JPH0680110B2 - Continuous production method of polycarbonate-boner oligomer - Google Patents

Continuous production method of polycarbonate-boner oligomer

Info

Publication number
JPH0680110B2
JPH0680110B2 JP61109539A JP10953986A JPH0680110B2 JP H0680110 B2 JPH0680110 B2 JP H0680110B2 JP 61109539 A JP61109539 A JP 61109539A JP 10953986 A JP10953986 A JP 10953986A JP H0680110 B2 JPH0680110 B2 JP H0680110B2
Authority
JP
Japan
Prior art keywords
reaction
phosgene
oligomer
concentration
dihydric phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61109539A
Other languages
Japanese (ja)
Other versions
JPS62267324A (en
Inventor
博樹 岡山
敏範 北地
治 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP61109539A priority Critical patent/JPH0680110B2/en
Publication of JPS62267324A publication Critical patent/JPS62267324A/en
Publication of JPH0680110B2 publication Critical patent/JPH0680110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二価フェノールのアルカリ水溶液とホスゲンの
反応によるポリカーボネートオリゴマーの製造方法に関
し、さらに詳しくは該反応を、反応塔中で、水相に対し
て特定容積比の有機溶媒を用い、冷却されたオリゴマー
化反応生成混合液を循環供給することにより、適正な条
件で行わしめる連続的製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polycarbonate oligomer by the reaction of an aqueous alkaline solution of a dihydric phenol with phosgene, and more specifically, the reaction is carried out in an aqueous phase in a reaction tower. On the other hand, the present invention relates to a continuous production method in which an organic solvent having a specific volume ratio is used and a cooled oligomerization reaction product mixture is circulated and supplied under appropriate conditions.

[従来技術] 二価フェノールのアルカリ水溶液とホスゲンの反応によ
ってポリカーボネートオリゴマーを連続的に製造する方
法は公知である。
[Prior Art] A method for continuously producing a polycarbonate oligomer by reacting an aqueous alkaline solution of a dihydric phenol with phosgene is known.

小型の撹拌機付き反応器を直列に連続したカスケード方
式は、反応熱の除去が比較的容易であるが、二価フェノ
ールの稀薄なアルカリ水溶液にホスゲンを導入反応せし
めるためにホスゲンの分解が多くなる問題がある。原料
を充填塔を通過せしめる方法(特公昭41-4352号公報)
は反応熱の除去が困難であり、反応混合液の流動が均一
な定常状態になりにくいので、局部昇温が起きやすく、
そのためオリゴマーの性質が一定しないという問題があ
る。
The cascade method in which small reactors with a stirrer are connected in series makes it relatively easy to remove the heat of reaction, but the decomposition of phosgene increases due to the introduction and reaction of phosgene in a dilute phenol dilute aqueous alkaline solution. There's a problem. Method of passing raw materials through a packed tower (Japanese Patent Publication No. 41-4352)
Is difficult to remove the heat of reaction and the flow of the reaction mixture does not easily reach a uniform steady state, so local temperature rise easily occurs,
Therefore, there is a problem that the properties of the oligomer are not constant.

管型反応器内で、噴霧状の二価フェノールのアルカリ水
溶液と溶剤に気相のホスゲンを接触させ、反応熱を溶剤
の蒸発熱によって除去する方法(特公昭46-21460号公
報,特公昭56-44091号公報)は、反応が溶剤の沸点近く
の温度で行われるためにホスゲンの分解が多く、重合時
の再現性がよくないという問題がある。また、蒸発した
溶剤を凝縮液化せしめるために反応管が長くなることも
欠点である。これを解決するために反応管に冷却ジャケ
ットを付ける方法(特開昭58-108225号公報,特開昭58-
108226号公報)が提案されているが、冷却を効率的に行
うためには管径を細くする必要があり、そうすると反応
管内の霧滴とガスの反応が円滑に進行し難くなるという
ジレンマを生ずる。
A method of contacting vaporized phosgene in an atomized alkaline aqueous solution of a dihydric phenol and a solvent in a tubular reactor and removing the heat of reaction by the heat of evaporation of the solvent (JP-B-46-21460, JP-B-56) However, since the reaction is carried out at a temperature near the boiling point of the solvent, phosgene is decomposed a lot and the reproducibility during polymerization is not good. Another problem is that the reaction tube becomes long because the evaporated solvent is condensed and liquefied. To solve this, a method of attaching a cooling jacket to the reaction tube (Japanese Patent Laid-Open No. 58-108225 and Japanese Patent Laid-Open No. 58-108225)
No. 108226 gazette) has been proposed, but it is necessary to reduce the tube diameter in order to perform efficient cooling, which causes a dilemma that it becomes difficult for the reaction of fog droplets and gas in the reaction tube to proceed smoothly. .

二価フェノールのアルカリ水溶液とホスゲンの有機溶剤
溶液を仕込管内で初期反応を行わしめ、ついで大型の反
応槽内で後期反応を行わしめる方法(特公昭54-40280号
公報)も初期反応の温度維持が困難であり、ホスゲンや
クロロ蟻酸エステルの分解を避けることが難しい。
Maintaining the temperature of the initial reaction is also a method (Japanese Patent Publication No. 54-40280) in which an alkaline aqueous solution of a dihydric phenol and an organic solvent solution of phosgene are initially reacted in a charging pipe and then the latter reaction is carried out in a large reaction tank. Is difficult to avoid, and it is difficult to avoid decomposition of phosgene or chloroformate.

二価フェノールのアルカリ水溶液を0℃以下にして反応
器に仕込む方法(特開昭55-52321号公報)は、有機溶剤
として常用される塩化メチレンを使用したときは反応混
合液がシャーベット状になるので管型反応塔や充填塔を
使用する反応には適当でない。
In the method of charging an alkaline aqueous solution of a dihydric phenol to 0 ° C. or lower and charging it to a reactor (Japanese Patent Laid-Open No. 55-52321), when methylene chloride which is commonly used as an organic solvent is used, the reaction mixture becomes sherbet-like. Therefore, it is not suitable for a reaction using a tubular reaction column or a packed column.

かかる反応熱の除去方法として、冷却した高分子量の反
応混合物を再供給する高分子線状ポリカーボネートの連
続製造法(特開昭47-14297号公報)が提案されている。
しかしながら、この方法はホスゲンを他の不活性ガスで
希釈して仕込むために、反応生成物を気液分離せねばな
らず、またアミンが存在し、かつ系が乳化状態となり易
いので、ホスゲンやクロロ蟻酸エステルの分解がむしろ
大きくなる問題がある。
As a method for removing such heat of reaction, a continuous production method of polymer linear polycarbonate in which a cooled high molecular weight reaction mixture is re-supplied (Japanese Patent Laid-Open No. 47-14297) has been proposed.
However, in this method, since phosgene is diluted with another inert gas and charged, the reaction product must be separated into gas and liquid, and since amine is present and the system is likely to be in an emulsified state, phosgene and chlorobenzene are not used. There is a problem that the decomposition of the formate ester is rather large.

[発明の目的] 本発明の目的は、簡単な設備で、二価フェノールのアル
カリ水溶液とホスゲンとの反応で生成する反応熱の除去
が容易であり、常に一定の性質を有するオリゴマーを連
続的に製造する方法を提供することにある。
[Object of the invention] The object of the present invention is to easily remove the heat of reaction generated by the reaction between an aqueous alkaline solution of a dihydric phenol and phosgene with simple equipment, and to continuously prepare an oligomer having a certain property continuously. It is to provide a manufacturing method.

[発明の構成] 本発明は反応塔の一端より、二価フェノールのアルカリ
水溶液,ホスゲン,該アルカリ水溶液の0.3〜1.0倍容量
の有機溶媒および冷却された反応混合物を、全アルカリ
水溶液中の二価フェノールの濃度が55〜150g/になる
割合で、連続的に供給して、10〜25℃で反応せしめるポ
リカーボネートオリゴマーの連続的製造法である。
[Structure of the Invention] The present invention provides an alkali aqueous solution of a dihydric phenol, phosgene, an organic solvent in an amount of 0.3 to 1.0 times the volume of the alkali aqueous solution, and a cooled reaction mixture from one end of a reaction tower to obtain a dihydric phenol in a total alkali aqueous solution. This is a continuous production method of a polycarbonate oligomer in which phenol is continuously supplied at a rate of 55 to 150 g / and reacted at 10 to 25 ° C.

本発明に用いられる二価フェノールとしては、ビスフェ
ノール類が好ましく、特に2,2−ビス(4−ヒドロキシ
フェニル)プロパン(以下、ビスフェノールAという)
が好ましい。この他のビスフェノールとしては例えば、
ビス(4−ヒドロキシフェニル)メタン,1,1−ビス(4
−ヒドロキシフェニル)エタン,2,2−ビス(4−ヒドロ
キシフェニル)ブタン,2,2−ビス(4−ヒドロキシフェ
ニル)ペンタン,2,2−ビス(4−ヒドロキシフェニル)
ヘキサン,2,2−ビス(4−ヒドロキシフェニル)4−メ
チルペンタン,1,1−ビス(4−ヒドロキシフェニル)1
−フェニルエタン,1,1−ビス(4−ヒドロキシフェニ
ル)シクロヘキサン,2,2−ビス(4−ヒドロキシ−3−
メチルフェニル)プロパン,2,2−ビス(4−ヒドロキシ
フェニル)ヘキサフロロプロパン,2,2−ビス(3,5−ジ
ブロモ−4−ヒドロキシフェニル)プロパンなどを挙げ
ることが出来る。
As the dihydric phenol used in the present invention, bisphenols are preferable, and particularly 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A)
Is preferred. Other bisphenols include, for example:
Bis (4-hydroxyphenyl) methane, 1,1-bis (4
-Hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl)
Hexane, 2,2-bis (4-hydroxyphenyl) 4-methylpentane, 1,1-bis (4-hydroxyphenyl) 1
-Phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4-hydroxy-3-)
Methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane and the like can be mentioned.

これらの二価フェノールはアルカリ水溶液に溶解して使
用される。アルカリとしては苛性ソーダ,苛性カリなど
のアルカリ金属水酸化物が好ましく用いられる。その濃
度は5〜10重量%が好ましい。二価フェノールとアルカ
リのモル比は1:1.9〜1:3.2が好ましく、さらに1:2.0〜
1:2.5が好ましい。二価フェノールのアルカリ水溶液の
濃度は出来るだけ高い方がよいが、二価フェノールの溶
解度から150〜180g/が好ましい。これらの溶液を調製
する際には温度を20℃以上とする必要があるが、余り高
いと二価フェノールの酸化が起きるので必要最低温度と
し、かつ、窒素雰囲気で行うか、或いは、ハイドロサル
ファイト等の還元剤を少量添加することが好ましい。
These dihydric phenols are used by dissolving them in an alkaline aqueous solution. As the alkali, alkali metal hydroxides such as caustic soda and caustic potash are preferably used. The concentration is preferably 5 to 10% by weight. The molar ratio of dihydric phenol and alkali is preferably 1: 1.9 to 1: 3.2, and further 1: 2.0 to
1: 2.5 is preferable. The concentration of the dihydric phenol in the alkaline aqueous solution is preferably as high as possible, but is preferably 150 to 180 g / in view of the solubility of the dihydric phenol. When preparing these solutions, it is necessary to set the temperature to 20 ° C or higher, but if the temperature is too high, the oxidation of the dihydric phenol will occur, so the temperature must be the minimum required, and it should be performed in a nitrogen atmosphere or hydrosulfite. It is preferable to add a small amount of a reducing agent such as.

ホスゲンは液状またはガス状で、また単独或いは有機溶
剤の溶液として使用される。その好ましい使用量は、反
応条件,とくに反応塔内の温度とホスゲンと混合反応さ
れる二価フェノールのアルカリ水溶液の濃度によって影
響をうけ、該温度が25℃を超えるときや該濃度が55g/
未満のときは、二価フェノール1モルに対するホスゲン
のモル数は1.2モルを超え、しばしば1.3モルを超えるこ
とがあるが、本発明の条件においては1.0〜1.2モルで充
分であり、さらには1.05〜1.15モルがより好ましい。
Phosgene is used in liquid or gaseous form, and is used alone or as a solution in an organic solvent. The preferable amount thereof is influenced by the reaction conditions, particularly the temperature in the reaction column and the concentration of the aqueous alkaline solution of the dihydric phenol mixed and reacted with phosgene, and when the temperature exceeds 25 ° C or the concentration is 55 g /
When it is less than 1, the number of moles of phosgene with respect to 1 mole of dihydric phenol exceeds 1.2 moles and often exceeds 1.3 moles, but 1.0 to 1.2 moles is sufficient under the conditions of the present invention, and 1.05 to 1.15 mol is more preferred.

本発明で使用する有機溶剤は、反応に対して不活性でホ
スゲンおよびポリカーボネートを溶解し、水には実質的
に溶解しない溶剤であり、例えば塩化メチレン,1,2−塩
化エタン,1,1,2−3塩化エタン,クロロホルム,クロロ
ベンゼン等を挙げることが出来る。溶剤の使用量は特に
制限されないが、生成するポリカーボネート・オリゴマ
ーの濃度が10〜35重量%になる程度であって、かつ、二
価フェノールのアルカリ水溶液、即ち水相に対して0.3
〜1.0の容積比である。0.3未満のときも、1.0を超える
ときもホスゲンの分解が起り、生成オリゴマーの性質が
バラつく。
The organic solvent used in the present invention is a solvent which is inert to the reaction, dissolves phosgene and polycarbonate, and is substantially insoluble in water, for example, methylene chloride, 1,2-ethane chloride, 1,1,1. 2-3, ethane chloride, chloroform, chlorobenzene and the like can be mentioned. The amount of the solvent used is not particularly limited, but the concentration of the produced polycarbonate oligomer is about 10 to 35% by weight, and is 0.3% based on the aqueous alkaline solution of the dihydric phenol, that is, the aqueous phase.
The volume ratio is ~ 1.0. When it is less than 0.3 or when it exceeds 1.0, decomposition of phosgene occurs, and the properties of the produced oligomer vary.

反応塔に導入される反応生成混合液の量は、その中の水
相の量と、該塔内に導入される二価フェノールのアルカ
リ水溶液の量との合計、即ち全アルカリ水溶液の量1
中に二価フェノールが55〜150gの範囲内で存在するよう
に決めることが必要である。55g未満ではホスゲンの分
解が起り、150gを超えるときは二価フェノールのアルカ
リ塩が析出することがあり、また反応塔内の温度が25℃
を超えることがある。反応塔内の温度は10〜25℃に維持
する必要がある。10℃未満では二価フェノールのアルカ
リ塩が析出することがあり、また25℃を超えるとホスゲ
ンやクロロ蟻酸エステルの分解が生じ、生成オリゴマー
の水酸基とクロロ蟻酸エステルの含有比のバラツキが大
きくなる。
The amount of the reaction product mixed solution introduced into the reaction tower is the sum of the amount of the aqueous phase therein and the amount of the aqueous alkali solution of the dihydric phenol introduced into the tower, that is, the total amount of the aqueous alkali solution 1
It is necessary to determine that the dihydric phenol is present in the range of 55 to 150 g. If it is less than 55 g, phosgene may decompose, and if it exceeds 150 g, alkali salts of dihydric phenol may precipitate, and the temperature in the reaction tower is 25 ° C.
May exceed. It is necessary to maintain the temperature in the reaction tower at 10 to 25 ° C. If the temperature is lower than 10 ° C, an alkali salt of a dihydric phenol may be precipitated, and if the temperature exceeds 25 ° C, phosgene or chloroformate is decomposed, resulting in a large variation in the content ratio of hydroxyl groups and chloroformate of the produced oligomer.

以下に、第1図の装置を使用した場合について説明す
る。反応塔1の上部より導入管2を通してホスゲンが、
3を通して溶剤が、導入管4を通して二価フェノールの
アルカリ水溶液がそれぞれ供給される。反応塔1で生成
した反応混合物はポンプを通してその一部が排出口7か
ら系外に排出される。また、残部は熱交換器8にて冷却
され配管9を通して反応塔に循環供給される。反応塔は
内径対長さの比が1:5〜1:50の円筒状の反応器であっ
て、内部には内容物が乱流状態になるように、ガラス
球,ラシヒリング,ステンレス繊維等が充填されるか、
オリフィス等を内蔵する。反応塔の温度を10〜25℃に維
持するために、供給される反応生成混合液,原料,溶媒
の温度が調節される。反応塔内の滞留時間すなわち、オ
リゴマー化反応時間は10〜300秒が好ましく、さらに好
ましくは20〜100秒である。10秒未満では反応が不充分
であり、300秒以上では反応よりもクロロ蟻酸エステル
の分解が優先する。反応塔内の該滞留時間は反応塔の有
効容積と反応塔に供給される反応生成混合液,原料,溶
媒の流速によって調整される。
The case where the apparatus of FIG. 1 is used will be described below. Phosgene is introduced from the upper part of the reaction tower 1 through the introduction pipe 2.
A solvent is supplied through 3 and an alkaline aqueous solution of a dihydric phenol is supplied through an introducing pipe 4. A part of the reaction mixture produced in the reaction tower 1 is discharged from the discharge port 7 through the pump. The balance is cooled by the heat exchanger 8 and circulated and supplied to the reaction tower through the pipe 9. The reaction tower is a cylindrical reactor with an inner diameter to length ratio of 1: 5 to 1:50. Inside it, glass balls, Raschig rings, stainless fibers, etc. are placed so that the contents become turbulent. Be filled or
Built-in orifice etc. In order to maintain the temperature of the reaction tower at 10 to 25 ° C., the temperatures of the reaction product mixture, the raw materials and the solvent to be supplied are adjusted. The residence time in the reaction column, that is, the oligomerization reaction time is preferably 10 to 300 seconds, more preferably 20 to 100 seconds. If it is less than 10 seconds, the reaction is insufficient, and if it is 300 seconds or more, the decomposition of chloroformate takes precedence over the reaction. The residence time in the reaction tower is adjusted by the effective volume of the reaction tower and the flow rates of the reaction product mixture, the raw materials, and the solvent supplied to the reaction tower.

なお、本発明の方法において、アミン,第4級アンモニ
ウム塩,一価フェノール等の添加或いは混入は、ホスゲ
ン,クロロ蟻酸エステルの分解や生成するオリゴマーの
分子量の調節を乱す原因となるので、これらは厳密に排
除することが必要である。
In addition, in the method of the present invention, addition or mixing of amine, quaternary ammonium salt, monohydric phenol or the like causes decomposition of phosgene or chloroformate or regulation of the molecular weight of the produced oligomer. Strict exclusion is necessary.

本発明の方法で得られるポリカーボネートオリゴマー混
合液は、一価フェノール,アミン,アルカリ等を加え重
縮合反応せしめることにより高分子量のポリカーボネー
トを再現性よく生成する。
The polycarbonate oligomer mixture obtained by the method of the present invention is reproducibly formed into a high molecular weight polycarbonate by adding a monohydric phenol, an amine, an alkali and the like to cause a polycondensation reaction.

[発明の効果] 本発明は反応塔を用いるポリカーボネートオリゴマーの
製造方法において、冷却した反応生成混合液を反応塔に
循環供給することによって、従来問題であった適正なる
反応温度が容易に維持でき、しかも二価フェノールのア
ルカリ水溶液の濃度を適正にでき、且つ有機溶媒を水相
に対して0.3〜1.0の容積比で使用するので、ホスゲンや
クロロ蟻酸エステルの分解が抑制される。従って、得ら
れるオリゴマーは水酸基とクロロ蟻酸エステルの含有比
のバラツキが小さく、また相対粘度も好ましい範囲内に
充分にコントロールされるので、そのあとの重縮合反応
によって均一なポリマーを容易に得ることができる。
[Effect of the Invention] In the method for producing a polycarbonate oligomer using a reaction tower of the present invention, by circulating and supplying the cooled reaction product mixture solution to the reaction tower, it is possible to easily maintain an appropriate reaction temperature, which has been a problem in the past. Moreover, since the concentration of the aqueous dihydric phenol solution can be adjusted appropriately and the organic solvent is used in a volume ratio of 0.3 to 1.0 with respect to the aqueous phase, the decomposition of phosgene and chloroformate can be suppressed. Therefore, the obtained oligomer has a small variation in the content ratio of the hydroxyl group and the chloroformic acid ester, and the relative viscosity is sufficiently controlled within the preferable range, so that a uniform polymer can be easily obtained by the subsequent polycondensation reaction. it can.

以下に実施例を示し、本発明を具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.

なお、各特性値は下記の方法で測定した。Each characteristic value was measured by the following method.

(相対粘度) 排出された反応生成混合液に塩化メチレンを加えて混合
したのち静置して有機相と水相に分離する。この有機相
にほぼ同量の純水を加え、充分に混合してから、紙で
過して静置分離する。水相中の塩素イオンが硝酸銀に
よって検出されなくなるまで、同様に操作して水洗を繰
返す。有機相から溶剤を蒸発し、減圧乾燥して得られる
オリゴマー又はポリマーの0.700gを塩化メチレン100ml
に溶解し、オストワルド粘度計にて20℃で測定する。
(Relative Viscosity) Methylene chloride is added to the discharged reaction product mixture and mixed, and then allowed to stand to separate into an organic phase and an aqueous phase. Almost the same amount of pure water is added to this organic phase, mixed thoroughly, and then passed through a paper to stand and separate. Washing is repeated in the same manner until chlorine ions in the aqueous phase are no longer detected by silver nitrate. Evaporating the solvent from the organic phase and drying 0.700 g of the oligomer or polymer obtained by drying under reduced pressure, 100 ml of methylene chloride
Dissolve in and measure with an Ostwald viscometer at 20 ° C.

(末端塩素) 相対粘度の測定に際してえたオリゴマー1.0gを塩化メチ
レン250mlに溶解し、トリエチルアミンと水を加えて、
よく混合したあと、指示薬,希硝酸および硝酸銀を加
え、N/10のチオシアン酸アンモニウム水溶液で滴定す
る。他方、トリエチルアミンを加えない以外は、同様に
操作して、ブランクとする。末端塩素(%)を次式によ
って求める。
(Terminal chlorine) 1.0 g of the oligomer obtained in measuring the relative viscosity was dissolved in 250 ml of methylene chloride, triethylamine and water were added,
After mixing well, add indicator, dilute nitric acid and silver nitrate, and titrate with N / 10 ammonium thiocyanate aqueous solution. On the other hand, a blank is prepared in the same manner except that triethylamine is not added. The terminal chlorine (%) is calculated by the following formula.

但し、V0はブランクの滴定量(ml),V1はサンプルの滴
定量(ml),fはチオシアン酸アンモニウム水溶液の力
価,Wはサンプル量(g)である。
Here, V 0 is the blank titer (ml), V 1 is the sample titer (ml), f is the titer of the ammonium thiocyanate aqueous solution, and W is the sample amount (g).

(末端OH基量) 反応生成混合液を静置分離した有機相を、塩化メチレン
で希釈したのち、284,272nmの吸光度(A284nm,A272nm)
を紫外−可視吸収分光光度計(日立製作所(株)製200-
10型)にて測定し、吸光度比A284nm/A272nmを求めた。A
284nm/A272nmが大きい程、末端OH基量が多いことを示
す。
(Terminal OH group amount) The organic phase obtained by allowing the reaction product mixture to stand and separate is diluted with methylene chloride, and then the absorbance at 284,272 nm (A284nm, A272nm)
UV-visible absorption spectrophotometer (Hitachi Ltd. 200-
10 type) to measure the absorbance ratio A284nm / A272nm. A
A larger 284 nm / A272 nm indicates a larger amount of terminal OH groups.

(水相中のビスフェノールAの濃度) 相対粘度測定に際して、最初に分離された水相の一部を
希アルカリ水溶液で希釈し、uvスペクトロメーター(日
立製作所製200-10型)にて、波長294nmおよび330nmの吸
光度を測定し、次式よりビスフェノールA濃度を求め
る。
(Concentration of bisphenol A in the aqueous phase) When measuring the relative viscosity, a part of the initially separated aqueous phase was diluted with a dilute alkaline aqueous solution, and the wavelength was 294 nm with a uv spectrometer (Hitachi 200-10 type). And the absorbance at 330 nm are measured, and the bisphenol A concentration is calculated from the following formula.

ビスフェノールA濃度(g/)=(A1−A0)×n×1/22 但し、A1,A0はそれぞれ、294nmおよび330nmの吸光度、
nは希釈倍率である。
Bisphenol A concentration (g /) = (A 1 −A 0 ) × n × 1/22 where A 1 and A 0 are the absorbance at 294 nm and 330 nm, respectively.
n is the dilution ratio.

(水相中の炭酸ソーダの濃度) ビスフェノールA濃度の測定に使用した残りの水相につ
いて、Winkler法にて炭酸ソーダ濃度(g/)を求め
る。
(Sodium Carbonate Concentration in Aqueous Phase) Regarding the remaining aqueous phase used for measuring the bisphenol A concentration, the sodium carbonate concentration (g /) is determined by the Winkler method.

(分子量分布) 相対粘度測定に際して得たポリマーの1重量%テトラヒ
ドロフラン溶液を調製し、ゲル・パーミエーション・ク
ロマトグラフィー(ウオーターズ社製ALC/GPC 201型)
により、重量平均分子量と数平均分子量の比(w/
n)を求める。w/nが1に近い程、分子量分布が狭
いことを示す。
(Molecular weight distribution) A 1 wt% tetrahydrofuran solution of the polymer obtained in relative viscosity measurement was prepared and subjected to gel permeation chromatography (Waters ALC / GPC 201 type).
The ratio of the weight average molecular weight to the number average molecular weight (w /
n) is calculated. The closer w / n is to 1, the narrower the molecular weight distribution is.

実施例1 第1図の装置を使用した。反応塔は長さ2200mm,内径70m
mのガラスライニングパイプに、6.5kgの13mm×13mmのラ
シヒリングを充填した有効容量5.9の円筒管である。
Example 1 The apparatus of FIG. 1 was used. The reaction tower has a length of 2200 mm and an inner diameter of 70 m.
It is a cylindrical tube with an effective capacity of 5.9, filled with 6.5 kg of 13 mm x 13 mm Raschig rings in an m glass lining pipe.

ビスフェノールAを7.0重量%の苛性ソーダ水溶液に30
℃で溶解して、165g/のビスフェノールAの苛性ソー
ダ水溶液を、他方−15℃でホスゲンを塩化メチレンに溶
解して170g/のホスゲンの塩化メチレン溶液を、それ
ぞれ調製した。
Bisphenol A was added to a 7.0 wt% caustic soda aqueous solution.
165 g / bis caustic soda aqueous solution of bisphenol A was dissolved at -15 ° C, and phosgene was dissolved in methylene chloride at -15 ° C to prepare 170 g / phosgene of methylene chloride solution.

まず、ビスフェノールAの苛性ソーダ水溶液を反応塔1
に満たし、冷却用熱交換器18に冷却水を通し、続いてポ
ンプ5を運転してビスフェノールAの苛性ソーダ水溶液
を循環させながら、導入管2よりホスゲンの塩化メチレ
ン溶液を70.6/Hrの速度で供給した。ついで、バルブ
6を調節して熱交換器8から配管9を経る循環量を150
/Hrとし、導入管4よりビスフェノールAの苛性ソー
ダ水溶液を184.3/Hrの速度で供給を開始した。ホスゲ
ンと反応する水相中のビスフェノールAの濃度は約112g
/であった。
First, a caustic soda aqueous solution of bisphenol A was added to the reaction tower 1
The cooling water is passed through the heat exchanger 18 for cooling, and then the pump 5 is operated to circulate the caustic soda aqueous solution of bisphenol A, and the methylene chloride solution of phosgene is supplied from the introduction pipe 2 at a rate of 70.6 / Hr. did. Then, adjust the valve 6 to adjust the circulation amount from the heat exchanger 8 to the pipe 9 to 150.
/ Hr, and the supply of the caustic soda aqueous solution of bisphenol A from the introduction pipe 4 was started at a rate of 184.3 / Hr. The concentration of bisphenol A in the aqueous phase that reacts with phosgene is about 112 g.
/Met.

冷却用熱交換器に通す冷却水の温度を調節したところ、
反応塔の内温は20±1℃になった。バルブ6を通し排出
口7から排出された反応生成混合液を1時間後30分毎に
10回サンプリングして、前記の方法で分析したところ、
オリゴマーの相対粘度は1.038〜1.042,末端塩素は5.5〜
5.8%,A284nm/A272nmは0.312〜0.320,水相中のビスフェ
ノールAの濃度は23〜24g/,炭酸ソーダの濃度は4.5
〜5.2g/といずれも極めて安定していた。
When the temperature of the cooling water passed through the heat exchanger for cooling was adjusted,
The internal temperature of the reaction tower reached 20 ± 1 ° C. The reaction product mixture discharged through the outlet 6 through the valve 6 is removed every 30 minutes after 1 hour.
After sampling 10 times and analyzing by the above method,
Relative viscosity of oligomer is 1.038-1.042, terminal chlorine is 5.5-
5.8%, A284nm / A272nm is 0.312 ~ 0.320, the concentration of bisphenol A in the aqueous phase is 23 ~ 24g /, and the concentration of sodium carbonate is 4.5.
All were extremely stable at ~ 5.2 g /.

つぎに、サンプリングした反応生成混合液の残りの1.5
を30重量%苛性ソーダ水溶液55g,t−ブチルフェノー
ル3.2g,トリエチルアミン0.15gと共に撹拌機付2フラ
スコに入れ、25℃で2時間反応せしめた。得られたポリ
カーボネートの相対粘度は1.429,w/nは2.46であっ
た。
Next, the remaining 1.5 parts of the sampled reaction product mixture
Was added together with 55 g of a 30% by weight aqueous sodium hydroxide solution, 3.2 g of t-butylphenol, and 0.15 g of triethylamine into a 2-flask equipped with a stirrer and reacted at 25 ° C. for 2 hours. The obtained polycarbonate had a relative viscosity of 1.429 and a w / n of 2.46.

実施例2 実施例1と同じ装置を使用し、反応生成混合物の配管9
を得る循環量を300/Hrとした以外は実施例1と同様に
操作した。このときの反応塔入口での水相ビスフェノー
ルAの濃度は約88g/であった。1時間後30分毎に10回
サンプリングして、分析した結果、オリゴマーの相対粘
度は1.037〜1.043,末端塩素は5.6〜5.9%,A284nm/A272n
mは0.315〜0.321,水相中のビスフェノールAの濃度は21
〜23g/,炭酸ソーダの濃度は4.8〜5.5g/と安定して
いた。
Example 2 Using the same equipment as in Example 1, piping 9 for the reaction product mixture
The operation was performed in the same manner as in Example 1 except that the circulation rate for obtaining was 300 / Hr. At this time, the concentration of the aqueous phase bisphenol A at the inlet of the reaction tower was about 88 g /. After 1 hour, sampling was performed 10 times every 30 minutes, and as a result, the relative viscosity of the oligomer was 1.037 to 1.043, the terminal chlorine was 5.6 to 5.9%, A284nm / A272n.
m is 0.315 to 0.321, the concentration of bisphenol A in the aqueous phase is 21
The concentration of sodium carbonate was ~ 23g /, and the concentration of sodium carbonate was stable at 4.8 ~ 5.5g /.

また重合結果は相対粘度が1.424,w/nは2.65であっ
た。
As a result of the polymerization, the relative viscosity was 1.424 and the w / n was 2.65.

比較例1 実施例1と同じ装置を使用し、反応生成混合物の配管9
を経る循環量を1000/Hrとした以外は実施例1と同様
に操作した。このときの反応塔入口での水相のビスフェ
ノールAの濃度は約45g/であった。1時間後30分毎に
10回サンプリングして、分析した結果、オリゴマーの相
対粘度は1.033〜1.041,末端塩素は4.7〜5.8%,A284nm/A
272nmは0.335〜0.383,水相中のビスフェノールAの濃度
は21〜29g/,炭酸ソーダの濃度は5.8〜9.8g/といず
れも不安定であった。
Comparative Example 1 The same apparatus as in Example 1 was used, and the reaction product mixture piping 9 was used.
The same operation as in Example 1 was carried out except that the circulation rate after passing was 1000 / Hr. At this time, the concentration of bisphenol A in the aqueous phase at the inlet of the reaction tower was about 45 g /. Every 30 minutes after 1 hour
As a result of sampling 10 times and analyzing, the relative viscosity of the oligomer is 1.033 to 1.041, the terminal chlorine is 4.7 to 5.8%, A284nm / A
The density at 272 nm was 0.335 to 0.383, the concentration of bisphenol A in the aqueous phase was 21 to 29 g /, and the concentration of sodium carbonate was 5.8 to 9.8 g /.

また重合反応の結果は、ポリマーの相対粘度が1.386,
w/nが2.95であった。
The result of the polymerization reaction is that the relative viscosity of the polymer is 1.386,
The w / n was 2.95.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明において使用される装置の例の略図であ
る。 1:反応塔,2:ホスゲン単独又は有機溶媒溶液の導入管,3:
有機溶媒の導入管,4:二価フェノールのアルカリ水溶液
導入管,5:送液ポンプ,6:反応生成混合液の排出量を調製
するバルブ,7:反応生成混合液の排出口,8:冷却用熱交換
器,9:反応生成混合液循環配管
FIG. 1 is a schematic diagram of an example of a device used in the present invention. 1: reaction tower, 2: phosgene alone or an organic solvent solution inlet tube, 3:
Organic solvent inlet pipe, 4: Dihydric phenol aqueous alkaline water inlet pipe, 5: Liquid feed pump, 6: Valve for adjusting discharge amount of reaction product mixture, 7: Discharge port of reaction product mixture, 8: Cooling Heat exchanger, 9: Reaction product mixture liquid circulation piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応塔の一端より、二価フェノールのアル
カリ水溶液,ホスゲン,該アルカリ水溶液の0.3〜1.0倍
容量の有機溶媒および冷却された反応混合物を、全アル
カリ水溶液中の二価フェノールの濃度が55〜150g/に
なる割合で、連続的に供給して、10〜25℃で反応せしめ
ることを特徴とするポリカーボネートオリゴマーの連続
的製造法。
1. An alkali aqueous solution of dihydric phenol, phosgene, an organic solvent having a volume of 0.3 to 1.0 times that of the alkali aqueous solution, and a cooled reaction mixture are introduced from one end of a reaction tower to obtain a divalent phenol concentration in the total alkali aqueous solution. Is continuously supplied at a rate of 55 to 150 g /, and the reaction is carried out at 10 to 25 ° C. for continuous production of a polycarbonate oligomer.
JP61109539A 1986-05-15 1986-05-15 Continuous production method of polycarbonate-boner oligomer Expired - Fee Related JPH0680110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61109539A JPH0680110B2 (en) 1986-05-15 1986-05-15 Continuous production method of polycarbonate-boner oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61109539A JPH0680110B2 (en) 1986-05-15 1986-05-15 Continuous production method of polycarbonate-boner oligomer

Publications (2)

Publication Number Publication Date
JPS62267324A JPS62267324A (en) 1987-11-20
JPH0680110B2 true JPH0680110B2 (en) 1994-10-12

Family

ID=14512811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61109539A Expired - Fee Related JPH0680110B2 (en) 1986-05-15 1986-05-15 Continuous production method of polycarbonate-boner oligomer

Country Status (1)

Country Link
JP (1) JPH0680110B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905572A1 (en) * 1999-02-11 2000-08-31 Bayer Ag Device for mixing and reacting multiphase gaseous and liquid mixtures and use of this device
DE10118307A1 (en) * 2001-04-12 2002-10-17 Bayer Ag Process for the production of polycarbonates
JP4647148B2 (en) * 2001-07-31 2011-03-09 帝人化成株式会社 Method for producing polycarbonate resin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440280A (en) * 1977-09-06 1979-03-29 Kawasaki Steel Co Method of removing waterrsoluble impurities from solid filter cake

Also Published As

Publication number Publication date
JPS62267324A (en) 1987-11-20

Similar Documents

Publication Publication Date Title
US4847352A (en) Polycarbonate production with motionless mixer
WO2007083721A1 (en) Process for continuous production of polycarbonate oligomer
CA1051589A (en) Phase boundary process for the preparation of aromatic polycarbonates using a chlorinated aromatic hydrocarbon as the polymer solvent
EP0434888B1 (en) Process for producing an aromatic polycarbonate
JPH0680110B2 (en) Continuous production method of polycarbonate-boner oligomer
JP3795679B2 (en) Method for producing bromine compound
JP4271485B2 (en) Method for producing polycarbonate
Rice et al. Ketene. I. Preparation and Reactions
EP1165484B1 (en) Method and apparatus for preparing monofunctional aromatic haloformates
JP2608201B2 (en) Process for continuous production of polycarbonate oligomer
JPH0639522B2 (en) Method for producing polycarbonate-oligomer
US4413103A (en) Halogen-containing polycarbonate resin and process for producing same
JP3403176B2 (en) Batch production of polycarbonate by interfacial polymerization.
JPH0655810B2 (en) Method for producing a polycarbonate-oligomer
US4255557A (en) Preparing polycarbonate oligomers by reacting phosgene with an aqueous solution containing a salt of a dihydric phenol in an organic solvent which comprises previously cooling the aqueous solution and carrying out the reaction at a low temperature
JPH06172509A (en) Production of polycarbonate
US5037941A (en) Interfacial preparation of polycarbonate prepolymer with motionless mixer
US5275758A (en) Production of ultrafine suspensions of bisphenol, sodium hydroxide and water
JPS58108226A (en) Continuous preparation of polycarbonate oligomer
US5037942A (en) Continuous motionless mixer reactor process for the production of branched polycarbonate
JPS58108225A (en) Continuous preparation of polycarbonate oligomer
JP3323390B2 (en) Method for producing polycarbonate
Conningham et al. Synthesis of poly (phenylene ether sulphone) s containing aminated chain units
JP2004018624A (en) Method and apparatus for producing aromatic polycarbonate resin
JP2569239B2 (en) Production method of optical polycarbonate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees