JPH0682083A - Defrosting control device for heat pump type air-conditioner - Google Patents

Defrosting control device for heat pump type air-conditioner

Info

Publication number
JPH0682083A
JPH0682083A JP3193854A JP19385491A JPH0682083A JP H0682083 A JPH0682083 A JP H0682083A JP 3193854 A JP3193854 A JP 3193854A JP 19385491 A JP19385491 A JP 19385491A JP H0682083 A JPH0682083 A JP H0682083A
Authority
JP
Japan
Prior art keywords
value
heat exchanger
detecting means
defrosting
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3193854A
Other languages
Japanese (ja)
Other versions
JP2822705B2 (en
Inventor
Koji Murozono
宏治 室園
Akira Fujitaka
章 藤高
Kuniyasu Uchiyama
邦泰 内山
Akio Sato
明郎 佐藤
Kenichi Sakurai
健一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Panasonic Holdings Corp
Original Assignee
Tohoku Electric Power Co Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Matsushita Electric Industrial Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP3193854A priority Critical patent/JP2822705B2/en
Publication of JPH0682083A publication Critical patent/JPH0682083A/en
Application granted granted Critical
Publication of JP2822705B2 publication Critical patent/JP2822705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform a defrosting operation with an approximately fixed frosting quantity not only to the variation of the outside temperature but also to the variations of the capacity of a compressor or indoor air blowing quantity, and improve the efficiency and amenity. CONSTITUTION:The defrosting control device is equipped with an outside temperature detecting means 8a which detects the outside temperature, an outside humidity detecting means 9 which detects the outside humidity, a capacity detecting means 13 which detects the capacity of a capacity variable type compressor 1, and a blowing air volume detecting means 12 which detects the blow air volume of an indoor blowing means 6 being provided in the vicinity of an indoor side heat exchanger 3, and an operation is performed using the detected values by these detecting means with a specified cycle, and when an integrated value which is obtained by an operation means 14, which performs the integration of the operation result for each specified cycle, becomes a specified value, the defrosting of an outdoor side heat exchanger 5 is performed by a defrosting means 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とするヒー
トポンプ式空気調和機の除霜制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrost control device for a heat pump type air conditioner using air as a heat source.

【0002】[0002]

【従来の技術】ヒートポンプ式空気調和機は、暖房運転
時に室外側熱交換器に着霜が進行して外気からの吸熱量
が減少することがあるため、除霜制御装置を設けて着霜
を検知し、除霜運転を行う必要がある。
2. Description of the Related Art In a heat pump type air conditioner, frost formation may occur in the outdoor heat exchanger during heating operation to reduce the amount of heat absorbed from the outside air. It is necessary to detect and perform defrosting operation.

【0003】従来の除霜制御方式としては、温度検出素
子により室外側熱交換器の温度を検出し、暖房運転開始
後または前回の除霜運転終了後所定時間以上経過してお
り、かつ前記温度検出素子により検出した室外側熱交換
器の温度が所定値以下となった場合は、室外側熱交換器
に着霜したと判断して除霜運転を行なう方式が一般的で
あった。
As a conventional defrosting control method, the temperature of the outdoor heat exchanger is detected by a temperature detecting element, and a predetermined time or more has elapsed after the start of the heating operation or the end of the previous defrosting operation, and When the temperature of the outdoor heat exchanger detected by the detection element is lower than or equal to a predetermined value, the defrosting operation is generally performed by determining that the outdoor heat exchanger has frosted.

【0004】ところが、この方式では外気温が低い時に
運転を行うと、室外側熱交換器温度は常に前記所定値以
下であり、したがって外気相対湿度が低く、室外側熱交
換器に着霜してなくても前記所定時間ごとに不必要な除
霜運転を行ってしまい、効率及び快適性の低下を招いて
いた。
However, in this method, when the operation is performed when the outside air temperature is low, the temperature of the outdoor heat exchanger is always below the predetermined value, so that the relative humidity of the outdoor air is low and the outdoor heat exchanger is frosted. Even without it, unnecessary defrosting operation is performed every predetermined time, resulting in deterioration of efficiency and comfort.

【0005】これを改善するために、外気温と相対湿度
を検出して着霜領域内であるかどうかを判断し、着霜領
域内であると判断した場合には所定時間運転後に除霜運
転を行なう方式も知られている(例えば特開昭62−1
42944号公報)。
In order to improve this, the outside air temperature and the relative humidity are detected to determine whether or not it is within the frosting region, and when it is determined to be within the frosting region, the defrosting operation is performed after a predetermined time of operation. There is also known a method of performing the above (for example, Japanese Patent Laid-Open No. 62-1
42944).

【0006】さらに、外気温の変化及び外気湿度の変化
に応じて抵抗値が変化する感湿素子を用いて所定値の外
気温、外気湿度において所定値を出力する出力手段を設
け、この出力手段によって出力された値を積算し、積算
値が所定値になると除霜運転を行なう方式も知られてい
る(例えば特開昭62−129637号公報)。
Further, there is provided output means for outputting a predetermined value at a predetermined outside air temperature and outside air humidity by using a humidity sensitive element whose resistance value changes in response to a change in outside air temperature and a change in outside air humidity. There is also known a method in which the values output by are integrated and a defrosting operation is performed when the integrated value reaches a predetermined value (for example, Japanese Patent Laid-Open No. 62-129637).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の除霜制御方式では以下のような課題があった。
However, the above conventional defrosting control system has the following problems.

【0008】すなわち、圧縮機容量が一定で、室内送風
手段による送風量が一定の場合には、上記従来の技術を
用いることで、外気温が低い時の不必要な除霜運転を防
ぐことはできるが、容量可変型の圧縮機を用いて負荷に
応じて圧縮機容量を変化させる場合や、使用者の好みに
応じて室内送風量を変化させる場合の室外側熱交換器へ
の着霜速度の変化を検知することはできず、したがって
やはり不必要な除霜運転を行って効率及び快適性の低下
を招いていた。
That is, when the compressor capacity is constant and the amount of air blown by the indoor air blower is constant, it is possible to prevent unnecessary defrosting operation when the outside air temperature is low by using the above conventional technique. However, the speed of frost formation on the outdoor heat exchanger when changing the compressor capacity according to the load by using a variable capacity compressor or when changing the indoor air flow according to the user's preference Could not be detected, and thus unnecessary defrosting operation was also performed, resulting in a decrease in efficiency and comfort.

【0009】本発明は上記課題に鑑み、圧縮機容量の変
化及び室内送風量の変化を考慮した演算式を用いて着霜
量を間接的に求めることで、外気温の変化のみならず圧
縮機容量や室内送風量の変化に対してもほぼ一定の着霜
量で除霜運転を行い、効率および快適性の向上を図るこ
とを目的とする。
In view of the above problems, the present invention indirectly obtains the amount of frost formation by using an arithmetic expression that takes into consideration the change in compressor capacity and the change in indoor air flow rate, so that not only the change in outside temperature but also the compressor The purpose is to improve the efficiency and comfort by performing defrosting operation with a substantially constant amount of frosting even with changes in capacity and indoor air flow rate.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明のヒートポンプ式空気調和機の除霜制御装置
は、容量可変型圧縮機、室外側熱交換器、減圧器、室内
側熱交換器を順に配管にて環状に連結して冷媒回路を構
成し、外気温を検出する外気温検出手段及び外気湿度を
検出する外気湿度検出手段及び前記容量可変型圧縮機の
容量を検出する容量検出手段及び前記室内側熱交換器の
近傍に設けた室内送風手段の送風量を検出する送風量検
出手段及び所定周期でこれらの検出手段により検出した
値を用いて演算を行い、前記所定周期ごとの演算結果の
積算を行う演算手段及び前記積算値が所定値になると前
記室外側熱交換器の除霜を行う除霜手段からなるもので
ある。
In order to solve the above problems, a defrost control device for a heat pump type air conditioner according to the present invention comprises a variable capacity compressor, an outdoor heat exchanger, a pressure reducer and an indoor heat exchanger. A refrigerant circuit is configured by sequentially connecting the units in a ring shape with a pipe, and an outside air temperature detecting means for detecting the outside air temperature, an outside air humidity detecting means for detecting the outside air humidity, and a capacity detection for detecting the capacity of the variable capacity compressor. Means and an air blowing amount detecting means for detecting an air blowing amount of an indoor air blowing means provided in the vicinity of the indoor heat exchanger, and a calculation is performed by using values detected by these detecting means at a predetermined cycle, and for each predetermined cycle. It comprises a calculation means for integrating the calculation results and a defrosting means for defrosting the outdoor heat exchanger when the integrated value reaches a predetermined value.

【0011】また、本発明の他のヒートポンプ式空気調
和機の除霜制御装置は、容量可変型圧縮機、室外側熱交
換器、減圧器、室内側熱交換器を順に配管にて環状に連
結して冷媒回路を構成し、外気温の変化及び外気湿度の
変化に応じて抵抗値が変化する感湿素子を用いて所定の
外気温、外気湿度において所定値を出力する出力手段及
びこの出力手段により出力された値を検出する出力検出
手段及び前記容量可変型圧縮機の容量を検出する容量検
出手段及び前記室内側熱交換器の近傍に設けた室内送風
手段の送風量を検出する送風量検出手段及び所定周期で
これらの検出手段により検出した値を用いて演算を行
い、前記所定周期ごとの演算結果の積算を行う演算手段
及び前記積算値が所定値になると前記室外側熱交換器の
除霜を行う除霜手段からなるものである。
Further, another defrost control device for a heat pump type air conditioner of the present invention is such that a variable capacity compressor, an outdoor heat exchanger, a pressure reducer and an indoor heat exchanger are connected in an annular shape by piping in this order. And a means for outputting a predetermined value at a predetermined outside air temperature and outside air humidity by using a humidity sensitive element whose resistance value changes in response to changes in outside air temperature and outside air humidity. Output detecting means for detecting the value output by the air-conditioning device, capacity detecting means for detecting the capacity of the variable displacement compressor, and air-blowing amount detection for detecting the air-blowing amount of the indoor air-blowing means provided in the vicinity of the indoor heat exchanger. Means and a value detected by these detection means in a predetermined cycle, and a calculation means for performing integration of the calculation results in the predetermined cycle and a removal of the outdoor heat exchanger when the integrated value reaches a predetermined value. Defrosting means for defrosting It is Ranaru thing.

【0012】[0012]

【作用】本発明は上記手段により次のような作用を有す
る。
The present invention has the following actions due to the above means.

【0013】すなわち、圧縮機容量の変化及び室内送風
量の変化を考慮した演算式を用いて着霜量を間接的に求
めることで、外気温湿度の変化のみならず圧縮機容量や
室内送風量の変化に対してもほぼ一定の着霜量で除霜運
転を行うことができる。
That is, by indirectly calculating the frost formation amount using an arithmetic expression that takes into consideration the change in the compressor capacity and the change in the indoor air flow rate, not only the change in the outside temperature and humidity but also the compressor capacity and the indoor air flow rate The defrosting operation can be performed with a substantially constant amount of frosting even with respect to the change.

【0014】したがって、室外側熱交換器に着霜してい
ないのに除霜運転を行ったり、あるいは大量に着霜して
しまって所定時間内で完全に除霜できないまま次の暖房
運転を行うということがなく、効率及び快適性の向上を
図ることができる。
Therefore, the defrosting operation is performed even if the outdoor heat exchanger is not frosted, or a large amount of frost is formed and the next heating operation is performed without completely defrosting within a predetermined time. Therefore, it is possible to improve efficiency and comfort.

【0015】[0015]

【実施例】以下、本発明をその実施例を示す添付図面の
図1〜図7を参考に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS.

【0016】図1は本発明の第1の実施例におけるヒー
トポンプ式空気調和機の冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner in a first embodiment of the present invention.

【0017】同図において、1は周波数可変型圧縮機、
2は四方弁、3は室内側熱交換器、4は減圧器、5は室
外側熱交換器であり、前記室内側熱交換器3の近傍には
室内ファン6が、前記室外側熱交換器5の近傍には室外
ファン7がそれぞれ設けられている。
In the figure, 1 is a variable frequency compressor,
2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a pressure reducer, 5 is an outdoor heat exchanger, an indoor fan 6 is provided near the indoor heat exchanger 3, and the outdoor heat exchanger is provided. Outdoor fans 7 are provided in the vicinity of 5, respectively.

【0018】このヒートポンプ式空気調和機において、
暖房時には圧縮機1より吐出された冷媒は、四方弁2、
室内側熱交換器3、減圧器4、室外側熱交換器5、四方
弁2の順で流れて再び圧縮機1に吸入される。また、室
内ファン6により室内に温風を送って暖房を行う。
In this heat pump type air conditioner,
The refrigerant discharged from the compressor 1 during heating is the four-way valve 2,
The indoor heat exchanger 3, the pressure reducer 4, the outdoor heat exchanger 5, and the four-way valve 2 flow in this order and are sucked into the compressor 1 again. Further, the indoor fan 6 sends warm air into the room for heating.

【0019】また、8aは外気温を感知する温度セン
サ、8bは室外側熱交換器5の温度を感知する温度セン
サ、9は外気湿度を感知する湿度センサであり、それぞ
れの信号は温度検出回路10及び湿度検出回路11にて
読取られる。また、12は室内ファン6の室内送風量を
検出する風量検出回路、13は周波数可変型圧縮機1の
周波数を検出する周波数検出回路である。
Further, 8a is a temperature sensor for detecting the outside air temperature, 8b is a temperature sensor for detecting the temperature of the outdoor heat exchanger 5, and 9 is a humidity sensor for detecting the outside air humidity. 10 and the humidity detection circuit 11 read. Further, 12 is an air volume detection circuit for detecting the indoor air flow rate of the indoor fan 6, and 13 is a frequency detection circuit for detecting the frequency of the frequency variable compressor 1.

【0020】暖房運転時には、所定周期ごとに温度検出
回路10にて外気温及び室外側熱交換器5の温度を、ま
た湿度検出回路11にて外気湿度を、また風量検出回路
12にて室内ファン6の室内送風量をまた周波数検出回
路13にて周波数可変型圧縮機1の周波数をそれぞれ検
出し、これらの信号はマイクロコンピュータ14に送ら
れて所定の演算を行って着霜量を算出して積算し、この
積算値が所定値となるとマイクロコンピュータ14より
除霜制御リレー15に信号が送られ、四方弁2を反転さ
せ、室内ファン6、室外ファン7を停止して除霜運転を
行う。除霜運転中は温度検出回路10からの信号がマイ
クロコンピュータ14に連続して送られ、所定の除霜終
了温度と比較を行い、室外側熱交換器5の温度が除霜終
了温度以上となると除霜制御リレー15に信号が送られ
再び暖房運転に復帰する。
During the heating operation, the temperature detection circuit 10 determines the outside air temperature and the temperature of the outdoor heat exchanger 5, the humidity detection circuit 11 determines the outside air humidity, and the air flow detection circuit 12 determines the indoor fan at predetermined intervals. 6, and the frequency of the variable frequency compressor 1 is detected by the frequency detection circuit 13, and these signals are sent to the microcomputer 14 to perform a predetermined calculation to calculate the frost formation amount. When the integrated value reaches a predetermined value, a signal is sent from the microcomputer 14 to the defrost control relay 15, the four-way valve 2 is reversed, the indoor fan 6 and the outdoor fan 7 are stopped, and the defrost operation is performed. During the defrosting operation, a signal from the temperature detection circuit 10 is continuously sent to the microcomputer 14 to compare with a predetermined defrosting end temperature, and when the temperature of the outdoor heat exchanger 5 becomes equal to or higher than the defrosting end temperature. A signal is sent to the defrosting control relay 15 to return to the heating operation again.

【0021】次に、着霜量算出の演算式について説明す
る。図2は、本実施例におけるヒートポンプ式空気調和
機を一定の運転状況(圧縮機周波数、室内ファン回転
数、室外ファン回転数、減圧器の絞り量を固定)で暖房
運転した時の、外気温及び相対湿度と室外側熱交換器5
での単位時間当りの着霜量(室外側熱交換器5の温度が
0℃以上では、これは除湿量となる)との関係を示す。
ここで、外気温をt、相対湿度をRH、1時間当りの着
霜量をFR,A1〜A9を定数とおくと、図2に示すよ
うにFRはtとRHの関係であり、以下の〔1式〕で近
似できる。
Next, an arithmetic expression for calculating the amount of frost formation will be described. FIG. 2 shows the outside air temperature when the heat pump type air conditioner according to the present embodiment is heated in a constant operating condition (compressor frequency, indoor fan speed, outdoor fan speed, and throttle amount of the pressure reducer are fixed). And relative humidity and outdoor heat exchanger 5
And the amount of frost per unit time (when the temperature of the outdoor heat exchanger 5 is 0 ° C. or higher, this is the dehumidification amount).
Here, when the outside air temperature is t, the relative humidity is RH, the frosting amount per hour is FR, and A1 to A9 are constants, FR is a relationship between t and RH as shown in FIG. It can be approximated by [Expression 1].

【0022】[0022]

【数3】 [Equation 3]

【0023】また、図3は所定の外気温のもとでの室内
送風量の変化と単位時間当りの着霜量との関係を示す図
である。また、図4はインバータを利用した容量可変型
の圧縮機を用いた場合の所定の外気温のもとでの圧縮機
周波数(圧縮機容量)と単位時間当りの着霜量との関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the change in the indoor air flow rate and the frost formation rate per unit time under a predetermined outdoor temperature. FIG. 4 shows the relationship between the compressor frequency (compressor capacity) and the frost formation amount per unit time under a predetermined outside air temperature when a variable capacity compressor using an inverter is used. It is a figure.

【0024】図3及び図4より明らかなように、実用域
においては室内送風量と着霜量及び圧縮機周波数と着霜
量はそれぞれほぼ比例関係にある。
As is clear from FIG. 3 and FIG. 4, in the practical range, the indoor air blowing amount and the frosting amount and the compressor frequency and the frosting amount are in a substantially proportional relationship.

【0025】以上のことより、以下の〔2式〕で演算式
にて着霜量を算出することができる。
From the above, the amount of frost can be calculated by the following equation [2] using an arithmetic expression.

【0026】[0026]

【数4】 [Equation 4]

【0027】SUMN:運転開始からN・△τ(分)後の着
霜量 △τ:スキャン間隔(分) FANi:室内送風量 FANs:基準室内送風量(図2に示す着霜量算出の際の室
内送風量) CMPi:圧縮機周波数 CMPs:基準圧縮機周波数(図2に示す着霜量算出の際の
圧縮機周波数) 図5は、上記演算式を用いた除霜制御のフローチャート
図である。
SUM N : N = Δτ (minutes) after the start of operation Δτ: Scan interval (minutes) FANi: Indoor air flow rate FANs: Reference indoor air flow rate (calculation of the frost amount shown in FIG. 2) Indoor air flow rate at the time) CMPi: Compressor frequency CMPs: Reference compressor frequency (compressor frequency at the time of calculating the amount of frost formation shown in FIG. 2) FIG. 5 is a flowchart of defrosting control using the above arithmetic expression. is there.

【0028】同図において、thは室外側熱交換器5の
温度、FRsは基準着霜量(除霜開始着霜量)、tds
は除霜完了と判定する室外側熱交換器5の温度である。
In the figure, th is the temperature of the outdoor heat exchanger 5, FRs is the reference frosting amount (defrosting start frosting amount), tds
Is the temperature of the outdoor heat exchanger 5 determined to be defrosted.

【0029】暖房運転時には、所定周期で前述の各検出
回路にて外気温t、相対湿度RH、室外側熱交換器温度
th、圧縮機周波数CMP、室内送風量FANを検出
し、th>0℃では水となるのでth≦0℃の時のみ上
記演算式を用いてSUMを算出する。そしてSUM≧F
Rsとなると除霜運転を開始し、th≧tdsとなると
除霜運転を終了し、SUM=0として再びフローの最初
に戻る。
During the heating operation, the above-mentioned detection circuits detect the outside temperature t, the relative humidity RH, the outside heat exchanger temperature th, the compressor frequency CMP, and the indoor air flow rate FAN at predetermined intervals, and th> 0 ° C. Then, since it becomes water, SUM is calculated using the above arithmetic expression only when th ≦ 0 ° C. And SUM ≧ F
When Rs, the defrosting operation is started, and when th ≧ tds, the defrosting operation is terminated, SUM = 0 is set, and the flow returns to the beginning.

【0030】したがって、外気温湿度や運転状況が変化
しても常にほぼ一定着霜量で除霜運転を行なうことがで
きる。
Therefore, the defrosting operation can be always performed with a substantially constant frosting amount even when the outside air temperature and humidity and the operating condition change.

【0031】次に、本発明の第2の実施例について説明
する。図6は本発明の第2の実施例におけるヒートポン
プ式空気調和機の冷凍サイクル図である。ここで、同図
において、図1に示すものと同一の機能を有するものに
ついては同一の番号を付して説明を省略する。
Next, a second embodiment of the present invention will be described. FIG. 6 is a refrigeration cycle diagram of the heat pump type air conditioner in the second embodiment of the present invention. Here, in the figure, those having the same functions as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0032】図6において、16は室外側熱交換器5の
近傍に設けられ、外気温の変化及び外気湿度の変化に応
じて抵抗値が変化する感湿素子と抵抗を組合せて所定の
外気温、外気湿度において所定値を出力する着霜検知回
路であり、17は着霜検知回路16の出力を検出してマ
イクロコンピュータ14に信号を送る出力検出回路であ
る。
In FIG. 6, reference numeral 16 is provided in the vicinity of the outdoor heat exchanger 5, and a predetermined outside air temperature is obtained by combining a resistance with a humidity sensitive element whose resistance value changes in accordance with changes in the outside air temperature and humidity. Is a frost detection circuit that outputs a predetermined value in the outside air humidity, and 17 is an output detection circuit that detects the output of the frost detection circuit 16 and sends a signal to the microcomputer 14.

【0033】図7は外気温、相対湿度と着霜検知回路の
出力との関係の一例を示す。このように着霜検知回路1
6の外気温、外気湿度に対する出力値は、公知の方法に
より図2に示すヒートポンプ式空気調和機の着霜特性の
傾向に近似させることが可能である。
FIG. 7 shows an example of the relationship between the outside air temperature, the relative humidity and the output of the frost detection circuit. In this way, the frost detection circuit 1
The output values of 6 with respect to the outside air temperature and outside air humidity can be approximated to the tendency of the frosting characteristics of the heat pump type air conditioner shown in FIG. 2 by a known method.

【0034】したがって、第1の実施例で示した着霜量
の近似式FR=f(t,RH)を用いるかわりに着霜検
知回路16の出力値OTを用いた以下の〔3式〕で着霜
量を算出することができる。
Therefore, instead of using the approximate expression FR = f (t, RH) of the frost formation shown in the first embodiment, the following expression [3] using the output value OT of the frost detection circuit 16 is used. The amount of frost formation can be calculated.

【0035】[0035]

【数5】 [Equation 5]

【0036】したがって第1の実施例では外気温、外気
湿度を検出して1時間当りの着霜量を近似式で求めるの
に対し、第2の実施例では着霜検知回路の出力値をその
まま用いて演算を行い、図5に示す除霜制御を行なうこ
とが可能である。
Therefore, in the first embodiment, the outside air temperature and the outside air humidity are detected and the frost formation amount per hour is obtained by an approximate expression, whereas in the second embodiment, the output value of the frost formation detection circuit is unchanged. It is possible to perform the calculation by using the defrosting control shown in FIG.

【0037】なお、上記第1及び第2の実施例では室外
側熱交換器の温度が0℃以下の時に積算を行なうように
したが、この値は室外ファンの風量、熱交換器の大き
さ、フィンピッチ等の違いにより任意に設定してよい。
In the first and second embodiments described above, the integration is performed when the temperature of the outdoor heat exchanger is 0 ° C. or lower. However, this value depends on the air volume of the outdoor fan and the size of the heat exchanger. , The fin pitch, etc. may be set arbitrarily.

【0038】また、第1及び第2の実施例で説明した制
御に加えて、室外側熱交換器の温度が所定回数以上連結
して所定値以上の時にはそれまでの積算値を0とする制
御を行うことで、運転の途中で外気温が上昇してきた
り、あるいは圧縮機が小容量運転を行うことで一旦付着
した霜が融解した後、再び着霜が進行する場合でも正確
に着霜量を算出することができる。
In addition to the control described in the first and second embodiments, when the temperature of the outdoor heat exchanger is connected a predetermined number of times or more and is a predetermined value or more, the integrated value up to that point is set to 0. By doing so, even if the outside air temperature rises during the operation, or the frost that has once adhered due to the compressor operating in a small capacity melts and then frost forms again, the frost formation amount can be accurately adjusted. It can be calculated.

【0039】また、圧縮機容量が所定回数以上連続して
所定以下である場合、それまでの積算値を0とする制御
を加えることで、運転の途中で室温が設定値以上となっ
て圧縮機が停止して一旦付着した霜が融解した後、再び
圧縮機が運転して着霜が進行する場合でも正確に着霜量
を算出することができる。
When the capacity of the compressor is continuously less than a predetermined number of times for a predetermined number of times or more, by adding a control to make the integrated value up to that point to be 0, the room temperature becomes a set value or more in the middle of operation and After the frost has stopped and the frost that has once adhered has melted, the amount of frost formation can be accurately calculated even when the compressor operates again and frost formation progresses.

【0040】また、暖房運転開始時及び除霜運転終了時
より所定時間は積算値の如何にかかわらず除霜運転を禁
止する除霜禁止区間を設けることで、湿度センサ等の湿
度検知部分に水滴等が付着して実際よりも高い値を示
し、これにより着霜量が実際よりも非常に大きく算出さ
れても、頻繁に除霜運転を行って暖房不足となることを
防ぐことが出来る。
Further, by providing a defrosting prohibition section in which the defrosting operation is prohibited for a predetermined time from the start of the heating operation and the end of the defrosting operation, regardless of the integrated value, a water drop is formed on the humidity detecting portion such as the humidity sensor. When the amount of frost is calculated to be much larger than the actual value due to the adhesion of the like and the like, and thus the frost formation amount is calculated to be much larger than the actual value, it is possible to prevent the insufficient heating due to frequent defrosting operation.

【0041】[0041]

【発明の効果】以上説明したように本発明のヒートポン
プ式空気調和機の除霜制御装置は、外気温、外気湿度、
圧縮機容量、室内送風量を検出し、これらの値を用いて
演算を行って着霜量を間接的に算出することで、外気温
湿度の変化のみならず圧縮機容量、室内送風量の変化に
対してもほぼ一定の着霜量で除霜運転を行なうことがで
きる。したがって、室外側熱交換器に着霜していないの
に除霜運転を行ったりあるいは大量に着霜してしまって
所定時間内で完全に除霜できないまま次の暖房運転を行
うということがなくなり、効率及び快適性の向上を図る
ことができる。
As described above, the defrosting control device for the heat pump type air conditioner of the present invention is capable of controlling outside air temperature, outside air humidity,
By detecting the compressor capacity and indoor air flow rate and calculating the frost formation indirectly by performing calculations using these values, not only changes in outside temperature and humidity but also changes in compressor capacity and indoor air flow rate Also, the defrosting operation can be performed with a substantially constant amount of frost formation. Therefore, the defrosting operation is not performed even if the outdoor heat exchanger is not frosted, or a large amount of frost is formed and the next heating operation is not performed without complete defrosting within the predetermined time. It is possible to improve efficiency and comfort.

【0042】また、圧縮機容量と着霜量との関係及び室
内送風量と着霜量との関係がそれぞれ実用域では比例関
係にあることを利用して簡単な演算式で着霜量を算出す
ることができる。
Further, the relationship between the compressor capacity and the frost formation amount and the relationship between the indoor air flow amount and the frost formation amount are proportional to each other in the practical range, and the frost formation amount is calculated by a simple arithmetic expression. can do.

【0043】また、外気温及び外気湿度を検出するかわ
りに外気温の変化及び外気湿度の変化に応じて抵抗値が
変化する感湿素子を用いて所定の外気温、外気湿度にお
いて所定値を出力する出力手段の出力値を検出すること
で、この出力値をそのまま演算式に用いることができ
る。
Further, instead of detecting the outside air temperature and outside air humidity, a predetermined value is output at a predetermined outside air temperature and outside air humidity by using a humidity sensing element whose resistance value changes according to changes in the outside air temperature and outside air humidity. By detecting the output value of the output means, the output value can be used as it is in the arithmetic expression.

【0044】また、前記出力手段による出力値と前記圧
縮機容量と着霜量との関係及び室内送風量と着霜との関
係を利用することで、さらに簡単な演算式で着霜量を算
出することができる。
Further, by utilizing the relationship between the output value of the output means, the compressor capacity and the amount of frost formation and the relationship between the indoor air flow rate and the frost formation, the frost formation amount can be calculated by a simpler arithmetic expression. can do.

【0045】また、室外側熱交換器の温度が所定値以上
の時、演算値をそれまでの積算値に加えない制御を行な
うことで、より正確な着霜量検知が可能である。
Further, when the temperature of the outdoor heat exchanger is equal to or higher than a predetermined value, by performing control not to add the calculated value to the accumulated value up to that point, more accurate detection of the amount of frost can be detected.

【0046】また、室外側熱交換器の温度が所定回数以
上連続して所定値以上の時にはそれまでの積算値を0と
する制御を加えることで、運転の途中で外気温が上昇し
てきたり、あるいは圧縮機が小容量運転を行なうことで
一旦付着した霜が融解した後、再び着霜が進行する場合
でも正確に着霜量を算出することができる。
Further, when the temperature of the outdoor heat exchanger is continuously a predetermined value or more for a predetermined number of times or more, a control is added to make the integrated value up to that time to be 0, whereby the outside air temperature rises during the operation, Alternatively, the frost formation amount can be accurately calculated even when the frost that has once adhered is melted by the small-capacity operation of the compressor and then the frost formation progresses again.

【0047】また、圧縮機容量が所定回数以上連続して
所定値以下である場合、それまでの積算値を0とする制
御を加えることで、運転の途中で室温が設定値以上とな
って圧縮機が停止して一旦付着した霜が融解した後、再
び圧縮機が運転して着霜が進行する場合でも正確に着霜
量を算出することができる。
Further, when the compressor capacity is continuously less than a predetermined value for a predetermined number of times or more, control is performed to set the integrated value up to that point to 0 so that the room temperature becomes a set value or more during operation and compression is performed. Even if the compressor stops and the frost that has once adhered is melted and then the compressor is operated again to cause frost formation, the frost formation amount can be accurately calculated.

【0048】また、暖房運転開始時及び除霜運転終了時
より所定時間は積算値の如何にかかわらず除霜運転を禁
止する除霜禁止区間を設けることで、湿度センサ等の湿
度検知部分に水滴等が付着して実際よりも高い値を示
し、これにより着霜量が実際よりも非常に大きく算出さ
れても、頻繁に除霜運転を行って暖房不足となることを
防ぐことができる。
Further, by providing a defrosting prohibition section in which the defrosting operation is prohibited for a predetermined time from the start of the heating operation and the end of the defrosting operation, regardless of the integrated value, a water drop is formed on the humidity detecting portion such as the humidity sensor. Even if the amount of frost is calculated to be higher than the actual value and the calculated amount of frost is much larger than the actual value, it is possible to prevent the insufficient heating due to frequent defrosting operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるヒートポンプ式
空気調和機の冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner according to a first embodiment of the present invention.

【図2】外気温、相対湿度と単位時間当りの着霜量との
関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the outside air temperature, the relative humidity, and the amount of frost formed per unit time.

【図3】室内送風量の変化と単位時間当りの着霜量との
関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between a change in indoor air flow and an amount of frost per unit time.

【図4】圧縮機周波数(圧縮機容量)と単位時間当りの
着霜量との関係を示す特性図
FIG. 4 is a characteristic diagram showing a relationship between a compressor frequency (compressor capacity) and a frost formation amount per unit time.

【図5】本発明の除霜制御装置の除霜制御の一例を示す
フローチャート
FIG. 5 is a flowchart showing an example of defrost control of the defrost control device of the present invention.

【図6】本発明の第2の実施例におけるヒートポンプ式
空気調和機の冷凍サイクル図
FIG. 6 is a refrigeration cycle diagram of the heat pump type air conditioner in the second embodiment of the present invention.

【図7】外気温、相対湿度と着霜検知回路の出力との関
係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the outside air temperature and relative humidity and the output of the frost detection circuit.

【符号の説明】[Explanation of symbols]

1 周波数可変型(容量可変型)圧縮機 3 室内側熱交換器 4 減圧器 5 室外側熱交換器 6 室内ファン(室内送風手段) 8a 温度センサ(外気温検出手段) 8b 温度センサ(熱交換器温度検出手段) 9 湿度センサ(外気湿度検出手段) 10 温度検出回路 11 湿度検出回路 12 風量検出回路(送風量検出手段) 13 周波数検出回路(容量検出手段) 14 マイクロコンピュータ(演算手段) 15 除霜制御リレー(除霜手段) 16 着霜検知回路(出力手段) 17 出力検出回路(出力検出手段) 1 frequency variable type (variable capacity type) compressor 3 indoor heat exchanger 4 pressure reducer 5 outdoor heat exchanger 6 indoor fan (indoor air blowing means) 8a temperature sensor (outside air temperature detecting means) 8b temperature sensor (heat exchanger Temperature detection means) 9 Humidity sensor (outside air humidity detection means) 10 Temperature detection circuit 11 Humidity detection circuit 12 Air volume detection circuit (air flow rate detection means) 13 Frequency detection circuit (capacity detection means) 14 Microcomputer (calculation means) 15 Defrost Control relay (defrosting means) 16 Frost detection circuit (output means) 17 Output detection circuit (output detection means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 邦泰 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 佐藤 明郎 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 桜井 健一 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社応用技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kuniyasu Uchiyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Applied Technology Research Institute (72) Inventor Kenichi Sakurai 7-2 Nakayama 7-chome, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Applied Technology Research Institute

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】容量可変型圧縮機、室外側熱交換器、減圧
器、室内側熱交換器を順に配管にて環状に連結して冷媒
回路を構成し、外気温を検出する外気温検出手段及び外
気湿度を検出する外気湿度検出手段、及び前記容量可変
型圧縮機の容量を検出する容量検出手段、及び前記室内
側熱交換器の近傍に設けた室内送風手段の送風量を検出
する送風量検出手段、及び所定周期でこれらの検出手段
により検出した値を用いて演算を行い、前記所定周期ご
との演算結果の積算を行う演算手段、及び前記積算値が
所定値になると前記室外側熱交換器の除霜を行う除霜手
段からなるヒートポンプ式空気調和機の除霜制御装置。
1. An outside air temperature detecting means for detecting an outside air temperature by connecting a variable capacity compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger in this order by a pipe to form a refrigerant circuit. And an outside air humidity detecting means for detecting outside air humidity, a capacity detecting means for detecting the capacity of the variable capacity compressor, and an air flow rate for detecting an air flow rate of an indoor air blower provided near the indoor heat exchanger. Detecting means, calculating means for performing calculation using values detected by these detecting means in a predetermined cycle, and integrating the calculation results for each of the predetermined cycles, and the outdoor heat exchange when the integrated value reaches a predetermined value. Defrosting control device for a heat pump type air conditioner, which comprises defrosting means for defrosting the air conditioner.
【請求項2】積算開始からN回目までの積算値は、tを
外気温、RHを外気湿度、SUMNを積算値、Aを定
数、FANiをi回目における送風量検出手段による検
出値、CMPiをi回目における容量検出手段による検
出値、tiをi回目における外気温検出手段による検出
値、RHiをi回目における外気湿度検出手段による検
出値、f(ti,RHi)を外気温及び外気湿度の関数
f(t,RH)において、t=ti,RH=RHiとし
たとき、 【数1】 式より求める請求項1記載のヒートポンプ式空気調和機
の除霜制御装置。
2. The integrated value from the start of integration to the Nth time, t is the outside temperature, RH is the outside air humidity, SUM N is the integrated value, A is a constant, FANi is the detection value by the air flow rate detecting means at the i-th time, CMPi. Is the detection value by the capacity detection means at the i-th time, ti is the detection value by the outside air temperature detection means at the i-th time, RHi is the detection value by the outside air humidity detection means at the i-th time, and f (ti, RHi) is the outside temperature and the outside air humidity. When t = ti and RH = RHi in the function f (t, RH), The defrosting control device for a heat pump type air conditioner according to claim 1, which is obtained from a formula.
【請求項3】容量可変型圧縮機、室外側熱交換器、減圧
器、室内側熱交換器を順に配管にて環状に連結して冷媒
回路を構成し、外気温の変化及び外気湿度の変化に応じ
て抵抗値が変化する感湿素子を用いて所定の外気温、外
気湿度において所定値を出力する出力手段、及びこの出
力手段により出力された値を検出する出力検出手段、及
び前記容量可変型圧縮機の容量を検出する容量検出手
段、及び前記室内側熱交換器の近傍に設けた室内送風手
段の送風量を検出する送風量検出手段、及び所定周期で
これらの検出手段により検出した値を用いて演算を行
い、前記所定周期ごとの演算結果の積算を行う演算手
段、及び前記積算値が所定値になると前記室外側熱交換
器の除霜を行う除霜手段からなるヒートポンプ式空気調
和機の除霜制御装置。
3. A variable capacity compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are sequentially connected in an annular shape by a pipe to form a refrigerant circuit, and a change in outside air temperature and a change in outside air humidity. Output means for outputting a predetermined value at a predetermined outside air temperature and outside air humidity by using a humidity sensitive element whose resistance value changes according to the output value, output detection means for detecting the value output by the output means, and the variable capacity Capacity detecting means for detecting the capacity of the die compressor, air blowing amount detecting means for detecting the air blowing amount of the indoor air blowing means provided in the vicinity of the indoor heat exchanger, and the value detected by these detecting means in a predetermined cycle. A heat pump type air conditioner comprising a calculation means for performing calculation by using the above and a defrosting means for defrosting the outdoor heat exchanger when the integrated value reaches a predetermined value. Defrosting control device for machine.
【請求項4】積算開始からN回目までの積算値は、SU
Nを積算値、Aを定数、FANiをi回目における送
風量検出手段による検出値、CMPiをi回目における
容量検出手段による検出値、OTiをi回目における出
力検出手段による検出値としたとき、 【数2】 式より求める請求項3に記載のヒートポンプ式空気調和
機の除霜制御装置。
4. The integrated value from the start of integration to the Nth time is SU
When MN is an integrated value, A is a constant, FANi is a detection value by the air flow rate detecting means at the i-th time, CMPi is a detection value by the capacity detecting means at the i-th time, and OTi is a detection value by the output detecting means at the i-th time, [Equation 2] The defrosting control device for a heat pump type air conditioner according to claim 3, which is obtained from a formula.
【請求項5】室外側熱交換器の温度を検出する熱交換器
温度検出手段を有し、前記熱交換器温度検出手段により
検出した値が所定値以上の時は、演算結果をそれまでの
積算値に加えない請求項1〜4のいずれかに記載のヒー
トポンプ式空気調和機の除霜制御装置。
5. A heat exchanger temperature detecting means for detecting the temperature of the outdoor heat exchanger is provided, and when the value detected by the heat exchanger temperature detecting means is equal to or more than a predetermined value, the calculation result is not changed. The defrosting control device for a heat pump type air conditioner according to any one of claims 1 to 4, which is not added to the integrated value.
【請求項6】室外側熱交換器の温度を検出する熱交換器
検出手段を有し、前記熱交換器温度検出手段により検出
した値が所定値以上の値を所定回数以上連続した時に、
それまでの積算値を0とする請求項1〜4のいずれかに
記載のヒートポンプ式空気調和機の除霜制御装置。
6. A heat exchanger detecting means for detecting the temperature of the outdoor heat exchanger, wherein when the value detected by the heat exchanger temperature detecting means is a value of a predetermined value or more continuously for a predetermined number of times or more,
The defrost control device for a heat pump type air conditioner according to any one of claims 1 to 4, wherein the integrated value up to that point is set to 0.
【請求項7】暖房運転開始時及び除霜運転終了時に積算
値を0とする請求項1〜4のいずれかに記載のヒートポ
ンプ式空気調和機の除霜制御装置。
7. The defrosting control device for a heat pump type air conditioner according to claim 1, wherein the integrated value is set to 0 at the start of heating operation and at the end of defrosting operation.
【請求項8】容量検出手段により検出した値が所定回数
以上連続して所定値以下である時は、それまでの積算値
を0とする請求項1〜4のいずれかに記載のヒートポン
プ式空気調和機の除霜制御装置。
8. The heat pump type air according to claim 1, wherein when the value detected by the capacity detecting means is equal to or more than a predetermined number of times and is continuously less than or equal to the predetermined value, the integrated value up to that time is set to 0. Defrost control device for a harmony machine.
【請求項9】暖房運転開始時及び除霜運転終了時より所
定時間は積算値の如何にかかわらず除霜運転を禁止する
除霜禁止区間を設けた請求項1〜4のいずれかに記載の
ヒートポンプ式空気調和機の除霜制御装置。
9. The defrosting prohibition section for prohibiting the defrosting operation regardless of the integrated value for a predetermined time from the start of the heating operation and the end of the defrosting operation, according to claim 1. Defrost control device for heat pump type air conditioner.
JP3193854A 1991-08-02 1991-08-02 Defrost control device for heat pump type air conditioner Expired - Fee Related JP2822705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193854A JP2822705B2 (en) 1991-08-02 1991-08-02 Defrost control device for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193854A JP2822705B2 (en) 1991-08-02 1991-08-02 Defrost control device for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPH0682083A true JPH0682083A (en) 1994-03-22
JP2822705B2 JP2822705B2 (en) 1998-11-11

Family

ID=16314860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193854A Expired - Fee Related JP2822705B2 (en) 1991-08-02 1991-08-02 Defrost control device for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2822705B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079071A3 (en) * 2009-12-23 2011-10-13 Thermo King Corporation Apparatus for controlling relative humidity in a container
KR101253568B1 (en) * 2005-12-29 2013-04-11 삼성전자주식회사 Air-Conditioning Apparatus And Thereof Method
CN105042786A (en) * 2015-07-30 2015-11-11 广东美的制冷设备有限公司 Dehumidifier and method and device for controlling dehumidifier
CN106989494A (en) * 2017-05-10 2017-07-28 广东美的制冷设备有限公司 Air conditioner and its frosting detection device and method
CN112665118A (en) * 2020-12-22 2021-04-16 珠海格力电器股份有限公司 Defrosting control method and device of heat pump unit, storage medium and heat pump unit
CN113847658A (en) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 Dehumidifier and control method thereof
CN114440453A (en) * 2022-03-01 2022-05-06 浙江乾丰智能科技有限公司 Air energy water heater frosting degree judgment method based on fuzzy algorithm
WO2023223594A1 (en) * 2022-05-20 2023-11-23 ダイキン工業株式会社 Prediction device, refrigeration system, prediction method, prediction program

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253568B1 (en) * 2005-12-29 2013-04-11 삼성전자주식회사 Air-Conditioning Apparatus And Thereof Method
US9557084B2 (en) 2009-12-23 2017-01-31 Thermo King Corporation Apparatus for controlling relative humidity in a container
CN102741618A (en) * 2009-12-23 2012-10-17 热之王公司 Apparatus for controlling relative humidity in a container
WO2011079071A3 (en) * 2009-12-23 2011-10-13 Thermo King Corporation Apparatus for controlling relative humidity in a container
CN105042786B (en) * 2015-07-30 2018-09-11 广东美的制冷设备有限公司 The control method and device of dehumidifier and dehumidifier
CN105042786A (en) * 2015-07-30 2015-11-11 广东美的制冷设备有限公司 Dehumidifier and method and device for controlling dehumidifier
CN106989494A (en) * 2017-05-10 2017-07-28 广东美的制冷设备有限公司 Air conditioner and its frosting detection device and method
CN112665118A (en) * 2020-12-22 2021-04-16 珠海格力电器股份有限公司 Defrosting control method and device of heat pump unit, storage medium and heat pump unit
CN112665118B (en) * 2020-12-22 2022-03-01 珠海格力电器股份有限公司 Defrosting control method and device of heat pump unit, storage medium and heat pump unit
CN113847658A (en) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 Dehumidifier and control method thereof
CN114440453A (en) * 2022-03-01 2022-05-06 浙江乾丰智能科技有限公司 Air energy water heater frosting degree judgment method based on fuzzy algorithm
CN114440453B (en) * 2022-03-01 2024-01-16 北溪特(浙江)科技有限公司 Air energy water heater frosting degree judging method based on fuzzy algorithm
WO2023223594A1 (en) * 2022-05-20 2023-11-23 ダイキン工業株式会社 Prediction device, refrigeration system, prediction method, prediction program
JP2023170830A (en) * 2022-05-20 2023-12-01 ダイキン工業株式会社 Prediction device, freezing system, prediction method, and prediction program

Also Published As

Publication number Publication date
JP2822705B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
CA2149802C (en) Air conditioner
CN109323373A (en) Air conditioner defrosting control method
KR20060082455A (en) Defrost driving control device and its operating method in the heat pump air-conditioner
JPH0682083A (en) Defrosting control device for heat pump type air-conditioner
JPH09210516A (en) Defrosting method for heat pump type air conditioner
JP4592599B2 (en) Air conditioner
JP3185791B2 (en) Control device for air conditioner
JPH0278844A (en) Air conditioner
JP3213662B2 (en) Air conditioner
KR20080035878A (en) Air-conditioner and defrosting method of the same air-conditioner
JP4047566B2 (en) Air conditioner control device
JPH04356647A (en) Control device for air conditioner
JPH10267358A (en) Assembled duct type air-conditioning system
JPS60575Y2 (en) Air conditioner defrosting device
JPS6166037A (en) Defrosting control unit of air conditioner
JPH06147603A (en) Defroster
JPS60144546A (en) Controller of defrosting operation of air conditioner
JP2005188760A (en) Air conditioner
JP3152448B2 (en) Gas heat pump air conditioner
JP3182439B2 (en) Air conditioner
JPH1194406A (en) Air conditioner
KR100304553B1 (en) Heatpump air-conditioner and method for controlling warming mode thereof
KR20000055144A (en) Method for preventing freezing of the heat exchanger in the air conditioner
JPH05126384A (en) Air conditioner
JPH0244140A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees