JPH0681720A - Exhaust gas recirculation device of multi-cylinder engine - Google Patents

Exhaust gas recirculation device of multi-cylinder engine

Info

Publication number
JPH0681720A
JPH0681720A JP4233684A JP23368492A JPH0681720A JP H0681720 A JPH0681720 A JP H0681720A JP 4233684 A JP4233684 A JP 4233684A JP 23368492 A JP23368492 A JP 23368492A JP H0681720 A JPH0681720 A JP H0681720A
Authority
JP
Japan
Prior art keywords
egr
intake
engine
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4233684A
Other languages
Japanese (ja)
Inventor
Masashi Takamatsu
昌史 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP4233684A priority Critical patent/JPH0681720A/en
Publication of JPH0681720A publication Critical patent/JPH0681720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an engine with an exhaust gas recirculation(EGR) device which secures sufficiently an EGR amount in an EGR region, restrains the generation of resonance phenomenon by pulsation effect of air-intake generated caused by the presence of an EGR port when high air-intake efficiency and a large engine torque are required in driving of the engine, and prevents the air-intake efficiency from being reduced. CONSTITUTION:In an engine provided with air-intake passages 2 independent in an air-intake manifold by cylinders, a sluice valve 30 for opening and closing opening portions 24 are provided on the opening portions 24 wherein EGR passages 21, 23 communicated with the air-intake passage 2 are communicated with the air-intake passages 2, and the sluice valve 30 is constituted so as to close the opening portions 24 when a control valve 22 of an exhaust gas recirculation device is closed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス再循環装置を備
え排気ガス再循環通路が吸気マニホルド内吸気通路に通
ずる開口部を有する多気筒エンジンの吸気効率改善に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of intake efficiency of a multi-cylinder engine having an exhaust gas recirculation device and an exhaust gas recirculation passage having an opening communicating with an intake passage in an intake manifold.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】排気ガ
ス再循環装置(Exhaust Gas Rocirc
ulationSystem、以下略してEGRと言
う)を備えていない従来の通常のエンジンの吸排気弁近
傍の構成を図5に、前記EGRを具備しているエンジン
の吸排気弁近傍の構成を図6に示す。図5において、1
はサージタンク、2は吸気マニホルド内吸気通路、3は
吸気弁、5は排気弁、6は排気マニホルド内排気通路、
8はピストン、10はエンジン本体である。図6は、前
記エンジンにEGRを取り付けた場合を示し、排気マニ
ホルド内排気通路6より取り出された排気(EGRガ
ス)EはEGR第1通路21、排気ガス再循環装置の制
御弁(以下EGRバルブと言う)22、EGR第2通路
23を通り、吸気マニホルド内吸気通路2に通ずる開口
部(以下EGRポートと言う)24を経て前記吸気通路
2内に入り、吸気Iと共に吸気弁3よりシリンダ内に流
入する。
2. Description of the Related Art Exhaust Gas Recirculation System (Exhaust Gas Recirc)
FIG. 5 shows a structure in the vicinity of the intake / exhaust valve of a conventional normal engine that does not include a U.S. system, and FIG. 6 shows a structure in the vicinity of the intake / exhaust valve of an engine having the EGR. . In FIG. 5, 1
Is a surge tank, 2 is an intake manifold intake passage, 3 is an intake valve, 5 is an exhaust valve, 6 is an exhaust manifold exhaust passage,
Reference numeral 8 is a piston, and 10 is an engine body. FIG. 6 shows a case where an EGR is attached to the engine. The exhaust gas (EGR gas) E taken out from the exhaust manifold internal exhaust passage 6 is an EGR first passage 21, a control valve of an exhaust gas recirculation device (hereinafter referred to as an EGR valve). 22), an EGR second passage 23, and an opening (hereinafter, referred to as an EGR port) 24 that communicates with the intake manifold intake passage 2 and enters the intake passage 2, and the intake valve 3 and the intake valve 3 inside the cylinder. Flow into.

【0003】上記のEGRを有するエンジンと、EGR
を有しない従来の通常のエンジンとについて、吸気効率
とトルク性能を比較した線図を図7に示す。図7(a)
は吸気効率、図7(b)はトルクについて、エンジンの
各回転数に応じた変化の状態が示されている。
An engine having the above EGR, and an EGR
FIG. 7 shows a diagram comparing the intake efficiency and the torque performance of a conventional normal engine that does not have. Figure 7 (a)
Shows the intake efficiency, and FIG. 7 (b) shows the state of change in torque according to each engine speed.

【0004】図示の通りEGRを備えずEGRポート2
4のない通常のエンジン(線図V)と比較してEGRポ
ート24のあるエンジン(線図VI)は、中低速のエン
ジン回転数の領域において吸気効率が低下しそのために
発生トルクも低減している。これは、通常、エンジンに
おいては、吸気マニホルド内吸気通路2は、そのエンジ
ンに最適な吸気効率が得られるように流速や吸気脈動効
果等を考慮した長さと形状に作られているが、これに対
して、EGR付きエンジンではEGRポート24が吸気
マニホルド内通路2の途中に配置され第2EGR通路2
3と連通しているために吸気バルブ3とEGRポート2
4ならびに第2EGR通路23の間で吸気脈動効果が起
り一種の共鳴現象が発生し、このために吸気通路の実質
的な長さが本来の設計上の吸気効率を良くするための最
適の長さから外れることが起り、このために吸気効率が
悪化する結果を生じている。
As shown, EGR port 2 without EGR
The engine with the EGR port 24 (line VI) has a lower intake efficiency in the region of the engine speed of medium to low speeds as compared with the normal engine without line 4 (line V), which reduces the generated torque. There is. Normally, in an engine, the intake manifold intake passage 2 is made to have a length and shape in consideration of the flow velocity, the intake pulsation effect, etc. so that the optimum intake efficiency for the engine can be obtained. On the other hand, in the engine with EGR, the EGR port 24 is arranged in the middle of the intake manifold passage 2 and the second EGR passage 2 is provided.
Intake valve 3 and EGR port 2 because they are in communication with
4 and the second EGR passage 23, an intake pulsation effect occurs and a kind of resonance phenomenon occurs. Therefore, the substantial length of the intake passage is the optimum length for improving the original designed intake efficiency. Occurs, which results in deterioration of intake efficiency.

【0005】上記の事情に鑑み、本発明においては、E
GR付きエンジンにおいて、その運転中に高吸気効率を
必要とし、大きなエンジントルクを必要とする状態の時
には、EGRポート24のあるための前記の共鳴現象の
発生を抑制し、吸気効率の悪化を防ぐためにEGRポー
トを閉鎖する手段を提供することを目的とする。
In view of the above circumstances, in the present invention, E
When a GR engine requires high intake efficiency during operation and requires a large engine torque, the occurrence of the resonance phenomenon due to the presence of the EGR port 24 is suppressed to prevent deterioration of intake efficiency. The purpose is to provide a means for closing the EGR port in order to close it.

【0006】なお、従来技術においては、多気筒エンジ
ンにおいて、EGRガスの各気筒への分配を均等に適正
に行う工夫については種々の手段が提案されており、例
えば特開昭61−14460号公報等において、その手
段が開示されているが本願発明の目的とする必要に応じ
てEGRポートを閉鎖することにより吸気効率の低下を
防止する手段についての提案はなされていない。
In the prior art, in a multi-cylinder engine, various means have been proposed as a means for appropriately and evenly distributing the EGR gas to each cylinder, for example, Japanese Patent Laid-Open No. 61-14460. Et al., The means is disclosed, but there is no proposal for a means for preventing a decrease in intake efficiency by closing the EGR port according to the purpose of the present invention.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、吸気マニホルド内で各気筒毎
に独立した吸気通路を有する多気筒エンジンにおいて、
前記吸気通路にそれぞれ排気ガス再循環通路を連通さ
せ、前記排気ガス再循環通路が前記吸気通路に通ずる開
口部にその開閉を行う仕切り弁を設けたことを特徴とす
る多気筒エンジンの排気ガス再循環装置を提供する。ま
た、前記排気ガス再循環装置の制御弁が閉鎖された時
に、前記仕切り弁が前記開口部を閉鎖するように構成す
ると好都合である。
In order to achieve the above object, in the present invention, in a multi-cylinder engine having an independent intake passage for each cylinder in an intake manifold,
An exhaust gas recirculation passage for a multi-cylinder engine, characterized in that an exhaust gas recirculation passage is connected to each of the intake passages, and a partition valve for opening and closing the exhaust gas recirculation passage is provided at an opening communicating with the intake passage. Provide a circulation device. It is also advantageous if the sluice valve is arranged to close the opening when the control valve of the exhaust gas recirculation device is closed.

【0008】[0008]

【作用】EGRバルブが閉じられ、EGRがOFFにな
った時に、仕切り弁が閉じてEGRポートを閉鎖し、E
GR第2通路と吸気マニホルド内吸気通路との間の連通
を断つことにより、吸気通路とEGR第2通路との間で
発生した吸気脈動効果に基づく共鳴現象の発生が防止さ
れ、このときは吸気通路内ではその本来の形状、長さに
よる吸気が行われ、エンジンの高吸気効率、高トルクが
保障され、一方、EGRバルブが開いた場合にはEGR
領域でのEGR量は充分に確保される。
When the EGR valve is closed and EGR is turned off, the sluice valve is closed and the EGR port is closed.
By disconnecting the communication between the GR second passage and the intake manifold intake passage, the occurrence of a resonance phenomenon due to the intake pulsation effect that occurs between the intake passage and the EGR second passage is prevented, and at this time, Intake is performed in the passage with its original shape and length, ensuring high intake efficiency and high torque of the engine, while EGR is performed when the EGR valve is opened.
A sufficient amount of EGR is secured in the area.

【0009】[0009]

【実施例】本発明の実施例を図面に基いて説明する。図
1はEGRポート24に本発明による仕切り弁30を設
けたエンジンの吸排気弁近傍の構成を示す図で、前記図
6に示すEGRポート24の位置に仕切り弁30を設け
たものである。本発明におけるその他のエンジンの構成
部分については図6に示す構造と同一である。したがっ
て、図6と共通の部分については、同一の符号を付し、
詳しい説明は省略する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a structure in the vicinity of intake and exhaust valves of an engine in which a sluice valve 30 according to the present invention is provided in an EGR port 24. The sluice valve 30 is provided at the position of the EGR port 24 shown in FIG. Other components of the engine in the present invention are the same as the structure shown in FIG. Therefore, the same parts as those in FIG.
Detailed explanation is omitted.

【0010】図1(a)は図6と同様のエンジンの吸排
気弁近傍の構成の縦断面模式図を示し、図1(b)はそ
の上視図(平面図)の模式図を示す。本発明において
は、EGRポート24に仕切り弁30が設けてある。こ
の仕切り弁30はEGRの使用時にのみ開き、EGRの
未使用時には閉じている。すなわち、EGRバルブ22
が閉じられEGRがOFFの状態の場合には仕切り弁3
0が閉じており、EGRポート24は閉鎖され吸気マニ
ホルド内の吸気通路2の通路内の形状と長さは最初から
EGRポートなし場合、すなわち、前述の図5に示した
エンジンの場合と同様で、その性能は図7のV線で示す
エンジンの性能と同様になり、吸気通路本来の吸気効率
が確保でき、充分なトルクの発生が得られる。
FIG. 1 (a) is a schematic vertical cross-sectional view of the structure near the intake / exhaust valve of the engine similar to FIG. 6, and FIG. 1 (b) is a schematic view of its top view (plan view). In the present invention, the EGR port 24 is provided with the sluice valve 30. The gate valve 30 is opened only when the EGR is used and is closed when the EGR is not used. That is, the EGR valve 22
When the valve is closed and EGR is off, the sluice valve 3
0 is closed, the EGR port 24 is closed, and the shape and length of the passage of the intake passage 2 in the intake manifold are the same as the case without the EGR port from the beginning, that is, the case of the engine shown in FIG. 5 described above. The performance thereof is similar to that of the engine indicated by the line V in FIG. 7, the original intake efficiency of the intake passage can be secured, and sufficient torque can be generated.

【0011】エンジンの高負荷時には高トルクが必要
で、これは例えば、図4に示す高吸気効率要求領域Hに
比べて、エンジンの中負荷、低負荷の領域においては特
に高吸気効率は必要とせず、したがってEGRポートを
開けても差支えなく、図4に示すLの領域がEGR使用
域となる。この領域に於てはEGRバルブ22が開いて
EGRがONとなり、EGRガスは第2EGR通路を経
てEGRポート24より吸気通路2に流入する。
When the engine is under high load, high torque is required. For example, in comparison with the high intake efficiency requirement region H shown in FIG. 4, high intake efficiency is particularly required in the medium and low load regions of the engine. Therefore, there is no problem even if the EGR port is opened, and the region L shown in FIG. 4 becomes the EGR use region. In this region, the EGR valve 22 is opened and EGR is turned on, and the EGR gas flows into the intake passage 2 from the EGR port 24 via the second EGR passage.

【0012】次に上記の作用を行う仕切り弁30の具体
的構成について述べる。先づ図2に第1実施例を示す。
図2は、図1(a)のA部に相当する部分の拡大図で、
図示の通り、仕切り弁30は、スプリング31、スプリ
ング押え板32により、各気筒の吸気通路2毎にEGR
第2通路23に取り付けられている。エンジンの停止時
にはスプリングの付勢力により仕切り弁は閉じられてい
るが、エンジンが始動し、EGRバルブ22が開きEG
RがONとなり、吸気通路2内の吸気圧力よりも、EG
R通路23内のEGRガスの圧力が高くなり、その圧力
差が前記スプリングの付勢力より大きくなるとスプリン
グが圧縮して仕切り弁30が開き、これにより、EGR
ガス(排気ガス)が吸気通路2内に流入する。これは図
4のL領域における作用である。
Next, a specific structure of the sluice valve 30 which performs the above-mentioned operation will be described. First, FIG. 2 shows a first embodiment.
FIG. 2 is an enlarged view of a portion corresponding to the portion A of FIG.
As illustrated, the sluice valve 30 includes an EGR for each intake passage 2 of each cylinder by a spring 31 and a spring retainer plate 32.
It is attached to the second passage 23. Although the sluice valve is closed by the urging force of the spring when the engine is stopped, the engine starts and the EGR valve 22 opens.
R is turned on, and the EG is higher than the intake pressure in the intake passage 2.
When the pressure of the EGR gas in the R passage 23 becomes high and the pressure difference becomes larger than the urging force of the spring, the spring is compressed and the sluice valve 30 is opened.
Gas (exhaust gas) flows into the intake passage 2. This is the action in the L region of FIG.

【0013】エンジンが更に回転を続けて図4Hに示す
高負荷領域に入ると、EGRバルブ22は閉じてEGR
はOFFとなる。このために、EGRバルブ22よりE
GRポート24までの間、すなわち第2EGR通路23
内の圧力は吸気通路2内の圧力よりも低くなり、スプリ
ング21の付勢力により仕切りバルブ30が閉じられ
る。従来は高負荷時等に於いてEGRバルブ22は閉じ
ていても図6に示したような構造ではEGRポート24
が開放されたままのためにこの部分で前記の吸気通路2
内における共鳴現象を起こしこのため吸気効率を悪化す
るという現象が発生した。本実施例においては仕切りバ
ルブ30により第2EGR通路と吸気通路2とが遮断さ
れるために上記の共鳴現象の発生が防止される。
When the engine continues to rotate and enters the high load region shown in FIG. 4H, the EGR valve 22 is closed and the EGR valve 22 is closed.
Turns off. For this reason, the EGR valve 22
Up to the GR port 24, that is, the second EGR passage 23
The internal pressure becomes lower than the internal pressure of the intake passage 2, and the urging force of the spring 21 closes the partition valve 30. Conventionally, even when the EGR valve 22 is closed at the time of a high load, the EGR port 24 has the structure shown in FIG.
The intake passage 2 described above in this part because the
A phenomenon that a resonance phenomenon occurs in the interior and thus deteriorates the intake efficiency occurs. In the present embodiment, the partition valve 30 blocks the second EGR passage and the intake passage 2, so that the above resonance phenomenon is prevented from occurring.

【0014】次に図3に第2実施例を示す。図は図2と
同様に図1のA部を拡大したものであるが、この場合は
EGR通路23の上にダイヤフラム33を取り付けこれ
に仕切り弁30を連結させ、バキュームパイプ34より
のバキュームによりダイヤフラム33を動かして、仕切
り弁の開閉を行う。このときの負圧源はEGRバルブ2
2等に使用している負圧を利用すればよい。これにより
前記第1実施例と同様に、EGRバルブ22が閉じ、E
GRがOFFの時には仕切り弁30が閉じることにより
吸気通路2内の共鳴現象が発生することを防止する。
Next, FIG. 3 shows a second embodiment. The figure is an enlarged view of the portion A of FIG. 1 as in FIG. 2, but in this case, a diaphragm 33 is mounted on the EGR passage 23, and the sluice valve 30 is connected to this, and the diaphragm from the vacuum pipe 34 is used. 33 is operated to open and close the sluice valve. The negative pressure source at this time is the EGR valve 2
The negative pressure used for 2 etc. may be used. As a result, the EGR valve 22 is closed and E
When the GR is OFF, the sluice valve 30 is closed to prevent the resonance phenomenon in the intake passage 2 from occurring.

【0015】仕切り弁30の構造については、上記の外
に、EGRバルブ22が閉じた時にEGRポート24を
閉鎖することにより前記吸気効率の悪化を防ぐものであ
れば良く、このための仕切り弁としては、EGRバルブ
22の開閉に電磁ソレノイドを用いたり、又はEGRバ
ルブ22にEGRポートを開閉する板状スプリングを用
いる等の手段も考えられる。
Regarding the structure of the sluice valve 30, in addition to the structure described above, it is sufficient if the EGR port 24 is closed when the EGR valve 22 is closed to prevent the deterioration of the intake efficiency. A means such as using an electromagnetic solenoid for opening / closing the EGR valve 22 or using a plate spring for opening / closing the EGR port in the EGR valve 22 is also conceivable.

【0016】上記により、従来のEGRポート24近傍
の構造に対して多くの手を加えることなく比較的簡単な
構造でEGR領域でのEGR量を確保しながら、高吸気
効率が必要とされる全負荷近くにおいては吸気通路内に
共鳴現象を発生させることなく最適の状態でエンジンを
稼動させる事が可能となる。
As described above, a high intake efficiency is required while securing the EGR amount in the EGR region with a relatively simple structure without much modification to the structure near the conventional EGR port 24. It is possible to operate the engine in an optimal state near the load without causing a resonance phenomenon in the intake passage.

【0017】[0017]

【発明の効果】本発明を実施することによりEGR領域
でのEGR量は充分に確保されると共にEGRバルブが
閉じてEGRがOFFの場合に、従来、EGRポートの
開口部が吸気通路に連通していたために、EGR通路と
吸気弁との間の吸気通路に生じた共鳴現象の発生が防止
され、高吸気効率、高トルクを確保することができる。
更に上記のための構造は従来構造の若干の改造で可能で
あり、構造が比較的簡単でコスト的にも有利である。
By implementing the present invention, the EGR amount in the EGR region is sufficiently secured, and when the EGR valve is closed and EGR is OFF, the opening of the EGR port is conventionally communicated with the intake passage. Therefore, the occurrence of the resonance phenomenon occurring in the intake passage between the EGR passage and the intake valve is prevented, and high intake efficiency and high torque can be secured.
Further, the structure for the above can be made by a slight modification of the conventional structure, and the structure is relatively simple and advantageous in cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による仕切り弁をEGRポート
に設けたエンジンの吸排気弁近傍の構成を示す図であ
り、図1(a)はエンジンの吸排気弁近傍の構成の縦断
面模式図、図1(b)はその上視図(平面図)の模式図
である。
FIG. 1 is a diagram showing a configuration in the vicinity of an intake / exhaust valve of an engine in which a sluice valve according to an embodiment of the present invention is provided in an EGR port, and FIG. 1A is a schematic vertical sectional view of a configuration in the vicinity of the intake / exhaust valve of the engine. FIG. 1B is a schematic diagram of the top view (plan view).

【図2】図1(a)のA部の拡大図により示す実施例1
による仕切り弁の構成図である。
FIG. 2 is a first embodiment shown in an enlarged view of a portion A of FIG.
It is a block diagram of the gate valve by.

【図3】図1(a)のA部の拡大図により示す実施例2
による仕切り弁の構成図である。
FIG. 3 is a second embodiment shown by an enlarged view of a portion A of FIG.
It is a block diagram of the gate valve by.

【図4】EGRの使用域と不使用域の概略を示したエン
ジンのトルク−回転数線図である。
FIG. 4 is a torque-rotational speed diagram of the engine showing an outline of a use range and a non-use range of EGR.

【図5】従来のEGRを備えていないエンジンの吸排気
弁近傍の構成図である。
FIG. 5 is a configuration diagram in the vicinity of an intake / exhaust valve of an engine that does not include a conventional EGR.

【図6】従来のEGRを具備しているエンジンの吸排気
弁近傍の構成図である。
FIG. 6 is a configuration diagram in the vicinity of an intake / exhaust valve of an engine equipped with a conventional EGR.

【図7】従来のEGRを有しないエンジンと有するエン
ジンの性能線図を示し、図7(a)は吸気効率−エンジ
ン回転数線図、図7(b)はトルク−エンジン回転数線
図である。
7A and 7B are performance diagrams of a conventional engine having no EGR and an engine having the same. FIG. 7A is an intake efficiency-engine rotational speed diagram, and FIG. 7B is a torque-engine rotational speed diagram. is there.

【符号の説明】[Explanation of symbols]

1…サージタンク 2…吸気マニホルド内吸気通路 3…吸気弁 5…排気弁 6…排気マニホルド内排気通路 10…エンジン本体 20…排気ガス再循環装置(EGR) 21…EGR第1通路 22…EGRバルブ 23…EGR第2通路 24…EGRポート 30…仕切り弁 31…スプリング 33…ダイヤフラム 1 ... Surge tank 2 ... Intake manifold intake passage 3 ... Intake valve 5 ... Exhaust valve 6 ... Exhaust manifold exhaust passage 10 ... Engine body 20 ... Exhaust gas recirculation device (EGR) 21 ... EGR first passage 22 ... EGR valve 23 ... EGR second passage 24 ... EGR port 30 ... Gate valve 31 ... Spring 33 ... Diaphragm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸気マニホルド内で各気筒毎に独立した
吸気通路(2)を有する多気筒エンジンにおいて、前記
吸気通路(2)にそれぞれ排気ガス再循環通路(23)
を連通させ、前記排気ガス再循環通路(23)が前記吸
気通路(2)に通ずる開口部(24)にその開閉を行う
仕切り弁(30)を設けたことを特徴とする多気筒エン
ジンの排気ガス再循環装置。
1. In a multi-cylinder engine having an independent intake passage (2) for each cylinder in an intake manifold, an exhaust gas recirculation passage (23) is provided in each intake passage (2).
And a sluice valve (30) for opening and closing the exhaust gas recirculation passage (23) communicating with the intake passage (2) is provided in the exhaust of a multi-cylinder engine. Gas recirculation equipment.
【請求項2】 前記仕切り弁(30)は前記排気ガス再
循環装置の制御弁(22)が閉鎖された時に前記開口部
(24)を閉鎖するように構成されたことを特徴とする
請求項1記載の多気筒エンジンの排気ガス再循環装置。
2. The sluice valve (30) is configured to close the opening (24) when the control valve (22) of the exhaust gas recirculation device is closed. 2. An exhaust gas recirculation device for a multi-cylinder engine according to 1.
JP4233684A 1992-09-01 1992-09-01 Exhaust gas recirculation device of multi-cylinder engine Pending JPH0681720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4233684A JPH0681720A (en) 1992-09-01 1992-09-01 Exhaust gas recirculation device of multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4233684A JPH0681720A (en) 1992-09-01 1992-09-01 Exhaust gas recirculation device of multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPH0681720A true JPH0681720A (en) 1994-03-22

Family

ID=16958924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4233684A Pending JPH0681720A (en) 1992-09-01 1992-09-01 Exhaust gas recirculation device of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPH0681720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294267A (en) * 1998-04-10 1999-10-26 Hino Motors Ltd Exhaust gas recirculation system of engine
EP0911510A3 (en) * 1997-10-25 2000-01-19 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Combustion engine with EGR device, especially diesel engine
EP0949414A3 (en) * 1998-04-11 2000-03-22 Pierburg Aktiengesellschaft Air intake system for a combustion engine
EP0974748A3 (en) * 1998-07-24 2000-09-06 Adam Opel Ag Reciprocating piston engine with exhaust gas recirculation
WO2008101977A1 (en) * 2007-02-23 2008-08-28 Mahle International Gmbh Internal combustion engine system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911510A3 (en) * 1997-10-25 2000-01-19 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Combustion engine with EGR device, especially diesel engine
JPH11294267A (en) * 1998-04-10 1999-10-26 Hino Motors Ltd Exhaust gas recirculation system of engine
EP0949414A3 (en) * 1998-04-11 2000-03-22 Pierburg Aktiengesellschaft Air intake system for a combustion engine
EP0974748A3 (en) * 1998-07-24 2000-09-06 Adam Opel Ag Reciprocating piston engine with exhaust gas recirculation
WO2008101977A1 (en) * 2007-02-23 2008-08-28 Mahle International Gmbh Internal combustion engine system
US8176902B2 (en) 2007-02-23 2012-05-15 Mahle International Gmbh Internal combustion engine system

Similar Documents

Publication Publication Date Title
JPS62210219A (en) Intake device of internal combustion engine
US5009199A (en) Intake reservoir for an engine having a check valve
JP2002235607A (en) Exhaust gas recirculation cooler
JPH0681720A (en) Exhaust gas recirculation device of multi-cylinder engine
US5255659A (en) Pressure balanced exhaust gas recirculation valve
JPH04342825A (en) Intake-air control device for internal combustion engine
JPH06147025A (en) Exhaust reflux device
JPH07332181A (en) Negative pressure supply device of internal combustion engine
JP3834908B2 (en) Multi-cylinder engine intake system
JP4210988B2 (en) Engine intake flow control device
JPH0610683A (en) Intake air controller of engine with mechanical type supercharger
JPH03182623A (en) Air intake device for internal combustion engine
JPH0734983A (en) Exhaust gas recirculation device for engine with supercharger
JP3426417B2 (en) Exhaust gas recirculation system
JP3209578B2 (en) Engine intake system
JP4580279B2 (en) EGR device for vehicle engine
JPH07139377A (en) Internal combustion engine with exhaust brake
JPS58185954A (en) Internal-combustion engine
JPH06257418A (en) Blow-by gas reducing device for internal combustion engine
JP2000073875A (en) Egr device for diesel engine
JP3541538B2 (en) Intake device for internal combustion engine
JPH08109854A (en) Exhaust reflux control device for internal combustion engine
JP2906915B2 (en) Variable intake valve drive mechanism for internal combustion engine
JPH0754600Y2 (en) V-type engine intake device
JP2000179322A (en) Crankcase emission control system for variable valve train engine