JPH0681965B2 - Thrust magnetic bearing - Google Patents

Thrust magnetic bearing

Info

Publication number
JPH0681965B2
JPH0681965B2 JP2224323A JP22432390A JPH0681965B2 JP H0681965 B2 JPH0681965 B2 JP H0681965B2 JP 2224323 A JP2224323 A JP 2224323A JP 22432390 A JP22432390 A JP 22432390A JP H0681965 B2 JPH0681965 B2 JP H0681965B2
Authority
JP
Japan
Prior art keywords
shaped
displacement sensor
thrust
rotary shaft
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2224323A
Other languages
Japanese (ja)
Other versions
JPH04107317A (en
Inventor
陽一 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2224323A priority Critical patent/JPH0681965B2/en
Publication of JPH04107317A publication Critical patent/JPH04107317A/en
Publication of JPH0681965B2 publication Critical patent/JPH0681965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 潤滑油の使用を避けるLSI製造工程に使用するターボ分
子ポンプ、或いはドライガスシールと組合せて使用する
ことにより潤滑油給油装置を必要としないターボ圧縮機
等において、回転軸を支持するのに使用されるスラスト
磁気軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] A turbo molecular pump used in an LSI manufacturing process that avoids the use of lubricating oil, or a turbocharger that does not require a lubricating oil refueling device by being used in combination with a dry gas seal. The present invention relates to a thrust magnetic bearing used to support a rotating shaft in a compressor or the like.

[従来の技術] この様な従来のスラスト磁気軸受を第5図及び第6図に
示す。
[Prior Art] Such a conventional thrust magnetic bearing is shown in FIGS. 5 and 6.

第5図及び第6図において全体を符号10で示すスラスト
磁気軸受は、回転軸1と、それに固定した円盤状の磁性
材料製スラストディスク2と、このスラストディスク2
に微小隙間を設けて対向する円筒状静止継鉄3とを含ん
でいる。
5 and 6, a thrust magnetic bearing generally designated by reference numeral 10 comprises a rotary shaft 1, a disk-shaped thrust disk 2 made of a magnetic material fixed to the rotary shaft 1, and the thrust disk 2
And a cylindrical stationary yoke 3 facing each other with a minute gap therebetween.

円筒状静止継鉄3はケーシング(図示せず)に固定され
ており、その断面形状はコ字状である。そして該コ字状
断面に円筒状の励磁コイル5を挿入している。
The cylindrical stationary yoke 3 is fixed to a casing (not shown) and has a U-shaped cross section. A cylindrical exciting coil 5 is inserted in the U-shaped cross section.

このスラスト磁気軸受10では、スラスト方向の軸の変位
が変位センサ11で測定される。そして変位センサ11の出
力は補償回路12に送られ、補償回路12の出力はパワーア
ンプ14を介してコイル5を励磁して磁気吸引力を発生す
る。これにより、回転軸1の軸方向位置を所定の位置に
制御する。
In this thrust magnetic bearing 10, the displacement of the shaft in the thrust direction is measured by the displacement sensor 11. The output of the displacement sensor 11 is sent to the compensation circuit 12, and the output of the compensation circuit 12 excites the coil 5 via the power amplifier 14 to generate a magnetic attraction force. This controls the axial position of the rotary shaft 1 to a predetermined position.

[発明が解決しようとする課題] しかし従来のスラスト磁気軸受10においては、円筒状静
止継鉄3が一体的に形成さているので、回転軸1の組立
や分解の時、回転軸1に固定した円盤状の磁性材料製ス
ラストディスク2を回転軸1から取り外さねばならな
い。そのため、スラストディスク2と回転軸1の嵌め合
いをすきま嵌めしておかなければならず、その結果、回
転軸1を高速回転する場合に振動を発生することがあっ
た。
[Problems to be Solved by the Invention] However, in the conventional thrust magnetic bearing 10, since the cylindrical stationary yoke 3 is integrally formed, it is fixed to the rotary shaft 1 when the rotary shaft 1 is assembled or disassembled. The disk-shaped thrust disk 2 made of magnetic material must be removed from the rotary shaft 1. Therefore, the thrust disc 2 and the rotary shaft 1 must be fitted in a clearance fit, and as a result, vibration may occur when the rotary shaft 1 is rotated at a high speed.

この様な振動は騒音源となるのみならず、機械の疲労破
壊や作動不良の原因になるものであり、その発生は極力
避ける必要がある。しかしながら、従来の技術では前述
した理由により振動が発生し、しかもそれを防止するた
めの有効な手段は提案されていなかった。
Such vibration not only causes noise, but also causes fatigue damage and malfunction of the machine, and the occurrence of such vibration must be avoided as much as possible. However, in the prior art, vibration has occurred due to the above-mentioned reasons, and no effective means for preventing it has been proposed.

本発明は上記した従来技術の問題点に鑑みて提案された
ものであり、上述した様な振動を有効に防止できるスラ
スト磁気軸受の提供を目的としている。
The present invention has been proposed in view of the above-mentioned problems of the conventional art, and an object thereof is to provide a thrust magnetic bearing capable of effectively preventing the above-described vibration.

[課題を解決するための手段] 本発明のスラスト磁気軸受は、回転軸に固着した円盤状
の磁性材料製回転子(スラストディスク)と、該回転子
に微小隙間を設けて対向するケーシングに固定され全体
が円筒形状の静止継鉄とを含み、該静止継鉄は円周方向
に2分割される構造であって、励磁コイルを挿入するた
めの複数のコアを持ち且つ全体がII字状をしているII状
継鉄と、該II状継鉄のコアに挿入された偶数個の励磁コ
イルと、該II状継鉄と該励磁コイルをコの字状に取り囲
む円周方向に2分割される構造のコ字状継鉄、とを含ん
でいる。
[Means for Solving the Problem] A thrust magnetic bearing of the present invention is fixed to a rotor (thrust disk) made of a magnetic material in a disk shape fixed to a rotating shaft and a casing facing the rotor with a minute gap provided therebetween. And a stationary yoke having a cylindrical shape as a whole, and the stationary yoke has a structure in which it is divided into two in a circumferential direction, and has a plurality of cores for inserting an exciting coil and has a II-shaped shape as a whole. II-shaped yokes, an even number of exciting coils inserted in the core of the II-shaped yokes, and the II-shaped yokes and the exciting coils are divided into two in the circumferential direction so as to surround them in a U-shape. It includes a U-shaped yoke with a structure that

また、この様な構成に加えて本発明のスラスト磁気軸受
は、全体で4個のコア及び励磁コイルを有しており、回
転軸の軸方向変位を検出する第1の変位センサと、該第
1の変位センサの出力に応答して回転軸が所定の軸方向
位置に保持される様に励磁コイルを起励する第1の制御
回路と、回転軸の軸振動を検出する第2の変位センサ
と、該第2の変位センサの出力に基づいて前記軸振動が
ゼロに成るように制御する第2の制御回路とを含んでい
る。
Further, in addition to such a constitution, the thrust magnetic bearing of the present invention has four cores and exciting coils as a whole, and includes a first displacement sensor for detecting axial displacement of the rotating shaft, and A first control circuit for exciting the exciting coil so that the rotary shaft is held at a predetermined axial position in response to the output of the first displacement sensor; and a second displacement sensor for detecting axial vibration of the rotary shaft. And a second control circuit for controlling the shaft vibration to be zero based on the output of the second displacement sensor.

[作用] 上記した様な構成を有する本発明のスラスト磁気軸受に
よれば、スラストディスクに微小隙間を設けて対向して
配置されたコ字状断面をもつ円筒状静止継鉄が円周方向
に2分割される分割形にすることで、静止継鉄が円周方
向に2分割される構造となっている。その結果、回転軸
の組立や分解に際しては、静止継鉄を2分割することに
よりスラストディスクを固定したままの状態で回転軸を
取り外すことが出来る。
[Operation] According to the thrust magnetic bearing of the present invention having the above-described structure, the cylindrical stationary yoke having a U-shaped cross section, which is arranged facing each other with a minute gap provided in the thrust disk, is arranged in the circumferential direction. The split yoke is divided into two, so that the stationary yoke is divided into two in the circumferential direction. As a result, when assembling and disassembling the rotary shaft, the rotary shaft can be removed while the thrust disk is fixed by dividing the stationary yoke into two parts.

これに伴い、円盤状の磁性材料製スラストディスクを回
転軸から取り外す必要が無くなるので、スラストディス
クを回転軸にすきま嵌めしておく必要もなくなる。従っ
て、スラストディスクを回転軸にすきま嵌めしたがため
に高速回転において振動が生ずるという従来技術におけ
る問題を解決することができたのである。
Accordingly, it is not necessary to remove the disk-shaped thrust disk made of a magnetic material from the rotary shaft, so that it is not necessary to fit the thrust disk to the rotary shaft with a clearance. Therefore, it was possible to solve the problem in the prior art that vibration occurs at high speed because the thrust disk is fitted into the rotary shaft with a clearance.

本発明のスラスト磁気軸受を組み立てる際には、励磁コ
イルを挿入した複数のコアを持つII字状継鉄を、コ字状
継鉄の開口部から挿入し、固定すれば良い。これによ
り、スラストディスク、II字状継鉄およびコ字状継鉄の
間に閉じた磁路が形成でき、しかも静止継鉄部は分割形
となっているため、分解、組立が極めて容易に行われ
る。
When assembling the thrust magnetic bearing of the present invention, the II-shaped yoke having a plurality of cores into which the exciting coil is inserted may be inserted and fixed from the opening of the U-shaped yoke. As a result, a closed magnetic path can be formed between the thrust disk, the II-shaped yoke, and the U-shaped yoke, and the stationary yoke section is a split type, so disassembly and assembly are extremely easy. Be seen.

また、本発明のスラスト磁気軸受によれば、回転軸のコ
ニカルモードの運動を検出する第2の変位センサから、
それぞれ2個の励磁コイル用コアを持つ2分割したII字
状継鉄に挿入した4個の励磁コイルが互いに対向する励
磁コイルに偶力を発生する様に、該変位センサの出力信
号に応答して逆相振幅の2つの制御信号を作成する。一
方、第1の変位センサの出力信号に応答して、回転軸を
適正な軸方向位置に保持する様に作成されたスラスト制
御信号を作成する。そして、前記逆相振幅の2つの制御
信号とスラスト制御信号とを加算して、4個の励磁コイ
ルに出力する。
Further, according to the thrust magnetic bearing of the present invention, from the second displacement sensor that detects the conical mode motion of the rotating shaft,
In response to the output signal of the displacement sensor, the four exciting coils inserted in the II-shaped yoke divided into two each having two exciting coil cores generate a couple in the exciting coils facing each other. To generate two control signals of opposite phase amplitude. On the other hand, in response to the output signal of the first displacement sensor, a thrust control signal created so as to hold the rotary shaft at an appropriate axial position is created. Then, the two control signals of the antiphase amplitude and the thrust control signal are added and output to the four exciting coils.

これにより、回転軸の軸方向位置を制御するスラスト方
向の力と共に、回転軸のコニカルモードの振動を制御す
る偶力をも発生し、回転軸のコニカルモードの振動低減
が図れるのである。
As a result, in addition to the force in the thrust direction that controls the axial position of the rotary shaft, a couple force that controls the vibration of the rotary shaft in the conical mode is generated, and the vibration of the rotary shaft in the conical mode can be reduced.

[実施例] 以下第1図〜第4図を参照して、本発明の実施例につい
て説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図及び第2図において、全体を符号100で示すスラ
スト磁気軸受は本発明の第1実施例であり、回転軸101
と、該回転軸に固着した円盤状の磁性材料製スラストデ
ィスク102と、該スラストディスクに微小隙間を隔てて
対向して配置された静止継鉄とを含んでいる。この静止
継鉄は、ケーシング(図示せず)に固定されており、円
周方向(第2図では上下)に2分割されており、断面が
コ字状をした円筒形状をしている。
In FIG. 1 and FIG. 2, a thrust magnetic bearing, generally designated by reference numeral 100, is the first embodiment of the present invention, and the rotary shaft 101
And a disk-shaped thrust disk 102 made of a magnetic material fixed to the rotating shaft, and a stationary yoke arranged to face the thrust disk with a minute gap therebetween. This stationary yoke is fixed to a casing (not shown), is divided into two in the circumferential direction (upper and lower in FIG. 2), and has a U-shaped cross section.

ここで静止継鉄は、コ字状継鉄103と、II字状継鉄104
と、励磁コイル105とから構成されている。II字状継鉄1
04は励磁コイル105を挿入する複数のコアを有してい
る。またコ字状継鉄103は、円周方向(第2図では上
下)に2分割される構造となっている。
The stationary yokes here are U-shaped yokes 103 and II-shaped yokes 104.
And an exciting coil 105. II-shaped yoke 1
04 has a plurality of cores into which the exciting coil 105 is inserted. The U-shaped yoke 103 has a structure in which it is divided into two in the circumferential direction (upper and lower in FIG. 2).

スラスト磁気軸受100の組立の際には、II字状継鉄104の
各々(第2図の104a、104b)に複数個(第2図において
は2個)の励磁コイル105(105a、105b)を挿入する。
そして、励磁コイル105を挿入したII字状継鉄104を、開
口部106(106a、106b)からコ字状継鉄103の各々(103
a、103b)に挿入し、固定手段(第1図においてはナッ
ト107)によって該コ字状継鉄と一体的に固定する。
When assembling the thrust magnetic bearing 100, a plurality of (two in FIG. 2) exciting coils 105 (105a, 105b) are provided for each of the II-shaped yokes 104 (104a, 104b in FIG. 2). insert.
Then, the II-shaped yoke 104 into which the exciting coil 105 is inserted is inserted into each of the U-shaped yokes 103 (103) through the openings 106 (106a, 106b).
a, 103b) and fixed integrally with the U-shaped yoke by a fixing means (nut 107 in FIG. 1).

この結果、励磁コイル105により、スラストディスク10
2、II字状継鉄104、コ字状継鉄103に閉じた磁路を発生
する。
As a result, the excitation coil 105 causes the thrust disk 10 to
2. A closed magnetic path is generated in the II-shaped yoke 104 and the U-shaped yoke 103.

作動に際しては、回転軸101のスラスト方向の振動或い
は変位を変位センサ(第1の変位センサ)111で検出し
て補償回路112に出力信号を送り、補償回路112からの出
力をパワーアンプ114を介してコイル105に送る。パワー
アンプ114を介して励磁コイル105へ送られた補償回路11
2からの出力は、該コイルを励磁してスラストディスク1
02との間に磁気吸引力を発生して、回転軸101の軸方向
位置を所定の位置に保持する。これによりスラスト方向
の制御が行われるのである。
During operation, vibration or displacement in the thrust direction of the rotary shaft 101 is detected by a displacement sensor (first displacement sensor) 111, an output signal is sent to a compensation circuit 112, and the output from the compensation circuit 112 is passed through a power amplifier 114. Sent to the coil 105. Compensation circuit 11 sent to exciting coil 105 via power amplifier 114
The output from 2 is the thrust disk 1 when the coil is excited.
A magnetic attraction force is generated between the rotating shaft 101 and the shaft 02 to hold the axial position of the rotating shaft 101 at a predetermined position. This controls the thrust direction.

次に、第3図及び第4図を参照して本発明の第2実施例
を説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.

全体を符号200でしめすスラスト磁気軸受は、第1図及
び第2図に示すスラスト磁気軸受100と同様の構成を有
しているが、それに加えて、回転軸201の軸振動を検出
する第2の変位センサ221a、221bと、その出力信号から
振動の回転角を演算する演算回路222と、位相補償回路2
23と、その出力と第1の変位センサ211からの出力信号
とを加算する加算器213とを含んでいる。
The thrust magnetic bearing, which is entirely denoted by reference numeral 200, has the same structure as the thrust magnetic bearing 100 shown in FIGS. 1 and 2, but in addition to that, a second type that detects axial vibration of the rotating shaft 201 is used. Displacement sensors 221a and 221b, a calculation circuit 222 that calculates the rotation angle of vibration from the output signal, and a phase compensation circuit 2
23, and an adder 213 that adds the output thereof and the output signal from the first displacement sensor 211.

この第2実施例は、回転軸201に振動が生じて円錐形状
に振れ回る所謂「コニカルモード」となった場合にも、
振動を打ち消してコニカルモードを解消するように機能
出来るものである。
In the second embodiment, even in the case of a so-called "conical mode" in which vibration occurs in the rotating shaft 201 and swirls in a conical shape,
It can function to cancel the vibration and eliminate the conical mode.

分割形スラスト磁気軸受に回転軸のコニカルモードの振
動の制御作用を付加する場合、コニカルモードの重心回
りの回転角φ(振動の回転角)は、2つのラジアル方向
の変位センサ221a、221b(第2の変位センサ)から求め
る。
When the conical mode vibration control action of the rotating shaft is added to the split type thrust magnetic bearing, the rotation angle φ around the center of gravity of the conical mode (vibration rotation angle) is determined by the two radial displacement sensors 221a and 221b (first 2 displacement sensor).

変位センサ221aの位置における軸振動をxa、変位センサ
221bの位置における軸振動をxb、変位センサ221aと重心
Gまでの距離をla、変位センサ221bと重心Gまでの距離
をlb、とすると、コニカルモードの重心回りに回転角φ
は次の式で求まる。
The axial vibration at the position of the displacement sensor 221a is xa, and the displacement sensor
When the axial vibration at the position of 221b is xb, the distance between the displacement sensor 221a and the center of gravity G is la, and the distance between the displacement sensor 221b and the center of gravity G is lb, the rotation angle φ around the center of gravity in the conical mode is φ.
Is calculated by the following formula.

φ=(xa−xb)/(la+lb) 上式の演算を演算回路222で行い、その出力信号はコニ
カルモードの位相補償回路223に送られる。そして、位
相補償回路223の出力信号、すなわち位相補償した信号
及びその反転信号は加算器213へ出力される。
φ = (xa−xb) / (la + lb) The above operation is performed by the operation circuit 222, and the output signal is sent to the conical mode phase compensation circuit 223. Then, the output signal of the phase compensation circuit 223, that is, the phase-compensated signal and its inverted signal are output to the adder 213.

一方、回転軸201のスラスト方向の振動或いは変位は変
位センサ211(第1の変位センサ)で検出されて補償回
路212に送られ、その出力はパワーアンプ214を介してコ
イル105に送られると共に、前記加算器213へ出力され
る。そして該加算器213において、前記位相補償回路223
の出力信号、すなわち位相補償した信号及びその反転信
号はスラスト方向の補償回路212の出力に加算され、パ
ワーアンプ214を介してコイル205(第4図では205a、20
5c)を励磁する。
On the other hand, the vibration or displacement of the rotary shaft 201 in the thrust direction is detected by the displacement sensor 211 (first displacement sensor) and sent to the compensation circuit 212, and the output thereof is sent to the coil 105 via the power amplifier 214 and It is output to the adder 213. Then, in the adder 213, the phase compensation circuit 223
Output signal, that is, the phase-compensated signal and its inverted signal are added to the output of the compensation circuit 212 in the thrust direction, and are added via the power amplifier 214 to the coil 205 (205a, 20a in FIG. 4).
5c) is excited.

これにより、コイル205はスラスト方向の制御する磁気
吸引力と同時に、コニカルモード振動を制御する偶力を
も発生することができるのである。
As a result, the coil 205 can generate a couple force that controls conical mode vibration at the same time as the magnetic attraction force that controls the thrust direction.

なお、第4図中の符号Sはコ字状継鉄203の分割面を示
している。
In addition, symbol S in FIG. 4 indicates a division surface of the U-shaped yoke 203.

[発明の効果] 以上説明したように、本発明によるスラスト磁気軸受に
よれば、回転軸に固定する円盤状の磁性材料製スラスト
ディスクを回転軸から取り外すことなく、回転軸の組立
や分解を行える。そのため、スラストディスクと回転軸
の嵌め合いをすきま嵌めにしておく必要がなくなり、高
速回転において振動問題を避けることができる。
[Advantages of the Invention] As described above, according to the thrust magnetic bearing of the present invention, the rotating shaft can be assembled and disassembled without removing the disk-shaped thrust disk made of a magnetic material fixed to the rotating shaft. . Therefore, there is no need to make a clearance fit between the thrust disc and the rotary shaft, and the vibration problem can be avoided at high speed rotation.

また周方向に分割した励磁コイルや、回転軸のコニカル
モードの振動を検出するセンサ(第2の変位センサ)等
を用いることにより、回転軸のコニカルモードの振動を
制御できる。
Further, the vibration of the rotary shaft in the conical mode can be controlled by using an exciting coil divided in the circumferential direction, a sensor (second displacement sensor) for detecting the vibration of the rotary shaft in the conical mode, or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示すブロック図、第2図
は第1実施例において用いられるコ字状継鉄の両端面を
示す端面図、第3図本発明の第2実施例を示すブロック
図、第4図は第2実施例において用いられるコ字状継鉄
の端面を示す端面図、第5図は従来のスラスト磁気軸受
を示すブロック図、第6図は従来技術において用いられ
る円筒状静止継鉄の端面図である。 1、101、210……回転軸、2、102、202……スラストデ
ィスク、3、103、103a、103b、203……断面コ字状の円
筒状静止継鉄、4、104、104a、104b、204、204a、204
b、204c、204d……周方向に分割したII字状継鉄、5、1
05、105a、105b、205、205a、205b、205c、205d……励
磁コイル、11、111、211……スラスト方向変位センサ
(第1の変位センサ)、12、112、212……スラスト方向
補償回路、213……加算回路、14、114、214……パワー
アンプ、221a、221b……ラジアル変位センサ(第2の変
位センサ)、222……回転角の演算回路、223……コニカ
ルモードの補償回路
FIG. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is an end view showing both end faces of a U-shaped yoke used in the first embodiment, and FIG. 3 a second embodiment of the present invention. FIG. 4 is an end view showing the end face of the U-shaped yoke used in the second embodiment, FIG. 5 is a block diagram showing a conventional thrust magnetic bearing, and FIG. 6 is used in the prior art. It is an end view of the cylindrical stationary yoke. 1, 101, 210 ... Rotating shaft, 2, 102, 202 ... Thrust disk, 3, 103, 103a, 103b, 203 ... Cylindrical stationary yoke with U-shaped cross section, 4, 104, 104a, 104b, 204, 204a, 204
b, 204c, 204d ... II-shaped yoke divided in the circumferential direction, 5, 1
05, 105a, 105b, 205, 205a, 205b, 205c, 205d ... Excitation coil, 11, 111, 211 ... Thrust direction displacement sensor (first displacement sensor), 12, 112, 212 ... Thrust direction compensation circuit , 213 ... Adder circuit, 14, 114, 214 ... Power amplifier, 221a, 221b ... Radial displacement sensor (second displacement sensor), 222 ... Rotation angle calculation circuit, 223 ... Conical mode compensation circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】回転軸に固着した円盤状の磁性材料製回転
子と、該回転子に微小隙間を設けて対向するケーシング
に固定され全体が円筒形状の静止継鉄とを含み、該静止
継鉄は円周方向に2分割される構造であって、励磁コイ
ルを挿入するための複数のコアを持ち且つ全体がII字状
をしているII状継鉄と、該II状継鉄のコアに挿入された
偶数個の励磁コイルと、該II状継鉄と該励磁コイルをコ
の字状に取り囲む円周方向に2分割される構造のコ字状
継鉄とを含んでおり、前記励磁コイルはII字の脚部に相
当する部分の各々に巻回されていることを特徴とするス
ラスト磁気軸受。
1. A stationary spigot comprising a disc-shaped magnetic material rotor fixed to a rotary shaft, and a stationary yoke fixed to opposing casings with a minute gap in the rotor and having a cylindrical shape as a whole. Iron has a structure in which it is divided into two in the circumferential direction, has a plurality of cores for inserting an exciting coil, and has a II-shaped overall, and a core of the II-shaped yoke. An even number of exciting coils inserted in the coil, the II-shaped yoke and a U-shaped yoke that surrounds the exciting coil in a U shape and is divided into two in the circumferential direction. A thrust magnetic bearing characterized in that the coil is wound around each of the portions corresponding to the II-shaped legs.
【請求項2】全体で4個のコア及び励磁コイルを有して
おり、回転軸の軸方向変位を検出する第1の変位センサ
と、該第1の変位センサの出力に応答して回転軸が所定
の軸方向位置に保持される様に励磁コイルを起励する第
1の制御回路と、回転軸の軸振動を検出する第2の変位
センサと、該第2の変位センサの出力に基づいて前記軸
振動がゼロに成るように制御する第2の制御回路とを含
む請求項1に記載のスラスト磁気軸受。
2. A first displacement sensor having a total of four cores and an exciting coil for detecting axial displacement of the rotary shaft, and a rotary shaft in response to an output of the first displacement sensor. Based on an output of the second control sensor, a first control circuit for exciting and exciting the exciting coil so that the motor is held at a predetermined axial position, a second displacement sensor for detecting axial vibration of the rotating shaft, and an output of the second displacement sensor. And a second control circuit for controlling the shaft vibration so that the shaft vibration becomes zero.
JP2224323A 1990-08-28 1990-08-28 Thrust magnetic bearing Expired - Lifetime JPH0681965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2224323A JPH0681965B2 (en) 1990-08-28 1990-08-28 Thrust magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2224323A JPH0681965B2 (en) 1990-08-28 1990-08-28 Thrust magnetic bearing

Publications (2)

Publication Number Publication Date
JPH04107317A JPH04107317A (en) 1992-04-08
JPH0681965B2 true JPH0681965B2 (en) 1994-10-19

Family

ID=16811954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2224323A Expired - Lifetime JPH0681965B2 (en) 1990-08-28 1990-08-28 Thrust magnetic bearing

Country Status (1)

Country Link
JP (1) JPH0681965B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792545B2 (en) * 2017-12-28 2020-11-25 川崎重工業株式会社 Thrust magnetic bearing device

Also Published As

Publication number Publication date
JPH04107317A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
JPH0396696A (en) Vacuum pump
JPH05316707A (en) Surface opposed type motor
JPH09133133A (en) Thrust magnetic bearing device
JPH0681965B2 (en) Thrust magnetic bearing
JP3019651B2 (en) Vibration suppression device for rotating machine
JPH08128445A (en) Thrust magnetic bearing and centrifugal compressor
JP2005105846A (en) Vacuum pump
JP2002349277A (en) Bearing part oil film rigidity control device of turbocharger
JPH04236819A (en) Thrust magnetic bearing
JP7282200B2 (en) Rotors, electric motors, blowers and vacuum cleaners or hand dryers
JP2511944Y2 (en) Magnetic bearing device
JP3042545B2 (en) Magnetic bearing device
JP2001165189A (en) Magnetic coupling
JP3489041B2 (en) Permanent magnet rotor
JP3099032B2 (en) Radial magnetic bearings
JPH08145058A (en) Rotor supporting method, coupling device, radial magnetic bearing and rotary type fluid machinery
JPS5912886B2 (en) axial electromagnetic bearing
JPH0833269A (en) Turbo molecular drag pump
JPH06173951A (en) Magnetic bearing device
JP2979083B2 (en) Rotary transformer structure in rotation detector
JPS63235715A (en) Vibration damping type bearing device for rotary machine
JPH0443625Y2 (en)
JPH05184099A (en) Polygon scanner motor equipped with bearing unit
JPS61207892A (en) Turbomolecule pump
JPH10174354A (en) Motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 16

EXPY Cancellation because of completion of term