JPH0680565B2 - Substrate with conductor - Google Patents

Substrate with conductor

Info

Publication number
JPH0680565B2
JPH0680565B2 JP4129696A JP12969692A JPH0680565B2 JP H0680565 B2 JPH0680565 B2 JP H0680565B2 JP 4129696 A JP4129696 A JP 4129696A JP 12969692 A JP12969692 A JP 12969692A JP H0680565 B2 JPH0680565 B2 JP H0680565B2
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
film
conductive film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4129696A
Other languages
Japanese (ja)
Other versions
JPH05151827A (en
Inventor
松本  潔
恵造 松下
雅夫 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4129696A priority Critical patent/JPH0680565B2/en
Publication of JPH05151827A publication Critical patent/JPH05151827A/en
Publication of JPH0680565B2 publication Critical patent/JPH0680565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜上の所要部
分に金属被膜を形成した導体付き基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor-bearing substrate in which a metal coating is formed on a desired portion of a transparent conductive film.

【0002】[0002]

【従来の技術】酸化インジウムや酸化錫等を主成分とす
る透明導電膜が、液晶やエレクトロクロミック等の表示
素子の基板の電極や、太陽電池の電極等として広く用い
られている。この透明導電膜上に半田付けを行なった
り、ソケット類の接続端子として用いる際の、強度の補
強や抵抗値の低減等の目的で該透明導電膜上の所要部分
に金属被膜を形成することがしばしば行なわれる。
2. Description of the Related Art A transparent conductive film containing indium oxide, tin oxide or the like as a main component is widely used as an electrode of a substrate of a display element such as liquid crystal or electrochromic, or an electrode of a solar cell. It is possible to form a metal coating on a required portion of the transparent conductive film for the purpose of reinforcing the strength and reducing the resistance value when soldering on the transparent conductive film or when it is used as a connection terminal for sockets. Often done.

【0003】この金属被膜の形成方法としては、ニッケ
ル陽イオンの原料として硫酸ニッケル又は塩化ニッケル
を含み、次亜リン酸塩を還元剤として含むメッキ液を用
いていわゆる無電解メッキ法により透明導電膜上にNi-P
メッキ被膜を施す方法が知られている。更に、電解メッ
キ法や金属蒸着法、スパッタ法等による金属被膜の形成
方法も知られている。
As a method for forming this metal coating, a transparent conductive film is formed by a so-called electroless plating method using a plating solution containing nickel sulfate or nickel chloride as a raw material of nickel cation and containing hypophosphite as a reducing agent. Ni-P on top
A method of applying a plating film is known. Furthermore, a method for forming a metal coating by an electrolytic plating method, a metal vapor deposition method, a sputtering method, etc. is also known.

【0004】また、基板上への透明導電膜の作成方法と
しては、例えば以下のような方法が知られている。 1)金属インジウム,金属錫または両者の合金をターゲッ
トとして酸素雰囲気中でスパッタし、透明な導電膜を得
る方法。 2)酸化インジウム,酸化錫または両者の混合物を高真空
中で蒸着し、その後空気中にて加熱し、2次焼成を施
し、透明な導電膜を得る方法。 3)酸化インジウム,酸化錫または両者の混合物を低圧の
酸素雰囲気中で蒸着し、透明な導電膜を得る方法。
As a method of forming a transparent conductive film on a substrate, for example, the following method is known. 1) A method of obtaining a transparent conductive film by sputtering metallic indium, metallic tin or an alloy of both in an oxygen atmosphere. 2) A method in which indium oxide, tin oxide, or a mixture of both is vapor-deposited in a high vacuum, then heated in air, and secondarily baked to obtain a transparent conductive film. 3) A method of obtaining a transparent conductive film by vapor-depositing indium oxide, tin oxide or a mixture of both in a low pressure oxygen atmosphere.

【0005】しかし、いずれの方法で作成した透明導電
膜においても金属被膜との間に実用上十分な密着強度を
得ることが難しかった。そのため、上述の従来の方法で
作成した透明導電膜を用いて金属被膜との間の密着力を
向上させる方法として、透明導電膜表面を機械的に研磨
する方法、化学的なエッチング処理を施す方法等が提案
されている。これによって、透明導電膜表面に微細な凹
凸を形成し、いわゆるアンカー効果を生じさせようとい
う方法である。
However, it is difficult to obtain a practically sufficient adhesion strength between the transparent conductive film formed by either method and the metal film. Therefore, as a method for improving the adhesion with the metal film using the transparent conductive film prepared by the conventional method described above, a method of mechanically polishing the surface of the transparent conductive film, a method of performing a chemical etching treatment. Etc. have been proposed. This is a method of forming fine unevenness on the surface of the transparent conductive film to generate a so-called anchor effect.

【0006】[0006]

【発明が解決しようとする課題】従来の方法で基板に作
成した透明導電膜の表面を機械的研磨、化学的エッチン
グなどの方法によって粗面化し密着力を向上させる方法
において、より効果を得たい場合には機械的研磨におけ
る研磨量あるいは化学的エッチングにおけるエッチング
量を増す必要がある。しかし、微細なパタニングを行な
う場合には透明導電膜の一部消失による断線(このよう
な断線は、粗面化の程度にもよるが、ある程度の割合で
発生する。)、あるいは抵抗値の上昇が発生し、粗面化
の程度を増すことには限界がある。
It is desired to obtain a further effect in the method of roughening the surface of the transparent conductive film formed on the substrate by the conventional method by a method such as mechanical polishing or chemical etching to improve the adhesion. In some cases, it is necessary to increase the polishing amount in mechanical polishing or the etching amount in chemical etching. However, when fine patterning is performed, disconnection due to partial disappearance of the transparent conductive film (such disconnection occurs at a certain rate depending on the degree of surface roughening) or an increase in resistance value. Occurs and there is a limit to increasing the degree of roughening.

【0007】さらに、機械的研磨は生産性の点でまた処
理表面の均一性の点で難点がある。また、従来の機械的
研磨、化学的エッチングなどの方法によって上昇する金
属被膜との間の密着力は粗面化しない場合に比べてたか
だか30〜50%程度しか大きくならなかった。
Further, mechanical polishing has drawbacks in productivity and in uniformity of treated surface. In addition, the adhesion between the metal coating and the metal coating, which is increased by conventional methods such as mechanical polishing and chemical etching, was only about 30 to 50% greater than that when the surface was not roughened.

【0008】本発明はこのような従来の導体の欠点を解
消するためになされたものであり、透明導電膜の一部消
失あるいは抵抗値の上昇等の現象を発生させることな
く、透明導電膜と金属被膜との密着力を極めて大きくさ
せた導体付き基板を提供することを目的とする。
The present invention has been made to solve the above-mentioned drawbacks of conventional conductors, and it is possible to form a transparent conductive film without causing a phenomenon such as a partial disappearance of the transparent conductive film or an increase in resistance value. It is an object of the present invention to provide a substrate with a conductor that has an extremely high adhesion to a metal coating.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は、酸化イ
ンジウム又は酸化錫のいずれか一方又は双方を主成分と
する透明導電膜を有する基板の透明導電膜の所要部分に
金属被膜を形成した導体付き基板において、透明導電膜
はX線回折法における >222<方向の結晶粒子径が 400Å
以上の膜であることを特徴とする導体付き基板を提供す
る。
That is, according to the present invention, a metal coating is formed on a required portion of a transparent conductive film of a substrate having a transparent conductive film containing at least one of indium oxide and tin oxide as a main component. In the case of a substrate with a conductor, the transparent conductive film has a crystal grain size in the> 222 <direction of 400Å in the X-ray diffraction method.
Provided is a substrate with a conductor, which is the above film.

【0010】本発明者らは、従来の導体付き基板の透明
導電膜は、機械的研磨あるいは化学的エッチングを施し
ても金属被膜との間の密着力の向上には限界があること
から、密着力の向上を透明導電膜の特性の改善によって
達成するべく研究を進めた。その結果、透明導電膜の結
晶粒子径が 400Åより小さいことがNi-P金属被膜との密
着力が弱かった原因であったことを発見するに至った。
The inventors of the present invention have found that the conventional transparent conductive film of the substrate with a conductor has a limit in improving the adhesion with the metal film even if mechanical polishing or chemical etching is performed. Research was conducted to improve the power by improving the characteristics of the transparent conductive film. As a result, it was discovered that the fact that the crystal grain size of the transparent conductive film was smaller than 400Å was the cause of the weak adhesion with the Ni-P metal film.

【0011】本発明者らは、この 400Å以上の粒子径を
持つ透明導電膜上に金属被膜を設けた場合、密着力が向
上し、特にNi-P金属被膜との密着力が倍以上の密着力を
示す優れた性質を有することを発見した。
The present inventors have found that when a metal coating is provided on the transparent conductive film having a particle size of 400 Å or more, the adhesion is improved, and particularly the adhesion with the Ni-P metal coating is more than double the adhesion. It has been discovered that it has excellent properties that show power.

【0012】結晶粒子径が金属被膜との密着力にかかわ
る機構は次のように説明できる。一般に基板と金属メッ
キ被膜との密着力の向上には表面に凹凸を生じさせ、実
効的な接触面積を増大させること、さらにいわゆるアン
カー効果を生じさせるような表面を作成することが有効
であることが知られている。透明導電膜の場合、最表面
の凹凸は結晶粒子径が大きいほど大きいものとなる。
The mechanism of the crystal grain size relating to the adhesion with the metal coating can be explained as follows. Generally, in order to improve the adhesion between the substrate and the metal plating film, it is effective to create irregularities on the surface to increase the effective contact area, and to create a surface that causes the so-called anchor effect. It has been known. In the case of a transparent conductive film, the irregularities on the outermost surface become larger as the crystal grain size becomes larger.

【0013】即ち、構成する結晶粒子をほぼ球形と仮定
した場合、表面の凹凸の大きさは、結晶粒子半径と一致
する。また、結晶粒子径が大きくなると隣り合う粒子間
に微細な空隙を生じるようになり、この空隙が金属被膜
で充填されることにより、アンカー効果を生じることに
なる。
That is, assuming that the constituent crystal grains are substantially spherical, the size of the surface irregularities matches the radius of the crystal grains. Further, as the crystal grain size increases, fine voids are generated between the adjacent grains, and the voids are filled with the metal coating, so that the anchor effect is produced.

【0014】ここで結晶粒子径が大きい場合、空隙が生
じるようになることは、膜の屈折率を測定することによ
って確認できる。即ち、酸化インジウム単結晶及び酸化
錫単結晶は屈折率2.00を示すが、本発明で高い密着力を
示す粒子径 400Å以上の透明導電膜はこれよりかなり低
い屈折率1.90〜1.93を示す。これは、本発明で用いる透
明導電膜の結晶の充填密度が低く、膜内に多くの空隙を
持っているためである。
It can be confirmed by measuring the refractive index of the film that the voids are generated when the crystal grain size is large. That is, while the indium oxide single crystal and the tin oxide single crystal show a refractive index of 2.00, the transparent conductive film having a particle size of 400 Å or more, which shows a high adhesion in the present invention, shows a refractive index of 1.90 to 1.93, which is considerably lower than this. This is because the transparent conductive film used in the present invention has a low crystal packing density and has many voids in the film.

【0015】また、従来導体付き基板に用いられた透明
導電膜の屈折率は一般に1.97〜2.00を示し、明確な差が
認められた。以上のように、本発明で用いる透明導電膜
はX線回折法における〉222< 方向の結晶粒子径が 400
Å以上のものと規定したが、金属被膜との密着力が生ず
る機構上からも明確な指標を与えうるものである。
Further, the refractive index of the transparent conductive film used for the conventional substrate with a conductor is generally 1.97 to 2.00, and a clear difference is recognized. As described above, the transparent conductive film used in the present invention has a crystal grain size in the> 222 <direction of X-ray diffraction of 400
Å It is defined as above, but it is possible to give a clear index from the viewpoint of the mechanism that the adhesion force with the metal film is generated.

【0016】本発明のX線回折法における〉222< 方向
の結晶粒子径が400 Å以上の透明導電膜は次のようにし
て作成することができる。透明導電膜の材料としては金
属インジウムまたは金属錫もしくは双方を一定比率で混
合した合金を用いる。導電膜形成中チャンバー内には酸
素を導入し、 3×10-3Torr〜 5×10-3Torrとする。酸素
分圧は基板と蒸発源との距離によって変える必要がある
が、蒸着速度を 1〜3Å/secとした場合、平均自由行程
が、基板と蒸発源の距離の10〜50%となるような酸素分
圧とすることが望ましい。これによって、蒸着される金
属インジウムあるいは金属錫は酸素分子とほぼ確実に衝
突し、基板上に蒸着される膜は、酸素分子を膜内に吸蔵
したものとなる。
The transparent conductive film having a crystal grain size in the> 222 <direction in the X-ray diffraction method of the present invention of 400 Å or more can be prepared as follows. As a material for the transparent conductive film, metal indium, metal tin, or an alloy in which both are mixed at a constant ratio is used. Oxygen is introduced into the chamber during the formation of the conductive film to adjust the pressure to 3 × 10 −3 Torr to 5 × 10 −3 Torr. The oxygen partial pressure needs to be changed according to the distance between the substrate and the evaporation source, but when the deposition rate is 1 to 3 Å / sec, the mean free path is 10 to 50% of the distance between the substrate and the evaporation source. The oxygen partial pressure is desirable. As a result, the vapor-deposited metal indium or metal tin almost certainly collides with oxygen molecules, and the film vapor-deposited on the substrate has oxygen molecules occluded in the film.

【0017】従来公知の方法においても蒸着物質として
金属インジウム、または金属錫もしくは双方を一定比率
で混合した合金を用いる透明導電膜の作成方法は多数報
告されているが、蒸着される基板を 300〜 500℃に加熱
することが通常行なわれている。本発明の導体付き基板
では、基板温度を常温〜 100℃に抑えて導電膜を形成す
る。このようにして成膜した導電膜は膜内に多量の酸素
を吸蔵しているために非晶質状態であることをX線回折
像から確認できる。次にこの基板を大気中において200
℃〜500 ℃にて透明化するまで2次酸化を行なう。
In the conventional method, many methods have been reported for producing a transparent conductive film using metal indium, metal tin, or an alloy in which both are mixed in a fixed ratio as a vapor deposition material. Heating to 500 ° C is usually practiced. In the substrate with a conductor of the present invention, the conductive film is formed while keeping the substrate temperature at room temperature to 100 ° C. It can be confirmed from an X-ray diffraction image that the conductive film thus formed is in an amorphous state because a large amount of oxygen is stored in the film. This substrate is then placed in air for 200
Secondary oxidation is carried out at ℃ to 500 ℃ until it becomes transparent.

【0018】この2次酸化により、導電膜は非晶質状態
から多結晶膜へと移行する。結晶粒の成長には、2次酸
化温度は高温ほど望ましいが、高温領域では酸化を伴な
うので抵抗値が上昇することになる。メッキ被膜との密
着力の向上には〉222< 方向の結晶粒子径が 400Å以上
あれば実用上充分であるので、このような粒子径を得る
2次酸化温度としては 300℃程度が好ましい。
By this secondary oxidation, the conductive film changes from an amorphous state to a polycrystalline film. The higher the secondary oxidation temperature is, the more desirable for the growth of crystal grains. However, since the oxidation is accompanied in the high temperature region, the resistance value increases. Since a crystal grain size in the> 222 <direction of 400 Å or more is practically sufficient for improving the adhesion with the plated coating, a secondary oxidation temperature for obtaining such a grain size is preferably about 300 ° C.

【0019】ここでは、成膜方法として蒸着方法をとり
上げ説明したが、スパッタ法においても同様な効果を得
ることが可能である。スパッタ時の酸素分圧を調整し、
成膜時に多量の酸素を吸蔵させた非晶質膜とすることに
より、2次酸化時の結晶粒の成長を生じさせることがで
きる。
Here, the vapor deposition method has been described as the film forming method, but the same effect can be obtained by the sputtering method. Adjust the oxygen partial pressure during sputtering,
By forming an amorphous film in which a large amount of oxygen is stored during film formation, it is possible to cause crystal grain growth during secondary oxidation.

【0020】X線回折法における >222<方向の結晶粒子
径は、例えば、日本化学会編の「実験化学講座4固体物理化
学」 238頁以下, 雑誌「計測技術」1977年11月号86頁及
び89頁,雑誌「色材」1970年第43巻579 頁及び580 頁等
に記載された公知の方法で測定することができる。
The crystal grain size in the> 222 <direction in the X-ray diffraction method is, for example, “Experimental Chemistry Lecture 4 Solid State Physical Chemistry” edited by the Chemical Society of Japan, page 238 and below, magazine “Measurement Technology”, November 1977, page 86. And page 89, and the magazine “Coloring materials” 1970, 43, 579 and 580, etc., can be measured by a known method.

【0021】測定法の一例を示せば、結晶粒子径をD,
使用したX線の波長をλ(Cu-Kα線の場合は 1,542
Å),ブラッグ角をθ,純粋に結晶粒子の大きさに基づ
く回折線の拡がりをβとして、結晶粒子径Dは以下の式
から求められる。 D=0.9 λ/(βcos θ)
As an example of the measuring method, the crystal grain size is D,
The wavelength of the X-ray used is λ (1,542 for Cu-Kα ray)
Å), the Bragg angle is θ, and the spread of the diffraction line purely based on the size of the crystal grain is β, and the crystal grain diameter D is obtained from the following equation. D = 0.9 λ / (β cos θ)

【0022】また、回折線の拡がりβは次の方法で求め
られる。即ち、まず (101)面の回折プロフィルを、X線
源として40KV,100mAの条件で発生させたCu-Kα線を用い
て測定する。測定条件は、ゴニオメータースピード1/4/
分、チャートスピード 10mm/分、スリット幅はダイバー
ジエンススリット 1/2°、レシービングスリット0.3mm
、スキャタリングスリット 1/2°とする。
The spread β of the diffraction line is obtained by the following method. That is, first, the diffraction profile of the (101) plane is measured using a Cu-Kα ray generated under the conditions of 40 KV and 100 mA as an X-ray source. Measurement conditions are goniometer speed 1/4 /
Min, chart speed 10 mm / min, slit width is divergence slit 1/2 °, receiving slit 0.3 mm
, Scattering slit 1/2 °.

【0023】得られたプロフィルにつきバックグラウン
ドから回折ピークまでの高さの 1/2における幅B0を測定
する。図2に示すブラッグ角θの 2倍 2θに対する Kα
1 線、 Kα2 線のスプリット幅Δの関係から、 (101)面
の前記角度 2θに対するスプリット幅Δを読みとる。次
いで上記幅B0及びスプリット幅Δの値に基づいて図3に
示す比Δ/B0と比B/B0の関係から値B を求める。標準試
料として高純度シリコン(純度99.99 %)を用い、上記
スリット条件で各回折プロフィルを測定し半値幅b を求
める。これを角度2θに対してプロットし、該半値幅b
と角度 2θの関係を表すグラフを作る。 (101)面の角度
2θに相当する半値幅b から比b/B を求め、図4に示す
比b/B と比β/Bの関係から回折線の拡がりβを求めるこ
とができる。
For the profile obtained, the width B0 at half the height from the background to the diffraction peak is measured. Double Bragg angle θ shown in Fig. 2 Kα for 2θ
The split width Δ of the (101) plane with respect to the angle 2θ is read from the relationship between the split widths Δ of the 1st line and the Kα 2 line. Then, based on the values of the width B0 and the split width Δ, the value B 1 is obtained from the relationship between the ratio Δ / B0 and the ratio B / B0 shown in FIG. High-purity silicon (purity 99.99%) is used as a standard sample, and each diffraction profile is measured under the above slit condition to obtain the half-width b 1. This is plotted against the angle 2θ, and the half width b
Make a graph showing the relationship between and the angle 2θ. (101) face angle
The ratio b / B can be obtained from the half-width b corresponding to 2θ, and the spread β of the diffraction line can be obtained from the relationship between the ratio b / B and the ratio β / B shown in FIG.

【0024】[0024]

【実施例】図1の断面図に示すように、ソーダガラス製
基板1 上に蒸着時の酸素分圧を 3×10-3Torrに保って、
In-Sn の8:2 の合金を電子ビーム加熱によって膜厚 500
Åに成形した。基板1 の温度は常温とし、蒸着速度は 5
Å/sec とする。蒸着後、この基板1 を空気中において
300℃にて 1時間熱処理を施した。これによって半透明
状態であったIn-Sn 膜は酸化し、透明化し透明導電膜2
を形成すると同時に、該透明導電膜2 を構成する粒子は
直径 450Å程度まで成長していることがX線回折法によ
って確認された。
EXAMPLE As shown in the sectional view of FIG. 1, the partial pressure of oxygen during vapor deposition was kept at 3 × 10 −3 Torr on a soda glass substrate 1,
In-Sn 8: 2 alloy with electron beam heating to a film thickness of 500
Molded to Å. Substrate 1 temperature is room temperature and deposition rate is 5
Å / sec. After vapor deposition, this substrate 1 is placed in air
Heat treatment was performed at 300 ° C for 1 hour. As a result, the semi-transparent In-Sn film is oxidized and becomes transparent, and the transparent conductive film 2
It was confirmed by the X-ray diffraction method that the particles forming the transparent conductive film 2 were grown to a diameter of about 450 Å at the same time as the formation of the above.

【0025】透明導電膜2 を形成したこの基板1 をアル
カリ洗浄し、次に既知の触媒処理、活性化処理を施し
た。その後、次亜リン酸塩を還元剤として含む硫酸ニッ
ケルメッキ溶液を温度80℃に温め、前記基板1 を60秒間
該メッキ溶液に浸漬し、Ni-Pメッキ被膜3 を透明導電膜
2 上の所定位置に2500Åの膜厚で形成した。その後、塩
酸塩化第2鉄混合溶液で透明導電膜2 及びNi-Pメッキ被
膜3 を所定のパターンにエッチングし、さらに硝酸で不
要部分の該Ni-Pメッキ膜3 をエッチングして基板1 上に
導体4 を形成した。
The substrate 1 having the transparent conductive film 2 formed thereon was washed with an alkali and then subjected to known catalyst treatment and activation treatment. Then, a nickel sulfate plating solution containing hypophosphite as a reducing agent is warmed to a temperature of 80 ° C., the substrate 1 is immersed in the plating solution for 60 seconds, and the Ni-P plating film 3 is formed into a transparent conductive film.
A film having a thickness of 2500 Å was formed at a predetermined position on 2. After that, the transparent conductive film 2 and the Ni-P plated film 3 are etched into a predetermined pattern with a ferric chloride mixed solution, and the Ni-P plated film 3 in an unnecessary portion is etched with nitric acid to form a substrate 1. Conductor 4 was formed.

【0026】本実施例の透明導電膜2 とNi-Pメッキ被膜
3 との密着強度を90°ピール法で測定したところ、 1.5
kg/2×2mm の密着強度を示した。この値は実用上充分な
密着強度である。表1に、 >222<方向の結晶粒子径を変
えた透明導電膜とNi-Pメッキ膜とによる導体付き基板の
X線回折法による >222<方向の結晶粒子径(Å)及び90°
ピール法による密着強度(kg/2×2mm)を測定した結果を
示した。 >222<方向の結晶粒子径が 400Åの例では、い
ずれも 1.0kg/2×2mm 以下の密着強度しか得られず、実
用上不充分であった。
The transparent conductive film 2 and the Ni-P plating film of this embodiment
When the adhesion strength with 3 was measured by the 90 ° peel method, it was 1.5
The adhesion strength was kg / 2 x 2 mm. This value is a practically sufficient adhesion strength. Table 1 shows the crystal grain size (Å) in the> 222 <direction and 90 ° according to the X-ray diffraction method of the substrate with a conductor made of the transparent conductive film and the Ni-P plating film in which the crystal grain size in the> 222 <direction is changed.
The results of measuring the adhesion strength (kg / 2 × 2 mm) by the peel method are shown. In the examples where the crystal grain size in the> 222 <direction was 400Å, the adhesion strength of 1.0 kg / 2 × 2 mm or less was obtained in all cases, which was not practically sufficient.

【0027】[0027]

【表1】 [Table 1]

【0028】なお、表1の比較例1〜3は、夫々従来の
技術の欄で説明した3つの透明導電膜の作成方法の1〜
3により作成した。表1の例ではメッキ法による金属被
膜として無電解Ni-Pメッキにつき説明したが、他の金属
によるメッキ被膜でも、透明導電膜の種類により前記実
施例と同様の傾向を示した。
In Comparative Examples 1 to 3 of Table 1, the methods 1 to 3 for forming the three transparent conductive films described in the section of the prior art are described.
It was created by 3. In the example of Table 1, electroless Ni-P plating was described as the metal coating by the plating method, but the plating coatings of other metals also showed the same tendency as in the above embodiment depending on the type of the transparent conductive film.

【0029】[0029]

【発明の効果】以上説明したように、本発明の導体付き
基板においては、酸化インジウム又は酸化錫のいずれか
一方又は双方を主成分とする透明導電膜であって、X線
回折法における >222<方向の結晶粒子径が 400Å以上の
透明導電膜上に、金属被膜を施して導体を形成したの
で、透明導電膜と金属被膜との間に強い密着強度が得ら
れる。
As described above, the substrate with a conductor of the present invention is a transparent conductive film containing at least one of indium oxide and tin oxide as a main component, and has a> 222 in X-ray diffraction method. Since a conductor is formed by applying a metal coating on a transparent conductive film having a crystal grain size in the <direction of 400 Å or more, a strong adhesion strength can be obtained between the transparent conductive film and the metal coating.

【0030】さらに、透明導電膜を蒸着法又はスパッタ
法により形成することにより大量の研磨あるいはエッチ
ング等を必要とせず、従って透明導電膜の一部消失ある
いは抵抗値の上昇等の現象も発生しにくい。また、生産
性も処理表面の均一性も優れた透明導電膜が得られ、該
透明導電膜上に金属被膜を形成することにより、信頼
性、品質の均一性,生産性の高い導体が得られる。
Further, since the transparent conductive film is formed by the vapor deposition method or the sputtering method, a large amount of polishing or etching is not required, and therefore, the phenomenon such as the disappearance of a part of the transparent conductive film or the increase of the resistance value is unlikely to occur. . In addition, a transparent conductive film having excellent productivity and uniformity of the treated surface can be obtained, and by forming a metal film on the transparent conductive film, a conductor having high reliability, uniform quality, and high productivity can be obtained. .

【0031】本発明の導体付き基板は、透明導電膜上に
大きな密着力で金属被膜を形成してあるので、同一基板
上に透明導電膜を用いた表示部と他の電子回路を接続す
るための回路パターンを設けたいわゆるチップオングラ
スの液晶表示装置などの回路パターンとして用いた場合
に特に優れた効果が得られる。
In the substrate with a conductor of the present invention, the metal film is formed on the transparent conductive film with a large adhesive force, so that the display portion using the transparent conductive film and another electronic circuit are connected on the same substrate. Especially when used as a circuit pattern of a so-called chip-on-glass liquid crystal display device provided with the circuit pattern of FIG.

【0032】本発明は、本発明の効果を損しない範囲内
で種々の応用が可能である。
The present invention can be applied in various ways within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導体付き基板の一実施例の断面図。FIG. 1 is a sectional view of an embodiment of a substrate with a conductor of the present invention.

【図2】結晶粒子径の求め方を示すグラフ。FIG. 2 is a graph showing how to determine the crystal grain size.

【図3】結晶粒子径の求め方を示すグラフ。FIG. 3 is a graph showing how to determine a crystal grain size.

【図4】結晶粒子径の求め方を示すグラフ。FIG. 4 is a graph showing how to determine a crystal grain size.

【符号の説明】[Explanation of symbols]

1:基板 2:透明導電膜 3:Ni-Pメッキ被膜 4:導体 1: Substrate 2: Transparent conductive film 3: Ni-P plating film 4: Conductor

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】酸化インジウム又は酸化錫のいずれか一方
又は双方を主成分とする透明導電膜を有する基板の透明
導電膜の所要部分に金属被膜を形成した導体付き基板に
おいて、透明導電膜はX線回折法における >222<方向の
結晶粒子径が 400Å以上の膜であることを特徴とする導
体付き基板。
1. A substrate with a conductor, wherein a metal film is formed on a required portion of a transparent conductive film of a substrate having a transparent conductive film containing at least one of indium oxide and tin oxide as a main component. A substrate with a conductor, which is a film having a crystal grain size in the> 222 <direction in the line diffraction method of 400 Å or more.
【請求項2】透明導電膜は、所定の気圧の酸素雰囲気下
で金属インジウムもしくは金属錫又はインジウムと錫の
合金を蒸発又はスパッタさせて形成した特許請求の範囲
第1項記載の導体付き基板。
2. The substrate with a conductor according to claim 1, wherein the transparent conductive film is formed by evaporating or sputtering metallic indium or metallic tin or an alloy of indium and tin in an oxygen atmosphere at a predetermined atmospheric pressure.
【請求項3】透明導電膜は、該透明導電膜形成体上への
蒸着又はスパッタ直後は非晶質状態であり、その後加熱
により多結晶状態に焼成されて成る透明導電膜である特
許請求の範囲第2項記載の導体付き基板。
3. The transparent conductive film is a transparent conductive film which is in an amorphous state immediately after vapor deposition or sputtering on the transparent conductive film forming body and is then baked into a polycrystalline state by heating. A substrate with a conductor according to claim 2.
【請求項4】透明導電膜の膜厚は、 200Å〜2000Åであ
る特許請求の範囲第1項〜第3項のいずれか1項記載の
導体付き基板。
4. The substrate with a conductor according to claim 1, wherein the transparent conductive film has a film thickness of 200Å to 2000Å.
【請求項5】金属被膜は、金属メッキ被膜である特許請
求の範囲第1項記載の導体付き基板。
5. The substrate with a conductor according to claim 1, wherein the metal coating is a metal plating coating.
【請求項6】金属被膜はニッケルリンメッキ被膜である
特許請求の範囲第5項記載の導体付き基板。
6. The substrate with a conductor according to claim 5, wherein the metal coating is a nickel phosphorus plating coating.
【請求項7】金属被膜の膜厚は 500Åないし 1μmであ
る特許請求の範囲第1項又は第5項記載の導体付き基
板。
7. The substrate with a conductor according to claim 1 or 5, wherein the film thickness of the metal coating is 500Å to 1 μm.
【請求項8】金属被膜は2層以上の積層被膜である特許
請求の範囲第1項又は第5項記載の導体付き基板。
8. The substrate with a conductor according to claim 1, wherein the metal coating is a laminated coating having two or more layers.
【請求項9】金属被膜はニッケルリンメッキ被膜上に他
のメッキ被膜を積層した被膜である特許請求の範囲第8
項記載の導体付き基板。
9. The metal coating is a coating obtained by laminating another plating coating on a nickel phosphorus plating coating.
A substrate with a conductor according to the item.
【請求項10】ニッケルリンメッキ被膜上に積層される
メッキ被膜は、ニッケルボロン金属被膜又は銅メッキ被
膜又は金メッキ被膜である特許請求の範囲第9項記載の
導体付き基板。
10. The substrate with a conductor according to claim 9, wherein the plating film laminated on the nickel phosphorus plating film is a nickel boron metal film, a copper plating film or a gold plating film.
JP4129696A 1992-04-22 1992-04-22 Substrate with conductor Expired - Fee Related JPH0680565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129696A JPH0680565B2 (en) 1992-04-22 1992-04-22 Substrate with conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129696A JPH0680565B2 (en) 1992-04-22 1992-04-22 Substrate with conductor

Publications (2)

Publication Number Publication Date
JPH05151827A JPH05151827A (en) 1993-06-18
JPH0680565B2 true JPH0680565B2 (en) 1994-10-12

Family

ID=15015940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129696A Expired - Fee Related JPH0680565B2 (en) 1992-04-22 1992-04-22 Substrate with conductor

Country Status (1)

Country Link
JP (1) JPH0680565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782039A3 (en) 1995-12-27 1998-06-17 Canon Kabushiki Kaisha Display device and process for producing same
JP5988671B2 (en) * 2012-04-24 2016-09-07 グンゼ株式会社 Conductive substrate, touch panel, and method of manufacturing conductive substrate
KR20220066110A (en) 2019-09-30 2022-05-23 닛토덴코 가부시키가이샤 Transparent conductive film, laminate and method for manufacturing transparent conductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187804A (en) * 1981-05-13 1982-11-18 Hitachi Ltd Method of forming metallic film on transparent conductive film
JPS57187805A (en) * 1981-05-13 1982-11-18 Hitachi Ltd Method of forming metallic film on transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187804A (en) * 1981-05-13 1982-11-18 Hitachi Ltd Method of forming metallic film on transparent conductive film
JPS57187805A (en) * 1981-05-13 1982-11-18 Hitachi Ltd Method of forming metallic film on transparent conductive film

Also Published As

Publication number Publication date
JPH05151827A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
US4720401A (en) Enhanced adhesion between metals and polymers
JP3980643B2 (en) Method for coating substrate with titanium dioxide
Puchert et al. Postdeposition annealing of radio frequency magnetron sputtered ZnO films
EP1081718A1 (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
JPS61214312A (en) Composite body for electric contact member and making thereof
EP0187706B1 (en) A method of coating an organic substrate with a metal
JPH0234737A (en) Corrosion-resistant and heat-resistant aluminum-base alloy thin film and its manufacture
US3749658A (en) Method of fabricating transparent conductors
US3564565A (en) Process for adherently applying boron nitride to copper and article of manufacture
JPS6124102A (en) Conductor
JPH0931630A (en) Transparent electrically conductive film and its production
JP4137254B2 (en) Method for producing transparent conductive laminate
JPH0680565B2 (en) Substrate with conductor
KR20010015222A (en) Fabrication and bonding of copper and copper alloy sputtering targets
JPH09201900A (en) Laminate
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPS61183433A (en) Thin film of aluminum alloy and its production
KR101211559B1 (en) A method for preparing a electromagnetic interference film
JPS63185052A (en) Tantalum metal thin film circuit
Dearden Electroless Plating–Its Applications in Resistor Technology
JP3276415B2 (en) Method and apparatus for forming ceramic film
Jeppesen et al. Prenucleation of lead films with copper, gold, and silver
JPH0767003B2 (en) Copper / organic insulation film wiring board manufacturing method
JPS6013244B2 (en) Method for manufacturing a molded product having a transparent conductive film
JPS6130018A (en) Thick film capacitor and method of producing same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961029

LAPS Cancellation because of no payment of annual fees