JPH0680468A - Partially stabilized zirconia sintered compact and its production - Google Patents

Partially stabilized zirconia sintered compact and its production

Info

Publication number
JPH0680468A
JPH0680468A JP4230353A JP23035392A JPH0680468A JP H0680468 A JPH0680468 A JP H0680468A JP 4230353 A JP4230353 A JP 4230353A JP 23035392 A JP23035392 A JP 23035392A JP H0680468 A JPH0680468 A JP H0680468A
Authority
JP
Japan
Prior art keywords
sintered body
partially stabilized
stabilized zirconia
strength
zirconia sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4230353A
Other languages
Japanese (ja)
Other versions
JP3176143B2 (en
Inventor
Masayuki Sakashita
正幸 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23035392A priority Critical patent/JP3176143B2/en
Publication of JPH0680468A publication Critical patent/JPH0680468A/en
Application granted granted Critical
Publication of JP3176143B2 publication Critical patent/JP3176143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a partially stabilized zirconia sintered compact having >=70kg/mm<2> flexural strength, >=11MN/m<3> breakage toughness and >=400 deg.C thermal shock resistance and excellent in all of strength, toughness and thermal shock resistance. CONSTITUTION:In this partially stabilized zirconia sintered compact using MgO as a stabilizer, MgO is contained in an amount of 3.0-3.8wt.% and total amount of monoclinic zirconia crystal in a sintered compact is 10-40mol% and void ratio of the sintered compact is 1.0-2.5%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は伸線用部材や圧延部材、
あるいは合金の鋳造用部材などに用いられる、耐熱衝撃
性、強度に優れた部分安定化ジルコニア焼結体およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a wire drawing member and a rolling member,
Alternatively, the present invention relates to a partially stabilized zirconia sintered body having excellent thermal shock resistance and strength, which is used for alloy casting members and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、Y2 3 、MgO、CaOな
どの安定化剤を添加した部分安定化ジルコニア焼結体が
一般的に使用されており、特に耐熱衝撃性を高めるため
にMgOで安定化したものが用いられている。
2. Description of the Related Art Conventionally, a partially stabilized zirconia sintered body to which a stabilizer such as Y 2 O 3 , MgO or CaO is added has been generally used. In particular, MgO is added to improve thermal shock resistance. Stabilized ones are used.

【0003】このMgO安定化ジルコニア焼結体として
は、例えば特公平3−53271号公報や特公平3−6
4468号公報に示されるように、7〜11モル%のM
gOを含み、単斜晶系のジルコニア結晶を55〜85モ
ル%含ませたものが主であった。このように焼結体中の
全結晶相のうち、単斜晶系のジルコニア結晶を比較的過
剰に析出させて、強度や耐熱衝撃性を向上させることが
一般的であった。
As this MgO-stabilized zirconia sintered body, for example, Japanese Examined Patent Publication No. 3-53271 and Japanese Examined Patent Publication 3-6.
As disclosed in Japanese Patent No. 4468, 7-11 mol% of M
Most of them contained gO and contained 55 to 85 mol% of monoclinic zirconia crystals. As described above, it has been common to precipitate monoclinic zirconia crystals in a relatively excessive amount out of all the crystal phases in the sintered body to improve the strength and the thermal shock resistance.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
に単斜晶系ジルコニア結晶の総量を増やすと、焼結体中
のマイクロクラックが増加し、また応力誘起による正方
晶から単斜晶への相変態機構が小さくなることから、焼
結体の機械的強度や破壊靭性が低下し、伸線用部材や圧
延部材等のように高い強度を必要とされる用途には不適
であるという問題点があった。
However, when the total amount of monoclinic zirconia crystals is increased as described above, microcracks in the sintered body are increased, and stress-induced tetragonal to monoclinic crystals are formed. Since the phase transformation mechanism becomes smaller, the mechanical strength and fracture toughness of the sintered body will decrease, making it unsuitable for applications requiring high strength such as wire drawing members and rolled members. was there.

【0005】そこで、単斜晶系ジルコニア結晶の含有量
を低く抑え、強度や耐熱衝撃性を向上させた部分安定化
ジルコニア焼結体が特公昭58−27230公報に示さ
れている。これは2.8〜4.0重量%のMgOを含有
し、単斜晶系ジルコニア結晶の総量を0.5〜20重量
%としたものであるが、特性を向上させるために原料の
ジルコニア粉末としてSiO2 を0.03重量%以下し
か含有しないものを用いる必要があり、そのため原料粉
末の製造工程においてSiO2 を除去する等といった特
殊な工程が必要となって、製造工程が煩雑であるという
不都合があった。
Therefore, Japanese Patent Publication 58-27230 discloses a partially stabilized zirconia sintered body in which the content of monoclinic zirconia crystals is kept low and the strength and thermal shock resistance are improved. This contains 2.8 to 4.0% by weight of MgO and the total amount of monoclinic zirconia crystals is set to 0.5 to 20% by weight, but in order to improve the characteristics, the raw material zirconia powder is used. Therefore, it is necessary to use a material containing not more than 0.03% by weight of SiO 2, and therefore a special process such as removing SiO 2 is required in the manufacturing process of the raw material powder, which makes the manufacturing process complicated. There was an inconvenience.

【0006】これらに対し、本発明は耐熱衝撃性、強度
等に優れたMgO部分安定化ジルコニア焼結体を簡単な
製造工程で得ることを目的とする。
On the other hand, an object of the present invention is to obtain a MgO partially stabilized zirconia sintered body excellent in thermal shock resistance, strength and the like by a simple manufacturing process.

【0007】[0007]

【課題を解決するための手段】本発明は、安定化剤であ
るMgOを3.0〜3.8重量%含有し、単斜晶系のジ
ルコニア結晶の総量を10〜40モル%とした部分安定
化ジルコニア焼結体を提供することを特徴とする。
According to the present invention, a portion containing 3.0 to 3.8% by weight of MgO as a stabilizer and a total amount of monoclinic zirconia crystals of 10 to 40% by mole is used. It is characterized by providing a stabilized zirconia sintered body.

【0008】また、本発明の部分安定化ジルコニア焼結
体は、MgOを3.0〜3.8重量%含有するセラミッ
ク原料を所定形状に成形した後、最高焼成温度1640
〜1700℃で、冷却速度を80〜150℃/時として
焼成することによって得ることができる。
In the partially stabilized zirconia sintered body of the present invention, after the ceramic raw material containing 3.0 to 3.8% by weight of MgO is formed into a predetermined shape, the maximum firing temperature 1640 is obtained.
It can be obtained by firing at ˜1700 ° C. and a cooling rate of 80 to 150 ° C./hour.

【0009】本発明においてMgOの含有量を3.0〜
3.8重量%としたのは、3.0重量%未満であると単
斜晶系ジルコニア結晶の総量が40モル%より多くなっ
て曲げ強度や破壊靭性の低下が生じ、逆にMgOの含有
量が3.8重量%より多いと単斜晶系ジルコニア結晶の
総量が極端に少なくなって破壊靭性および耐熱衝撃性が
低下するためである。
In the present invention, the content of MgO is 3.0 to.
The amount of 3.8% by weight means that if the amount is less than 3.0% by weight, the total amount of monoclinic zirconia crystals is more than 40 mol% and the bending strength and the fracture toughness are deteriorated. This is because if the amount is more than 3.8% by weight, the total amount of monoclinic zirconia crystals becomes extremely small, and the fracture toughness and thermal shock resistance deteriorate.

【0010】また、本発明の部分安定化ジルコニア焼結
体は、MgO以外にAl2 3 、SiO2 などの成分
を、原料中の不純物または添加物として含むことができ
る。特にSiO2 はZrO2 と反応して珪酸ジルコニウ
ムを形成し、主に結晶粒界に存在してジルコニア結晶の
粒成長を抑制するため0.1〜0.5重量%の範囲で含
有することが好ましい。
Further, the partially stabilized zirconia sintered body of the present invention can contain components such as Al 2 O 3 and SiO 2 in addition to MgO as impurities or additives in the raw materials. In particular, SiO 2 reacts with ZrO 2 to form zirconium silicate, and mainly exists in the grain boundaries to suppress grain growth of zirconia crystals, so that SiO 2 is contained in the range of 0.1 to 0.5 wt%. preferable.

【0011】さらに、本発明の部分安定化ジルコニア焼
結体において、単斜晶系ジルコニア結晶の総量を10〜
40モル%としたのは、焼結体に対し過剰なマイクロク
ラックの発生を抑制し、かつ適度な相変態機構を発現さ
せるために、上記範囲内とすることが好ましいためであ
る。そして、単斜晶系ジルコニア結晶の析出量を上記範
囲内に制御するためには、MgOの含有量を上記範囲内
とし、かつ焼成時の最高温度を1640〜1700℃の
範囲に設定するとともに、冷却速度を80〜150℃と
すれば良い。なお、本発明の部分安定化ジルコニア焼結
体において、単斜晶系ジルコニア結晶以外は、正方晶お
よび/または立方晶のジルコニア結晶からなる。
Further, in the partially stabilized zirconia sintered body of the present invention, the total amount of monoclinic zirconia crystals is 10 to 10.
The content of 40 mol% is preferably within the above range in order to suppress the generation of excessive microcracks in the sintered body and to develop an appropriate phase transformation mechanism. Then, in order to control the precipitation amount of the monoclinic zirconia crystal within the above range, the content of MgO is set within the above range, and the maximum temperature during firing is set in the range of 1640 to 1700 ° C., The cooling rate may be 80 to 150 ° C. The partially stabilized zirconia sintered body of the present invention is composed of tetragonal and / or cubic zirconia crystals other than monoclinic zirconia crystals.

【0012】また、ジルコニア焼結体の結晶粒径も強
度、靭性に大きく影響を及ぼすものである。そして、最
高焼成温度が1700℃より高い場合、平均結晶粒径が
30μm以上と粗大になりすぎて、強度、靭性の低下を
招き、逆に1640℃より低い場合は、緻密化が不十分
で平均結晶粒径が5μmより小さくなって、強度、靭性
が低下する。そのため、本発明の部分安定化ジルコニア
焼結体の平均結晶粒径は、5〜30μm の範囲にあるの
が好ましい。
The crystal grain size of the zirconia sintered body also has a great influence on the strength and toughness. When the maximum firing temperature is higher than 1700 ° C., the average crystal grain size becomes too coarse as 30 μm or more, resulting in deterioration of strength and toughness. On the contrary, when it is lower than 1640 ° C., the densification is insufficient and the average The crystal grain size becomes smaller than 5 μm, and the strength and toughness decrease. Therefore, the average crystal grain size of the partially stabilized zirconia sintered body of the present invention is preferably in the range of 5 to 30 μm.

【0013】さらに、本発明のジルコニア焼結体におい
て、ボイド率は、耐熱衝撃性、耐磨耗性に大きく影響す
るものであり、本発明においては部分安定化ジルコニア
焼結体のボイド率を1.0〜2.5%とすることで耐熱
衝撃性を向上したものである。即ち、強度、靭性、熱衝
撃のいずれも満足させるためには、ボイド率は上記範囲
内に有らねば成らず、適切な量のボイドを焼結体中に均
一分散させることで、熱衝撃が加わった時の衝撃緩和に
大きく寄与し、耐熱衝撃性を向上させるとともに、強
度、破壊靭性の向上をもたらすことができる。
Further, in the zirconia sintered body of the present invention, the void ratio has a great influence on the thermal shock resistance and abrasion resistance. In the present invention, the void ratio of the partially stabilized zirconia sintered body is 1 The thermal shock resistance is improved by adjusting the content to be 0 to 2.5%. That is, in order to satisfy all of the strength, toughness, and thermal shock, the void ratio must be within the above range, and by uniformly dispersing an appropriate amount of voids in the sintered body, thermal shock It greatly contributes to impact relaxation when added, and can improve thermal shock resistance and strength and fracture toughness.

【0014】なお、ボイド率の制御は、原料粉末の粉砕
粒度を調整する方法、焼成条件を調整する方法、あるい
は所定の粒径の有機物を原料粉末に添加して焼成時に焼
失させる方法などで行うことができる。例えば、粉砕粒
度を調整する場合、微粉砕するほど焼結体のボイドを少
なくできるが、過剰に微粉砕を行うとジルコニア粒子の
安定化機構が弱まり、焼結後単斜晶系ジルコニア結晶が
過剰に増え、曲げ強度や破壊靭性が低下してしまう。ま
た、この場合焼結体中のボイドが著しく低減するため、
熱変化を伴う応力が焼結体に加わった時に熱衝撃を緩和
することができず破壊の原因となる。逆に粉砕量が少な
く粗大粒を含む場合は、焼結不良を生じ、これもまた曲
げ強度、破壊靭性の低下を引き起こす。そのため、好ま
しくは粉砕粒度の目安として中心粒径で0.6〜1.2
μm の範囲とすれば良い。
The void ratio is controlled by a method of adjusting the crushed particle size of the raw material powder, a method of adjusting the firing conditions, or a method of adding an organic substance having a predetermined particle diameter to the raw material powder and burning it off during firing. be able to. For example, in the case of adjusting the pulverization particle size, it is possible to reduce the voids of the sintered body by performing fine pulverization, but excessive fine pulverization weakens the stabilization mechanism of the zirconia particles, resulting in excessive monoclinic zirconia crystals after sintering. To increase the bending strength and fracture toughness. Further, in this case, since voids in the sintered body are significantly reduced,
When a stress accompanied by a thermal change is applied to the sintered body, the thermal shock cannot be relaxed, which causes destruction. On the contrary, when the pulverized amount is small and coarse particles are contained, sintering failure occurs, which also causes a decrease in bending strength and fracture toughness. Therefore, the median particle size is preferably 0.6 to 1.2 as a measure of the crushed particle size.
It may be in the μm range.

【0015】そして、上記条件を満たす部分安定化ジル
コニア焼結体は、曲げ強度70kg/mm2 以上、破壊
靭性が11MN/m3/2 以上、耐熱衝撃性ΔTが400
℃以上とすることができる。
The partially stabilized zirconia sintered body satisfying the above conditions has a bending strength of 70 kg / mm 2 or more, a fracture toughness of 11 MN / m 3/2 or more, and a thermal shock resistance ΔT of 400.
It can be set to ℃ or higher.

【0016】[0016]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0017】実施例1 表1に示すように、ZrO2 粉末に2.0〜4.0重量
%のMgOを添加し、ボールミル等で粉砕を行って所定
の粒度に調整した後、成型助剤としてポリビニルアルコ
ール等の有機バインダーを4〜8%程度添加し、スプレ
ードライヤーにて乾燥造粒した。次に、得られた造粒粉
末を成型圧力1t/cm2 以上の圧力でプレス成型し、
幅6mm、厚み5mm、長さ60mmの角棒を得、これ
を大気炉中1660℃で焼成を行った。
Example 1 As shown in Table 1, ZrO 2 powder was added with 2.0 to 4.0% by weight of MgO and pulverized with a ball mill or the like to adjust to a predetermined particle size, and then a molding aid. As an organic binder such as polyvinyl alcohol was added at about 4 to 8%, and the mixture was dried and granulated with a spray dryer. Next, the obtained granulated powder is press-molded at a molding pressure of 1 t / cm 2 or more,
A square bar having a width of 6 mm, a thickness of 5 mm and a length of 60 mm was obtained, and this was fired at 1660 ° C. in an atmospheric furnace.

【0018】得られた焼結体を幅4mm、厚み3mmに
研磨加工し、曲げ強度、破壊靭性、見掛比重、単斜晶量
を測定した。なお、曲げ強度はJISR1601に基づ
き常温3点曲げ法にて、破壊靭性K1Cは圧痕法(I.
F.法)にて、単斜晶量はX線回折装置にて2θ=20
°〜40°の範囲を測定し、単斜晶ジルコニア11バー
1面、111面のピ−ク強度と立方晶ジルコニア111
面のピ−ク強度から数1に従って算出した。
The obtained sintered body was polished into a width of 4 mm and a thickness of 3 mm, and bending strength, fracture toughness, apparent specific gravity and monoclinic amount were measured. The bending strength is determined by the room temperature three-point bending method based on JISR1601, and the fracture toughness K 1C is determined by the indentation method (I.
F. Method), the monoclinic crystal amount is 2θ = 20 by an X-ray diffractometer.
Measured in the range of 40 ° to 40 °, the peak strength of the monoclinic zirconia 11 bar 1 and 111 planes and the cubic zirconia 111 were measured.
It was calculated from the peak intensity of the surface according to Equation 1.

【0019】[0019]

【数1】 [Equation 1]

【0020】表1よりNo.1、2はMgO含有量が
3.0重量%よりも少ないために安定化されにくく、単
斜晶ジルコニア総量が多くなり、強度、靭性ともに低い
値となっている。逆にNo.7、8はMgO含有量が
3.8重量%よりも多いために安定化されすぎて単斜晶
ジルコニア量が減少し、相変態による強度強化機構が発
現せず強度、靭性ともに低くなっている。
From Table 1, No. Since Nos. 1 and 2 have a MgO content of less than 3.0% by weight, they are difficult to stabilize, the total amount of monoclinic zirconia is large, and both strength and toughness are low. Conversely, No. Nos. 7 and 8 were too stable because the MgO content was more than 3.8% by weight, and the amount of monoclinic zirconia decreased, and the strength strengthening mechanism due to phase transformation did not appear and both strength and toughness were low. .

【0021】これらに対し、本発明実施例であるNo.
3〜6は、いずれも単斜晶ジルコニア総量が10〜40
モル%の範囲内であり、曲げ強度70kg/mm2
上、破壊靭性11MN/m3/2 以上と共に高い数値を示
すことが判る。したがって強度、破壊靭性を満足させる
にはMgOの含有量は3.0〜3.8重量%の範囲に有
ることが必要である。
On the other hand, in No. 1 which is the embodiment of the present invention.
3 to 6 all have a monoclinic zirconia total amount of 10 to 40
It is found that the content is in the range of mol%, and the bending strength is 70 kg / mm 2 or more and the fracture toughness is 11 MN / m 3/2 or more, and high values are shown. Therefore, in order to satisfy the strength and fracture toughness, the content of MgO must be in the range of 3.0 to 3.8% by weight.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 実施例1中のNo.5に示す組成のものを表2で示すさ
まざまな焼成温度、冷却速度で焼成し、得られた焼結体
の各特性を表2に示す。なお、耐熱衝撃性の目安となる
ΔTは、焼結体を所定の温度で1時間時効処理した後に
20℃の水中に投下し、強度劣化の見られた温度差をΔ
Tとした。
Example 2 No. 1 in Example 1 Table 2 shows the respective properties of the sintered body obtained by firing the composition shown in Table 5 at various firing temperatures and cooling rates shown in Table 2. The ΔT, which is a measure of thermal shock resistance, is the temperature difference in which strength deterioration is observed when the sintered body is aged at a predetermined temperature for 1 hour and then dropped in water at 20 ° C.
T.

【0024】表2よりNo.9は焼成温度が低いために
焼結不良が原因で強度、靭性が低い結果となった。また
No.10、14は冷却速度が緩慢、あるいは迅速すぎ
るために単斜晶総量が適正な範囲を逸脱し、ΔTが低く
なった。さらに、No.15は焼成温度が高いために析
出する単斜晶総量が少なく、結晶粒径も粗大化している
ために強度、靭性、ΔTいずれも悪い結果となった。
From Table 2, No. Since No. 9 had a low firing temperature, it resulted in low strength and toughness due to poor sintering. In addition, No. In Nos. 10 and 14, since the cooling rate was slow or too fast, the total amount of monoclinic crystals deviated from the proper range, and ΔT was lowered. Furthermore, No. In No. 15, the total amount of monoclinic crystals precipitated due to the high firing temperature was small, and the crystal grain size was also coarsened, so that all the results were poor in strength, toughness, and ΔT.

【0025】これらに対し、本発明実施例であるNo.
11〜13は曲げ強度70kg/mm2 以上、破壊靭性
11MN/m3/2 以上、耐熱衝撃性ΔTが400℃以上
と優れていた。
On the other hand, in No. 1 which is the embodiment of the present invention.
Nos. 11 to 13 were excellent in bending strength of 70 kg / mm 2 or more, fracture toughness of 11 MN / m 3/2 or more, and thermal shock resistance ΔT of 400 ° C. or more.

【0026】[0026]

【表2】 [Table 2]

【0027】実施例3 さらに、表3に示すような種々のボイド率に調整した焼
結体の強度、靭性、見掛比重、ΔTの各特性を測定し
た。なお、ボイド率の測定は、鏡面加工を施した試料表
面のボイドを画像解析装置を用い、顕微鏡にて拡大した
測定視野に於けるボイドの占有率で表示した。測定面積
は300μm×300μmの面積を10ケ所測定し、そ
れを平均演算して求めた。
Example 3 Further, the respective properties of strength, toughness, apparent specific gravity and ΔT of the sintered body adjusted to various void ratios as shown in Table 3 were measured. In the measurement of the void ratio, the voids on the surface of the sample that was mirror-finished were displayed by the occupancy ratio of the voids in the measurement field enlarged by a microscope using an image analyzer. The measurement area was obtained by measuring 10 areas of 300 μm × 300 μm and averaging them.

【0028】表3よりNo.16は、原料粉末の微粉砕
を行いボイド率を減らしたものであるが、焼結体中のボ
イドが少ないために熱衝撃緩和効果が小さく、ΔTは低
くなった。またNo.19は粉砕を粗めで抑えボイド率
を増加させたものであるが、応力が印加された時に破壊
源となり得る大きいボイドが存在するために強度が著し
く低い結果となった。これらに対し、本発明実施例であ
るNo.17、18はいずれも曲げ強度70kg/mm
2 以上、破壊靭性11MN/m3/2 以上、耐熱衝撃性Δ
Tが400℃以上と優れた結果を示した。
From Table 3, No. In No. 16, the raw material powder was finely pulverized to reduce the void ratio, but the thermal shock absorbing effect was small and ΔT was low because the voids in the sintered body were small. In addition, No. In No. 19, the crushing was suppressed coarsely and the void ratio was increased. However, the strength was remarkably low due to the existence of large voids that could be fracture sources when stress was applied. On the other hand, the No. Both 17 and 18 have a bending strength of 70 kg / mm
2 or more, fracture toughness 11 MN / m 3/2 or more, thermal shock resistance Δ
T was 400 ° C. or more, which was an excellent result.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】叙上のように本発明によれば、MgOを
安定化剤とする部分安定化ジルコニア焼結体において、
MgO含有量を3.0〜3.8重量%とし、かつ焼結体
中の単斜晶系ジルコニア結晶の総量が10〜40モル%
で、かつ焼結体のボイド率を1.0〜2.5%としたこ
とによって、曲げ強度が70kg/mm2 以上、破壊靭
性が11MN/m3/2 以上、耐熱衝撃性がΔT400℃
以上の、強度、靭性、耐熱衝撃性共に優れた部分安定化
ジルコニア焼結体を得ることができる。そして、本発明
の部分安定化ジルコニア焼結体は、耐熱衝撃性および強
度が高いことから、特に伸線用部材、圧延部材、あるい
は合金の鋳造部材などとして、例えばキャプスタン、圧
延ロール、鋳造ノズル、曲げロール、引き抜きダイス、
しぼりブッシュ、加工用ヘラ、粉砕機、粉砕用ビーズ、
ボールバルブなどに好適に使用することができる。
As described above, according to the present invention, in a partially stabilized zirconia sintered body containing MgO as a stabilizer,
The MgO content is 3.0 to 3.8 wt%, and the total amount of monoclinic zirconia crystals in the sintered body is 10 to 40 mol%.
And the void ratio of the sintered body is 1.0 to 2.5%, the bending strength is 70 kg / mm 2 or more, the fracture toughness is 11 MN / m 3/2 or more, and the thermal shock resistance is ΔT 400 ° C.
The partially stabilized zirconia sintered body having excellent strength, toughness, and thermal shock resistance can be obtained. Since the partially stabilized zirconia sintered body of the present invention has high thermal shock resistance and strength, it is particularly useful as a wire drawing member, a rolling member, or an alloy casting member, such as a capstan, a rolling roll, or a casting nozzle. , Bending rolls, drawing dies,
Squeezing bush, spatula for processing, crusher, beads for crushing,
It can be suitably used for ball valves and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ZrO2 を主成分とし安定化剤としてMg
Oを含む部分安定化ジルコニア焼結体であって、上記M
gOの含有量が3.0〜3.8重量%であり、単斜晶系
のジルコニア結晶を10〜40モル%含むことを特徴と
する部分安定化ジルコニア焼結体。
1. A main component of ZrO 2 is Mg as a stabilizer.
A partially stabilized zirconia sintered body containing O, comprising:
A partially stabilized zirconia sintered body having a gO content of 3.0 to 3.8% by weight and containing 10 to 40 mol% of monoclinic zirconia crystals.
【請求項2】ZrO2 を主成分とし、安定化剤としてM
gOを3.0〜3.8重量%含有するセラミック原料を
所定形状に成形した後、最高焼成温度を1640〜17
00℃とし、かつ冷却速度を80〜150℃/時として
焼成する工程からなる部分安定化ジルコニア焼結体の製
造方法。
2. ZrO 2 as a main component and M as a stabilizer
After the ceramic raw material containing 3.0 to 3.8% by weight of gO was molded into a predetermined shape, the maximum firing temperature was 1640 to 17
A method for producing a partially stabilized zirconia sintered body, which comprises a step of firing at 00 ° C. and a cooling rate of 80 to 150 ° C./hour.
JP23035392A 1992-08-28 1992-08-28 Partially stabilized zirconia sintered body Expired - Fee Related JP3176143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23035392A JP3176143B2 (en) 1992-08-28 1992-08-28 Partially stabilized zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23035392A JP3176143B2 (en) 1992-08-28 1992-08-28 Partially stabilized zirconia sintered body

Publications (2)

Publication Number Publication Date
JPH0680468A true JPH0680468A (en) 1994-03-22
JP3176143B2 JP3176143B2 (en) 2001-06-11

Family

ID=16906533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23035392A Expired - Fee Related JP3176143B2 (en) 1992-08-28 1992-08-28 Partially stabilized zirconia sintered body

Country Status (1)

Country Link
JP (1) JP3176143B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264730A (en) * 1999-03-15 2000-09-26 Toshiba Corp Zirconia sintered compact and its production
JP2010234436A (en) * 2009-03-31 2010-10-21 Taiheiyo Cement Corp Capstan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264730A (en) * 1999-03-15 2000-09-26 Toshiba Corp Zirconia sintered compact and its production
JP2010234436A (en) * 2009-03-31 2010-10-21 Taiheiyo Cement Corp Capstan

Also Published As

Publication number Publication date
JP3176143B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
US3620781A (en) Partially stabilized zirconia refractory
JP4195518B2 (en) Zirconia-containing alumina sintered body
US5401450A (en) β-silicon nitride sintered body and method of producing same
KR910002174B1 (en) Magnesia partially-stabiltized zirconia
JPH0472769B2 (en)
JPH0680468A (en) Partially stabilized zirconia sintered compact and its production
JP3153637B2 (en) Method for producing calcia clinker
JP3013372B2 (en) Zircon sintered body and method for producing the same
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP3268020B2 (en) Method for producing silicon nitride powder
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
JPS647030B2 (en)
JP2002316869A (en) Roller for roller hearth kiln consisting of heat resistant mullite sintered compact
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JP4568979B2 (en) Cordierite dense sintered body and manufacturing method thereof
JP3177534B2 (en) Spinel ultrafine powder and production method thereof
JP6989722B1 (en) Mullite sintered body with excellent heat resistance and durability and its manufacturing method
JP3180971B2 (en) Zirconia ceramics and method for producing the same
JP3566323B2 (en) Crusher components
JP2844908B2 (en) Composite sintered body and method for producing the same
JPH07286166A (en) Sintered abrasive grain composed of alumina-zirconia and its production
JPH05319910A (en) Ceramic composite material and its production
KR910002175B1 (en) Magnesia partially-stabilized zirconia
JPH06100358A (en) Production of mullite sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees