蒸気管11cとなり、凝
縮部12に連結されている。
In the heat pipe 10, a two-phase working fluid of vapor and liquid flows, and an evaporation pipe 11 for heating the working fluid and a working fluid liquefied in the condenser 12 are evaporated in the pipe 1.
After being divided into a plurality of (two in this case) branch pipes via the liquid return pipe 15 for returning to the other end side of 1 and the header pipe 11a,
It is installed in the upper part of the disaster prevention trough 3. Then, the branch pipes of the evaporation pipe 11 that have exited from the disaster prevention trough are reassembled into a steam pipe 11c via the header pipe 11e, and are connected to the condenser unit 12.

【0016】ヒートパイプ10の凝縮部12、循環ポン
プ20、冷凍機30は洞道2の外部または洞道2の一部
を広く形成した調整所に設置されており、ヒートパイプ
10の蒸発管11から凝縮部12に移動された気相の作
動流体は、この凝縮部12において、冷凍機30により
冷却されて凝縮し、液相に戻って循環ポンプ20に供給
される。なお、循環ポンプ20の出力はヒートパイプ1
0内の作動流体の圧力損失を考慮して決められている。
The condensing part 12, the circulation pump 20, and the refrigerator 30 of the heat pipe 10 are installed outside the cavern 2 or in a regulation station where a part of the cavern 2 is widened. The working fluid in the vapor phase, which has been moved from the condenser section 12 to the condenser section 12, is cooled and condensed by the refrigerator 30 in the condenser section 12, returned to the liquid phase, and supplied to the circulation pump 20. The output of the circulation pump 20 is the heat pipe 1
It is determined in consideration of the pressure loss of the working fluid within zero.

【0017】また冷凍機30は通常の市販品と同等のも
ので、蒸発器31、凝縮器32、膨張弁33および圧縮
機34等からなる既存のもので、アンモニア等の作動流
体を圧縮機34で断熱圧縮した後、凝縮器32で冷却し
て液化し、これを膨張弁33で断熱膨張して蒸発器31
に通すことにより、この蒸発器31により被冷却物から
熱を奪いこれを冷却するものである。この場合、ヒート
パイプ10の凝縮部12は、蒸発器31に直接冷却され
るようにしてもよいし、図1で示されるように、媒体3
5を介して蒸発器31により間接的に冷却されるように
してもよい。
The refrigerator 30 is the same as an ordinary commercial product, and is an existing one including an evaporator 31, a condenser 32, an expansion valve 33, a compressor 34, etc., and a working fluid such as ammonia is compressed by the compressor 34. After being adiabatically compressed by the condenser 32, it is cooled and liquefied by the condenser 32, and this is adiabatically expanded by the expansion valve 33 and evaporated 31
The heat is taken from the object to be cooled by the evaporator 31 by passing the heat through it. In this case, the condenser 12 of the heat pipe 10 may be directly cooled by the evaporator 31, or the medium 3 may be cooled as shown in FIG.
It may be indirectly cooled by the evaporator 31 via 5.

【0018】つぎにこのヒートパイプ式冷却装置1の作
用を説明する。洞道2内は低容量の低圧ケーブル6から
の放熱によって加熱されると共に、洞道2内に設けられ
た防災トラフ3内は高容量の高圧ケーブル4からの放熱
によって加熱される。そして、洞道2は地中に設けられ
ているため、この洞道2から外部への熱の放出は少な
く、防災トラフ3を含め洞道2内の温度は上昇しようと
する。一方、この状態においてヒートパイプ式冷却装置
1の循環ポンプ20および冷凍機30を作動させると、
ヒートパイプ10内の作動流体は図2に示すように、気
相と液相との二相状態となり、その作動流体が洞道2お
よび防災トラフ3内の熱を吸収し、この熱を凝縮部12
の冷凍機30側に移動させるため、洞道2および防災ト
ラフ3内の温度は一定値に保持される。
Next, the operation of the heat pipe type cooling device 1 will be described. The inside of the cave 2 is heated by heat radiation from the low-capacity low-voltage cable 6, and the inside of the disaster prevention trough 3 provided in the cave 2 is heated by heat radiation from the high-capacity high-voltage cable 4. Since the cave 2 is provided in the ground, the amount of heat released from the cave 2 to the outside is small and the temperature inside the cave 2 including the disaster prevention trough 3 tends to rise. On the other hand, when the circulation pump 20 and the refrigerator 30 of the heat pipe type cooling device 1 are operated in this state,
As shown in FIG. 2, the working fluid in the heat pipe 10 is in a two-phase state of a gas phase and a liquid phase, and the working fluid absorbs heat in the cave 2 and the disaster prevention trough 3, and the heat is condensed in the condensing section. 12
In order to move it to the refrigerator 30 side, the temperature inside the cave 2 and the disaster prevention trough 3 is maintained at a constant value.

【0019】すなわち、防災トラフ3内に放出される高
圧ケーブル4からの大量の熱はヒートパイプ10の蒸発
管11内の作動流体を蒸発させ、潜熱の形で作動流体に
吸収される、また、洞道2内に直接放出された低圧ケー
ブル6からの比較的少量の熱はヒートパイプ10の蒸発
管11の液管部11a内の作動流体の温度を上げ、顕熱
の形で作動流体に吸収される。そして、潜熱および顕熱
の形で熱を吸収した作動流体の蒸気は、低温低圧の凝縮
部12側に移動し、この凝縮部12において冷凍機30
により冷却されて凝縮し、液相の作動流体に戻るととも
に、循環ポンプ20によって液戻し管15内を蒸発管1
1に続くヘッダー管11aに送られ、蒸発管11内に還
流して、再び洞道2内等から熱を吸収する。
That is, a large amount of heat from the high-voltage cable 4 discharged into the disaster prevention trough 3 evaporates the working fluid in the evaporation pipe 11 of the heat pipe 10 and is absorbed by the working fluid in the form of latent heat. A relatively small amount of heat from the low-voltage cable 6 directly released into the sinus 2 raises the temperature of the working fluid in the liquid pipe portion 11a of the evaporation pipe 11 of the heat pipe 10, and is absorbed by the working fluid in the form of sensible heat. To be done. Then, the vapor of the working fluid that has absorbed the heat in the form of latent heat and sensible heat moves to the low temperature and low pressure side of the condensing unit 12, and in the condensing unit 12, the refrigerator 30
The liquid is cooled and condensed by the liquid to return to the liquid-phase working fluid, and the circulation pump 20 causes the liquid return pipe 15 to pass through the evaporation pipe 1
It is sent to the header pipe 11a following 1 and is returned to the inside of the evaporation pipe 11 to absorb heat from the inside of the sinus 2 again.

【0020】以上のように直接洞道2内に発生した熱、
および防災トラフ3を介して間接的に洞道2内に発生し
た熱を主として作動流体の潜熱の形でヒートパイプによ
り吸収するようにしているため、顕熱のみの形で洞道2
内から熱を吸収する冷却水の循環方式に比べて大量の熱
輸送が可能となり、この装置ではポンプやパイプのサイ
ズの小型化・低コスト化を図ることができ、さらに、洞
道2や防災トラフ3の小型化をも図ることができる。ま
た、この装置では潜熱を利用し作動流体に温度差が生じ
にくい分だけ、洞道2内から均一な吸熱ができ、洞道2
内をその長手方向に亘って均一な温度に保持できる。さ
らに、潜熱の利用による吸熱量が大きい分だけ、この装
置では洞道2内の冷却距離を延ばすことができ、介設す
る循環ポンプ20によって全長数キロメートルに亘る長
尺なヒートパイプを使用することもできるため、洞道内
(あるいは地上部)に冷凍機30等の冷却手段と循環ポ
ンプとを設置する間隔を長くすることができる。また凝
縮部12に冷凍機30を設けるとともに液戻し管15に
循環ポンプ20を設けたので、装置の小型化・低コスト
化を達成することができる。
As described above, the heat generated directly in the cave 2
Since the heat pipe indirectly absorbs the heat generated in the tunnel 2 through the disaster prevention trough 3, the latent heat of the working fluid is mainly absorbed by the heat pipe.
A large amount of heat can be transported compared to the circulation method of cooling water that absorbs heat from the inside, and this device can reduce the size of pumps and pipes and reduce the cost, and further, it can be used for caverns 2 and disaster prevention. The trough 3 can be downsized. In addition, this device uses latent heat to uniformly absorb heat from the inside of the cave 2 because the temperature difference between the working fluids is less likely to occur.
The inside can be maintained at a uniform temperature along its length. Furthermore, this device can extend the cooling distance in the cave 2 due to the large amount of heat absorbed by the use of latent heat, and the use of a long heat pipe having a total length of several kilometers by means of the circulating pump 20 provided. Therefore, it is possible to increase the interval between the cooling means such as the refrigerator 30 and the circulation pump in the cave (or above-ground portion). Further, since the condenser 30 is provided with the refrigerator 30 and the liquid return pipe 15 is provided with the circulation pump 20, it is possible to achieve downsizing and cost reduction of the apparatus.

【0021】また、この装置ではヒートパイプ10の密
閉管にコルゲート管を使用し、一般の直管と比べ受熱面
積を大きくとるようにしているため、ヒートパイプ10
側への吸熱量を充分に確保できると共に、その分だけヒ
ートパイプ10の蒸発管11における作動流体の温度を
上げることができ、冷凍機30の成績係数を上げること
ができる。
Further, in this apparatus, since the corrugated pipe is used as the closed pipe of the heat pipe 10 and the heat receiving area is made larger than that of a general straight pipe, the heat pipe 10
A sufficient amount of heat absorption to the side can be secured, and the temperature of the working fluid in the evaporation pipe 11 of the heat pipe 10 can be raised by that amount, and the coefficient of performance of the refrigerator 30 can be raised.

【0022】また、上記実施例では洞道2内に高圧ケー
ブル4用の防災トラフ3が設置されている場合について
説明したが、防災トラフ3を設けず直接高圧ケーブル4
が洞道2内に布設されていてもよいのは勿論であるとと
もに、防災トラフ3が洞道2内に複数個設けられていて
もよいのは勿論である。ただし、洞道2内に複数個の防
災トラフ3が設けられている場合、各防災トラフ3内に
ヒートパイプ10の蒸発管11等を設置する必要があ
る。
In the above embodiment, the case where the disaster prevention trough 3 for the high voltage cable 4 is installed in the cave 2 has been described, but the disaster prevention trough 3 is not provided and the high voltage cable 4 is directly provided.
Needless to say, it may be provided in the cave 2 and a plurality of disaster prevention troughs 3 may be provided in the cave 2. However, when a plurality of disaster prevention troughs 3 are provided in the cave 2, it is necessary to install the evaporation pipe 11 of the heat pipe 10 in each disaster prevention trough 3.

【0023】[0023]

【発明の効果】以上の説明から明らかなようにこの発明
によれば、洞道内から吸熱する手段として、蒸発部の一
端の凝縮部側と、蒸発部の他端側とを液戻し管で連通接
続してループ状に形成されるヒートパイプの前記蒸発部
を、送電ケーブルの布設方向と平行となるように洞道内
に配設するとともに、凝縮部には冷却手段を設けたた
め、大量の蒸気が凝縮させて大量に放熱させることがで
きて熱輸送能力が高く、また液戻し管に循環ポンプを介
設して作動流体を強制循環させるため、洞道の長手方向
に亘って長距離の熱輸送ができ、その結果、長い洞道内
を均一に冷却することができる。
As is apparent from the above description, according to the present invention, as a means for absorbing heat from the inside of the cave, the condensing part side at one end of the evaporating part and the other end side of the evaporating part are connected by a liquid return pipe. The evaporation part of the heat pipe that is connected and formed in a loop is arranged in the cave so as to be parallel to the laying direction of the power transmission cable, and a large amount of steam is generated because the cooling part is provided in the condensation part. It has a high heat transfer capacity because it can be condensed and released a large amount of heat, and a working fluid is forcedly circulated through a circulation pump in the liquid return pipe, so heat transfer over a long distance in the longitudinal direction of the cave. As a result, it is possible to uniformly cool a long cave.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of the present invention.

【図2】ヒートパイプ内の作動流体の状態変化を示す説
明図である。
FIG. 2 is an explanatory diagram showing a state change of a working fluid in a heat pipe.

【図3】従来技術の説明図である。FIG. 3 is an explanatory diagram of a conventional technique.

【図4】従来技術の説明図である。FIG. 4 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

10…ヒートパイプ、 11…蒸発管、 12…凝縮
部、 15…液戻し管、20…循環ポンプ、 30…冷
凍機(冷却手段)。
10 ... Heat pipe, 11 ... Evaporation pipe, 12 ... Condensing part, 15 ... Liquid return pipe, 20 ... Circulation pump, 30 ... Refrigerator (cooling means).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 益子 耕一 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 伊藤 雅彦 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 斎藤 祐士 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 青山 文明 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Masuko 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Masahiko Ito 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric wire company (72) Inventor Yuuji Saito 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Line Co., Ltd. (72) Inventor Fumiaki Aoyama 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric line Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 地中送電ケーブルが布設された洞道内を
冷却する洞道冷却装置において、 前記送電ケーブルの布設方向と平行に蒸発部を前記洞道
内に配設し、この蒸発部の一端側に凝縮部を設け、この
凝縮部と前記蒸発部の他端側とを連通する液戻し管を設
けてループ状に形成し、その内部に凝縮性の作動流体を
封入してヒートパイプとするとともに、前記液戻し管の
凝縮部の付近に循環ポンプを介設し、さらに前記凝縮部
の外側に冷却手段を近接配置したことを特徴とするヒー
トパイプ式洞道冷却装置。
1. A cavern cooling device for cooling the inside of a cavern where an underground power transmission cable is laid, wherein an evaporating portion is arranged in the cavern parallel to a laying direction of the electric power transmitting cable, and one end side of the vaporizing part is provided. And a liquid return pipe that connects the condensing part and the other end of the evaporating part to each other to form a loop, and a condensable working fluid is enclosed in the inside to form a heat pipe. A heat pipe type sinus cooling device characterized in that a circulation pump is provided in the vicinity of the condensing part of the liquid return pipe, and cooling means is arranged in the vicinity of the outside of the condensing part.
JP4259022A 1992-09-02 1992-09-02 Heat pipe type conduit cooling apparatus Pending JPH0682181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259022A JPH0682181A (en) 1992-09-02 1992-09-02 Heat pipe type conduit cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259022A JPH0682181A (en) 1992-09-02 1992-09-02 Heat pipe type conduit cooling apparatus

Publications (1)

Publication Number Publication Date
JPH0682181A true JPH0682181A (en) 1994-03-22

Family

ID=17328265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259022A Pending JPH0682181A (en) 1992-09-02 1992-09-02 Heat pipe type conduit cooling apparatus

Country Status (1)

Country Link
JP (1) JPH0682181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715391A1 (en) * 1994-12-02 1996-06-05 Hughes Aircraft Company Environmentally controlled high power high frequency transmission cable for reductive charger
JP2003032865A (en) * 2001-07-13 2003-01-31 Chubu Electric Power Co Inc Power cable cooling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715391A1 (en) * 1994-12-02 1996-06-05 Hughes Aircraft Company Environmentally controlled high power high frequency transmission cable for reductive charger
JP2003032865A (en) * 2001-07-13 2003-01-31 Chubu Electric Power Co Inc Power cable cooling apparatus
JP4599584B2 (en) * 2001-07-13 2010-12-15 中部電力株式会社 Power cable cooling system

Similar Documents

Publication Publication Date Title
US5524453A (en) Thermal energy storage apparatus for chilled water air-conditioning systems
US5706888A (en) Geothermal heat exchanger and heat pump circuit
US4373346A (en) Precool/subcool system and condenser therefor
US6745830B2 (en) Heat pipe loop with pump assistance
US4569207A (en) Heat pump heating and cooling system
US6626231B2 (en) Heat transfer device
KR950003785B1 (en) Air conditioning system
US20140338389A1 (en) Vapor compression system with thermal energy storage
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
CN102057244A (en) Integrated flow separator and pump-down volume device for use in a heat exchanger
US4307578A (en) Heat exchanger efficiently operable alternatively as evaporator or condenser
KR101265114B1 (en) loop heat pipe for defrost of heat pump using air heat source
JPH0682181A (en) Heat pipe type conduit cooling apparatus
CN116182295B (en) Radiation air conditioner refrigerating system
EP3165852B1 (en) Anti-frost heat pump
KR101116138B1 (en) Cooling system using separated heatpipes
KR101557708B1 (en) Refrigeration cycle radiator system heat exchanger
JPH05118700A (en) Heat pump type air-conditioner
KR100605484B1 (en) Loop-type heat pipe having td-pcm cold storage module containing condenser and cooling apparatus using the heat pipe
CN110940214A (en) Loop heat pipe capable of refrigerating and heating
CN1651845A (en) Low temp loop heat pipe for deep low temp area
WO2015048973A1 (en) Cooling system with thermosiphon, use and method of operating such a system
CN205209305U (en) Be adapted to high -efficient cooling system of little space, multiple spot heat source
CA1159269A (en) Apparatus for generating heating and cooling and storing and using such heating and cooling, and storing and using solar energy
JPH0742991U (en) Cable cooling system