JPH067990A - Solder material and joining method - Google Patents

Solder material and joining method

Info

Publication number
JPH067990A
JPH067990A JP4133468A JP13346892A JPH067990A JP H067990 A JPH067990 A JP H067990A JP 4133468 A JP4133468 A JP 4133468A JP 13346892 A JP13346892 A JP 13346892A JP H067990 A JPH067990 A JP H067990A
Authority
JP
Japan
Prior art keywords
solder
temperature
melting point
semiconductor chip
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4133468A
Other languages
Japanese (ja)
Other versions
JP3243834B2 (en
Inventor
Goro Ideta
吾朗 出田
Shunichi Abe
俊一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13346892A priority Critical patent/JP3243834B2/en
Priority to US07/955,307 priority patent/US5372295A/en
Publication of JPH067990A publication Critical patent/JPH067990A/en
Priority to US08/335,995 priority patent/US5609287A/en
Application granted granted Critical
Publication of JP3243834B2 publication Critical patent/JP3243834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To lighten the heat stress applying to a semiconductor tip, to prevent the deviation of positional relation of the members to be joined from generating, and together to shorten the time when the solder material is solidified while keeping the temperature nearby the melting temperature by keeping the interval of the semiconductor tip and the base material after joining in the prescribed value. CONSTITUTION:A semiconductor tip 1 and a lead frame 2a are arranged through the solder material composed of the 1st solder 6 and the 2nd solder 7a, 7b, and the semiconductor tip 1 and the lead frame 2a are joined by applying the temperature lower than the melting point of the 1st solder, higher than the melting point of the 2nd solder 7a, 7b and melting the 2nd solder 7a, 7b. Then, the 2nd solder 7a, 7b is solidified by lowering the heating temperature, or while keeping the initial melting temperature, it is solidified due to the elevation of melting point caused by the change of composition of the 2nd solder 7a, 7b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば半導体チップ
と基材とを接合するために用いられる半田材及び接合方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder material and a joining method used for joining a semiconductor chip and a base material, for example.

【0002】[0002]

【従来の技術】図5は、従来の半導体装置の構成を示す
断面図である。図5において、1は半導体チップ、2は
例えばリードフレームのような基材、3は半導体チップ
1と基材2とを接合するための半田である。このような
半導体装置は、半導体チップ1と基材2との間に半田3
を挾んで保持し、半田3をその融点以上の温度に加熱さ
せた後、冷却させることによって半導体チップ1と基材
2とを接合する、いわゆる、半田ダイボンディング法に
よって形成されている。この種の半田ダイボンディング
法は、例えば、トリケップス技術試料集第76号「半導
体デバイスのマイクロアセンブリ技術」(昭和57年7
月発行)に記載されている。
2. Description of the Related Art FIG. 5 is a sectional view showing the structure of a conventional semiconductor device. In FIG. 5, 1 is a semiconductor chip, 2 is a base material such as a lead frame, and 3 is a solder for joining the semiconductor chip 1 and the base material 2. Such a semiconductor device has a solder 3 between the semiconductor chip 1 and the base material 2.
Is held, the solder 3 is heated to a temperature equal to or higher than its melting point, and then cooled to join the semiconductor chip 1 and the base material 2 to each other, which is a so-called solder die bonding method. This type of solder die bonding method is described in, for example, Trikeps Technical Sample Collection No. 76, “Micro Assembly Technology for Semiconductor Devices” (July 57, 1982).
Monthly issue).

【0003】[0003]

【発明が解決しようとする課題】従来の半導体装置の接
合は以上のように構成されていたので、接合時に半田3
が溶融するため、半導体チップ1と基材2との接合後の
間隔が10〜20μmとなり、また、半導体チップ1と
基材2との間隔を大きくしようとして多量の半田3を供
給してもその大半は溶融時に排出されることになり、こ
の間隔を外部から制御することが困難であった。また、
半田3の接合時の溶融による濡れ広がりによって半導体
チップ1と基材2との間隔は小さくなり、それを補う半
田を供給すると半田3の流動に伴う半導体チップ1の位
置ずれが生じ、後工程のワイヤボンディング工程で問題
となっていた。このように、半導体チップ1と基材2の
間隔を所定の値に安定に制御することは不可能であると
いう問題があった。
Since the conventional semiconductor device is bonded as described above, the solder 3 is used at the time of bonding.
Is melted, the distance between the semiconductor chip 1 and the base material 2 after joining becomes 10 to 20 μm, and even if a large amount of solder 3 is supplied in order to increase the distance between the semiconductor chip 1 and the base material 2, Most of them were discharged during melting, and it was difficult to control this interval from the outside. Also,
The gap between the semiconductor chip 1 and the base material 2 becomes small due to the spread of wetting due to melting at the time of joining the solder 3, and when the solder that supplements the gap is supplied, the position of the semiconductor chip 1 is displaced due to the flow of the solder 3 and the subsequent process is performed. It was a problem in the wire bonding process. As described above, there is a problem that it is impossible to stably control the distance between the semiconductor chip 1 and the base material 2 to a predetermined value.

【0004】さらに、後工程で接合部に耐熱性が要求さ
れる場合は、その耐熱温度以上の融点を持つ半田3を用
いるが、融点が高くなればなるほど接合温度も高くな
り、半導体チップ1と基材2の熱膨張差に起因する熱応
力も大きくなる。特に半導体チップ1がシリコン半導体
チップで、基材2がCu系のリードフレームの場合、そ
の熱膨張率の差異が5倍以上と大きいため、接合直後の
残留応力やその後の使用環境における熱応力によって、
半導体チップ1が割れる場合があった。この現象は、特
に、1辺が3mm以上の大きさの半導体チップ1のとき
に顕著である。また、化合物半導体を半導体チップ1に
用いた場合は、それがシリコン半導体に比べて機械的に
脆弱なために、半導体チップ1と基材2との熱膨張率差
が小さい場合でも、半導体チップ1に損傷を与える場合
があるため、それらの半田によるダイボンディングが極
めて困難であるという問題があった。
Further, when heat resistance is required for the joint portion in a later step, the solder 3 having a melting point higher than the heat resistant temperature is used. However, the higher the melting point, the higher the joint temperature, and the semiconductor chip 1 The thermal stress due to the difference in thermal expansion of the base material 2 also increases. Especially when the semiconductor chip 1 is a silicon semiconductor chip and the base material 2 is a Cu-based lead frame, the difference in thermal expansion coefficient is as large as 5 times or more. ,
The semiconductor chip 1 was sometimes broken. This phenomenon is particularly remarkable in the case of the semiconductor chip 1 whose one side has a size of 3 mm or more. Further, when a compound semiconductor is used for the semiconductor chip 1, it is mechanically weaker than a silicon semiconductor, so that even if the difference in the coefficient of thermal expansion between the semiconductor chip 1 and the base material 2 is small, the semiconductor chip 1 There is a problem that it is extremely difficult to die-bond them by soldering them.

【0005】以上の問題点を解消する方法として、特願
平3−004832号記載の半田材料及び接合方法があ
る。図6は、特願平3−004832号記載の半導体装
置の構成を示す断面図である。図6において、1はシリ
コン系の半導体チップ、2はCu系合金からなるリード
フレームなどからなる基材、4は組成が95Pb−5S
nで厚さが50μmの高融点の第1半田、5a,5bは
第1半田の両面に形成された組成が63Sn−37Pb
で厚さが10μmの第2半田である。
As a method for solving the above problems, there is a solder material and a joining method described in Japanese Patent Application No. 3-004832. FIG. 6 is a sectional view showing the structure of the semiconductor device described in Japanese Patent Application No. 3-004832. In FIG. 6, 1 is a silicon-based semiconductor chip, 2 is a base material such as a lead frame made of a Cu-based alloy, and 4 is a composition of 95Pb-5S.
n is a high melting point first solder having a thickness of 50 μm and 5a and 5b have a composition of 63Sn-37Pb formed on both surfaces of the first solder.
The second solder has a thickness of 10 μm.

【0006】特願平3−004832号の発明による接
合方法では、半導体チップ1と基材2の間に両面に第2
半田5a,5bが形成された第1半田4を挾み、第2半
田5a,5bの融点以上で、かつ、第1半田4の融点未
満の温度、例えば200℃にヒータなどにより加熱し、
第2半田5a,5bのみを溶融させる。その後、温度を
下げて第2半田5a,5bを凝固させる。または、第2
半田5a,5bを溶融させる200℃のままで保持する
ことにより凝固させる。このように200℃で保持する
と、第2半田5a,5bから第1半田4へSn原子が拡
散し、第2半田5a,5b中のSnの濃度が低下し、こ
のSn濃度の低下により第2半田5a,5bの凝固点が
上昇し、これにより第2半田5a,5bが凝固して固定
する。このとき、第1半田4はほとんど溶融しないた
め、これが排出されたり変形したりすることはなく、初
期の厚さのまま保持され、半導体チップ1と基材2との
間は所定の間隔に保たれる。
In the joining method according to the invention of Japanese Patent Application No. 3-004832, the semiconductor chip 1 and the base material 2 are secondly bonded on both sides.
The first solder 4 on which the solder 5a, 5b is formed is sandwiched and heated by a heater or the like to a temperature equal to or higher than the melting point of the second solder 5a, 5b and lower than the melting point of the first solder 4, for example, 200 ° C.
Only the second solders 5a and 5b are melted. Then, the temperature is lowered to solidify the second solders 5a and 5b. Or the second
The solder 5a, 5b is solidified by keeping it at 200 ° C. for melting. When the temperature is kept at 200 ° C. in this way, Sn atoms diffuse from the second solders 5a and 5b to the first solder 4 and the concentration of Sn in the second solders 5a and 5b lowers. The freezing point of the solders 5a and 5b rises, whereby the second solders 5a and 5b are solidified and fixed. At this time, since the first solder 4 is hardly melted, the first solder 4 is not discharged or deformed, and is kept at the initial thickness, and the semiconductor chip 1 and the base material 2 are kept at a predetermined distance. Be drunk

【0007】この接合方法では、半導体チップ1と基材
2との間隔を所定の値に保つことによって、半導体チッ
プ1に作用する熱応力を緩和させることができるが、2
00℃に加熱し、第2半田5a,5bのみを溶融させた
後、その温度で保持してSn原子を第2半田5a,5b
から第1半田4へ拡散させ、第2半田5a,5bのSn
濃度を低下させることにより、第2半田5a,5bの凝
固点を上昇させて第2半田5a,5bを凝固させる場
合、その厚さが10μmあるので、Sn原子を拡散させ
るために多大の時間を要するという問題があった。
In this bonding method, the thermal stress acting on the semiconductor chip 1 can be relaxed by keeping the distance between the semiconductor chip 1 and the base material 2 at a predetermined value.
After heating to 00 ° C. to melt only the second solders 5a and 5b, the Sn atoms are held at that temperature to keep the Sn atoms in the second solders 5a and 5b.
From the first solder 4 to Sn of the second solder 5a, 5b
When the solidification point of the second solders 5a and 5b is raised by lowering the concentration to solidify the second solders 5a and 5b, since the thickness thereof is 10 μm, it takes a lot of time to diffuse Sn atoms. There was a problem.

【0008】この発明は以上のような問題点を解消する
ためになされたもので、接合後の半導体チップと基材と
の間隔を、所定の値に保つことによって、半導体チップ
に作用する熱応力を緩和させ、かつ被接合部材の位置関
係をずれが生じないようにするとともに、溶融温度付近
に温度を保持したまま半田材を凝固させるとき時間を短
縮できるようにすることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the thermal stress acting on the semiconductor chip is maintained by keeping the distance between the semiconductor chip and the base material after bonding at a predetermined value. It is an object of the present invention to alleviate the above and prevent the positional relationship of the members to be joined from deviating, and to shorten the time when the solder material is solidified while the temperature is maintained near the melting temperature.

【0009】[0009]

【課題を解決するための手段】この発明の半田は、第1
の半田と、第1の半田よりも低い融点を有する材料また
は第1の半田と反応してその第1の半田よりも低い融点
の合金を生成する材料からなり、第1の半田の両面に配
置された厚さが1μm以上5μm未満の第2の半田とを
備える。また、この発明の接合方法は、第1の半田の両
面に第1の半田よりも低い融点を有する材料または第1
の半田と反応して第1の半田よりも低い融点の合金を生
成する材料からなる厚さ1μm以上5μm未満の第2の
半田を配して形成された半田材を被接合部材の間に挾
み、第2の半田または合金の融点以上で、かつ、第1の
半田の融点以下の温度に加熱し、第2の半田または合金
を溶融させ、その後冷却するか、または溶融温度付近に
保つことによって、被接合部を接合することを特徴とす
る。
The solder of the present invention is the first
And a material having a melting point lower than that of the first solder or a material that reacts with the first solder to form an alloy having a melting point lower than that of the first solder, and is placed on both sides of the first solder. And a second solder having a thickness of 1 μm or more and less than 5 μm. In addition, the bonding method of the present invention includes a material having a melting point lower than that of the first solder on both surfaces of the first solder or the first solder.
A solder material formed by arranging a second solder having a thickness of 1 μm or more and less than 5 μm, which is made of a material that reacts with the solder of (1) to generate an alloy having a melting point lower than that of the first solder, and is sandwiched between the members to be joined. Only, by heating to a temperature above the melting point of the second solder or alloy and below the melting point of the first solder to melt the second solder or alloy and then cool or keep it near the melting temperature. It is characterized in that the portions to be joined are joined together.

【0010】[0010]

【作用】この発明によれば、第1の半田のほとんどが、
加熱接合するとき固相のまま保持されるので、被接合材
料の間隔を所定の厚みに制御することができ、接合後に
おける被接合材料に作用する応力を緩和させることがで
き、また、被接合部材の位置関係がずれることがない。
加えて、第2の半田の厚さが薄いので、第2の半田から
第1の半田へ第2の半田の凝固点を下げる成分を拡散さ
せる速度は早くなり、第2の半田の凝固点を上昇させる
速度も早くなって第2の半田を凝固させる時間が短かく
なる。
According to the present invention, most of the first solder is
Since the solid phase is maintained as it is during heat bonding, the distance between the materials to be bonded can be controlled to a predetermined thickness, and the stress acting on the materials to be bonded after bonding can be relieved. The positional relationship of the members does not shift.
In addition, since the thickness of the second solder is thin, the speed of diffusing the component that lowers the freezing point of the second solder from the second solder to the first solder is faster, and the freezing point of the second solder is increased. The speed also increases and the time for solidifying the second solder becomes shorter.

【0011】[0011]

【実施例】【Example】

(実施例1)以下この発明の1実施例を図を参照して説
明する。図1は、この発明の1実施例による半導体装置
の構成を示す断面図である。図1において、6は組成が
95Pb−5Snで厚さが50μmの高融点の第1半
田、7a,7bは第1半田6の両面にメッキによって形
成された組成が63Sn−37Pbで厚さが3μmの第
2半田であり、他は図6と同様である。なお、半導体チ
ップ1の接合面はメタライズ処理が施されている。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. 1 is a sectional view showing the structure of a semiconductor device according to an embodiment of the present invention. In FIG. 1, 6 is a composition of 95Pb-5Sn and a high melting point first solder having a thickness of 50 μm, and 7a and 7b are compositions of 63Sn-37Pb and a thickness of 3 μm formed by plating on both surfaces of the first solder 6. The second solder is the same as that shown in FIG. The bonding surface of the semiconductor chip 1 is metallized.

【0012】ここで、図1に示す半導体装置の接合方法
を説明する。まず、半導体チップ1とリードフレーム2
aとを、第1半田6と第2半田7a,7bとからなる半
田材を挾んで重ね合わせ、これを還元雰囲気中で第2半
田7a,7bの融点以上で、かつ第1半田6の融点以下
の温度である200℃にヒータなどにより加熱して第2
半田7a,7bを溶融させる。ここで、還元雰囲気中で
加熱するのは、第1半田6及び第2半田7a,7bが、
酸化されないようにするためであり、アルゴンなどの不
活性ガス雰囲気中や真空中であっても良い。その後、温
度を下げて第2半田7a,7bを凝固させ、半導体チッ
プ1とリードフレーム2aとを接合させる。この接合の
ための加熱時には、第1半田はほとんど溶融しないの
で、排出されたり変形することはなく、加熱処理前の初
期の厚さのまま保持される。この結果、半導体チップ1
とリードフレーム2aとの間隔は、第1半田材6で規定
される所定の間隔に保たれることになる。
Here, a method of joining the semiconductor device shown in FIG. 1 will be described. First, the semiconductor chip 1 and the lead frame 2
a and a solder material composed of the first solder 6 and the second solders 7a and 7b are sandwiched and overlapped, and this is higher than or equal to the melting points of the second solders 7a and 7b in a reducing atmosphere and the melting point of the first solder 6 The second temperature by heating to the following temperature of 200 ℃ with a heater
The solder 7a, 7b is melted. Here, heating in the reducing atmosphere is performed by the first solder 6 and the second solders 7a and 7b.
This is to prevent oxidation and may be performed in an atmosphere of an inert gas such as argon or in vacuum. After that, the temperature is lowered to solidify the second solder 7a, 7b, and the semiconductor chip 1 and the lead frame 2a are joined. At the time of heating for this bonding, the first solder is hardly melted, so that it is not discharged or deformed, and the initial thickness before the heat treatment is maintained. As a result, the semiconductor chip 1
The space between the lead frame 2a and the lead frame 2a is maintained at a predetermined space defined by the first solder material 6.

【0013】この発明では、第2半田材7a,7bを第
1半田材6にメッキした後、有機溶剤などによる洗浄を
施して充分な乾燥を行うことにより、第2半田7a,7
b表面の酸化膜の厚さを0.003μm以下に制御し、
かつ、接合プロセスにおける雰囲気中の酸素濃度を10
00ppm以下に制御して、接合プロセスにおける半田
材の酸化を防止するようにしている。これにより、第2
半田7a,7bの厚さが3μmと薄く加熱接合時に溶融
した第2半田7a,7bが少ない液層量でも、溶融接合
時に安定な濡れを確保できる。
According to the present invention, after the second solder materials 7a and 7b are plated on the first solder material 6, the second solder materials 7a and 7b are washed by an organic solvent and sufficiently dried.
The thickness of the oxide film on the surface b is controlled to 0.003 μm or less,
In addition, the oxygen concentration in the atmosphere during the bonding process should be 10
It is controlled to be not more than 00 ppm to prevent the solder material from being oxidized in the joining process. This allows the second
Even if the amount of the second solder 7a, 7b melted at the time of heat bonding is small and the amount of the liquid layer is small, the solder 7a, 7b is as thin as 3 μm and stable wetting can be secured at the time of melt bonding.

【0014】図2は第2半田7a,7bの厚さと接合性
の関係を表す特性図であり、縦軸は接合しようとする面
積に対する未接合部の占める割合を示し、横軸は第2半
田7a,7bの厚さを示している。図2において、点線
で示した特性曲線は、特願平3−004832号の発明
による半田材を用いた場合を示し、実線で示した特性曲
線はこの発明による半田材を用いた場合を示す。点線で
示した特願平3−004832号記載の半田材の場合
は、その半田材の酸化膜の厚さが薄くできなかったの
で、第2半田7a,7bの部分の厚さが5μm以上にな
らないと未接合部の面積割合が低下していない。しか
し、この発明による半田材による場合は、半田材の酸化
膜の厚さを0.003μm以下と薄くすることが可能と
なったので、第2半田7a,7bの厚さが1μm以上あ
れば未接合部の面積は低下し、良好な接合部が得られる
ようになる。なお、上記実施例では第1半田6の両面に
第2半田7a,7bを配設する方法としてメッキを用い
たが、これに限るものではなくクラッドや真空蒸着など
の方法によっても同様の効果が得られることは言うまで
もない。
FIG. 2 is a characteristic diagram showing the relationship between the thickness and the bondability of the second solders 7a and 7b. The vertical axis represents the ratio of the unbonded portion to the area to be bonded, and the horizontal axis represents the second solder. The thickness of 7a and 7b is shown. In FIG. 2, the characteristic curve shown by the dotted line shows the case where the solder material according to the invention of Japanese Patent Application No. 3-004832 is used, and the characteristic curve shown by the solid line shows the case where the solder material according to the present invention is used. In the case of the solder material described in Japanese Patent Application No. 3-004832 indicated by the dotted line, the thickness of the oxide film of the solder material could not be made thin, so that the thickness of the second solder 7a, 7b was 5 μm or more. If this is not the case, the area ratio of the unbonded part does not decrease. However, in the case of using the solder material according to the present invention, it is possible to reduce the thickness of the oxide film of the solder material to 0.003 μm or less. Therefore, if the thickness of the second solder 7a, 7b is 1 μm or more, The area of the joint is reduced, and a good joint can be obtained. In the above embodiment, the plating is used as the method of disposing the second solders 7a and 7b on both surfaces of the first solder 6, but the present invention is not limited to this, and the same effect can be obtained by a method such as clad or vacuum deposition. It goes without saying that you can get it.

【0015】(実施例2)実施例1では、200℃に加
熱して第2半田7a,7bを溶融した後、加熱の温度を
下げることにより第2半田7a,7bを凝固させたが、
加熱の温度を下げずに第2半田7a,7bを凝固させる
こともできる。実施例1と同様に、酸素濃度が1000
ppm以下の還元性雰囲気で、図1に示す半導体チップ
1とリードフレーム2aとこれらに挟まれた第1半田6
と第2半田7a,7bからなる半田材とを、200℃に
加熱して第2半田7a,7bを溶融させ、このまま20
0℃で保持すると、第2半田7a,7bのSn原子が第
1半田6中へ比較的高速で拡散する。ここで、図3に示
すPb−Sn状態図から判るように、Pb−Sn半田は
Snの濃度が18%以下になると200℃でも凝固す
る。したがって、第2半田7a,7bから第1半田6へ
のSnの拡散により第2半田7a,7bのSnの濃度が
18%以下になると、200度で加熱しているにもかか
わらず、それは凝固する。
(Embodiment 2) In Embodiment 1, after heating the second solder 7a, 7b by heating to 200 ° C., the second solder 7a, 7b is solidified by lowering the heating temperature.
The second solder 7a, 7b can be solidified without lowering the heating temperature. As in Example 1, the oxygen concentration was 1000.
In a reducing atmosphere of ppm or less, the semiconductor chip 1 and the lead frame 2a shown in FIG.
And a solder material composed of the second solder 7a, 7b are heated to 200 ° C. to melt the second solder 7a, 7b
When kept at 0 ° C., Sn atoms of the second solders 7a and 7b diffuse into the first solder 6 at a relatively high speed. Here, as can be seen from the Pb-Sn phase diagram shown in FIG. 3, the Pb-Sn solder solidifies even at 200 ° C. when the Sn concentration is 18% or less. Therefore, when the Sn concentration of the second solder 7a, 7b becomes 18% or less due to the diffusion of Sn from the second solder 7a, 7b to the first solder 6, it is solidified even though it is heated at 200 degrees. To do.

【0016】この後、図3に示す固相線温度直下に制御
して温度を上げることにより、Snの拡散速度を更に加
速することもできる。最終的には、第2半田7a,7b
のSnの濃度は第1半田6のSnの濃度と同じになり、
この状態では第2半田7a,7bの溶融点は加熱処理前
の溶融点より高い温度となり、すなわち、第2半田7
a,7bの耐熱性が向上したことになる。このため、第
1半田6が溶融されないことによる間隔保持の効果に加
えて、接合時の加熱温度より高い耐熱性を有する半導体
装置を得ることができる。
Thereafter, the diffusion rate of Sn can be further accelerated by controlling the temperature just below the solidus temperature shown in FIG. 3 to raise the temperature. Finally, the second solder 7a, 7b
The Sn concentration of is the same as the Sn concentration of the first solder 6,
In this state, the melting points of the second solders 7a and 7b are higher than the melting point before the heat treatment, that is, the second solder 7b.
This means that the heat resistance of a and 7b is improved. Therefore, it is possible to obtain a semiconductor device having a heat resistance higher than the heating temperature at the time of joining, in addition to the effect of maintaining the gap by not melting the first solder 6.

【0017】図4は、第1半田6の厚さが100μmの
場合、200℃の高温で保持することによって第2半田
7a,7bから第1半田6へSn原子が拡散して第2半
田7a,7b中のSn濃度が18%以下になって凝固す
るまでの時間と、第2半田7a,7bの厚さとの関係を
表す相関図である。図4において、縦軸は200℃での
温度保持開始後、第2半田7a,7bが凝固するまでの
時間を示し、横軸は第2半田7a,7bの初期の厚さを
示す。
FIG. 4 shows that when the thickness of the first solder 6 is 100 μm, the Sn atoms are diffused from the second solders 7a and 7b to the first solder 6 by holding the first solder 6 at a high temperature of 200 ° C. FIG. 7 is a correlation diagram showing the relationship between the time until the Sn concentration in the first solder 7a and the second solder 7b solidifies to 18% or less and the thickness of the second solders 7a and 7b. In FIG. 4, the vertical axis represents the time until the second solder 7a, 7b is solidified after the start of the temperature holding at 200 ° C., and the horizontal axis represents the initial thickness of the second solder 7a, 7b.

【0018】図4から明らかなように、第2半田7a,
7bがSnが拡散してその濃度が低下することにより凝
固するまでの時間は、第2半田7a,7bの厚さの増大
にともなって2次関数的に増大している。実施例1で述
べたように良好な接合部を得るためには、第2半田7
a,7bの厚さを1μm以上にする必要があるが、接合
プロセスを短時間で完了させるためには第2半田7a,
7bの初期厚さを、それが溶解したときに良好な濡れが
得られる範囲でできるだけ薄くすることが推賞される。
以上は、第2半田7a,7bが凝固するまでの時間につ
いて説明したが、凝固後に第2半田7a,7bが第1半
田6と同一の組成になり、初期の第2半田7a,7bの
組成のときよりも融点が高くなるまでに要する時間に対
しても、同様のことが言えることは言うまでもない。
As is apparent from FIG. 4, the second solder 7a,
The time required for 7b to solidify due to the diffusion of Sn and the decrease in the Sn concentration thereof increases quadratically with the increase in the thickness of the second solders 7a and 7b. As described in Example 1, in order to obtain a good joint, the second solder 7
The thicknesses of a and 7b need to be 1 μm or more, but in order to complete the joining process in a short time, the second solder 7a,
It is advisable to make the initial thickness of 7b as thin as possible in the range where good wetting is obtained when it melts.
Although the time until the second solders 7a and 7b are solidified has been described above, the second solders 7a and 7b have the same composition as the first solder 6 after solidification, and the initial composition of the second solders 7a and 7b. It goes without saying that the same can be said for the time required until the melting point becomes higher than in the case of.

【0019】この実施例の場合、接合時の加熱温度より
も高い耐熱温度を持つ接合部が得られるので、単一組成
の半田3(図5)を用いて同様の耐熱温度を持つ接合部
を得ようとする場合に比較して、低い温度で接合できる
ことになる。すなわち、280℃の耐熱性を確保するた
めに、図5に示すような状態で半田3で接合する場合
は、溶融点が280℃の組成となる半田材を用いて28
0℃以上の温度に加熱しなければならないが、この実施
例2の場合は、図3に示すように、200℃以下の温度
で溶融接合してその温度を所定の時間保持することで、
280℃の耐熱性を持つ接合部が得られる。
In the case of this embodiment, since a joint having a heat resistant temperature higher than the heating temperature at the time of joining can be obtained, a solder having a similar heat resistant temperature can be formed by using the solder 3 having a single composition (FIG. 5). Compared with the case of trying to obtain it, it will be possible to join at a lower temperature. That is, in order to secure heat resistance at 280 ° C., when soldering with solder 3 in a state as shown in FIG. 5, a solder material having a composition with a melting point of 280 ° C. is used.
Although it has to be heated to a temperature of 0 ° C. or higher, in the case of Example 2, as shown in FIG.
A joint having a heat resistance of 280 ° C. is obtained.

【0020】例えば、図1に示す第1半田6の組成が9
5Pb−5Snでその厚さが100μmであり、その両
面に配設された第2半田7a,7bの組成が63Pb−
37Snでその厚さが4μmの半田材を用いて半導体チ
ップ1をリードフレーム2aにダイボンディングする場
合、第2半田7a,7bの融点183℃以上の190℃
に加熱してそれを溶解,接合し、その後その190℃の
温度を保持する。これにより第2半田7a,7b中のS
nは、第1半田6中に拡散し、第2半田7a,7b中の
Snの濃度が低下して第1半田6とほぼ同じ組成とな
る。Pb−Sn半田のSn濃度が5%近くになると、図
3からも明らかなように、その溶融点は280℃以上と
なり、したがって、第2半田7a,7bは280℃の耐
熱性を有するようになり、半導体チップ1(図1)とリ
ードフレーム2aの接合部も280℃の耐熱性を得るこ
とになる。
For example, the composition of the first solder 6 shown in FIG.
5Pb-5Sn, the thickness thereof is 100 μm, and the composition of the second solder 7a, 7b provided on both surfaces thereof is 63Pb-.
When the semiconductor chip 1 is die-bonded to the lead frame 2a with a solder material of 37Sn and a thickness of 4 μm, the melting point of the second solder 7a, 7b is 183 ° C. or higher, 190 ° C.
It is melted and bonded by heating it to a temperature of 190 ° C. As a result, the S in the second solder 7a, 7b is
n diffuses into the first solder 6 and the concentration of Sn in the second solders 7a and 7b decreases, so that the n has the same composition as the first solder 6. When the Sn concentration of the Pb-Sn solder becomes close to 5%, as is clear from FIG. 3, the melting point becomes 280 ° C. or higher, so that the second solders 7a and 7b have heat resistance of 280 ° C. In other words, the junction between the semiconductor chip 1 (FIG. 1) and the lead frame 2a also has a heat resistance of 280 ° C.

【0021】ところで、半導体チップ1に作用する熱応
力は、半導体チップ1とリードフレーム2aとの熱膨張
係数の差に接合時に生じる温度差を乗じたものであるか
ら、接合時の加熱温度が低ければ低いほど半導体チップ
1に作用する熱応力は小さくなる。すなわち、190℃
で接合して280℃の耐熱性が得られれば、従来のよう
に単一組成の半田材で280℃で接合した場合に比較し
て、250℃における残留熱応力は約35%低減される
ことになる。この特性により、半導体チップ1と基材2
との組み合わせによっては、その間隔を小さくして20
μm程度として充分な熱応力低減効果が得られる。但
し、第1半田6の厚さを薄くしすぎると、その平坦度を
保つことが困難になるため、その厚さは10μm以上の
必要がある。
By the way, since the thermal stress acting on the semiconductor chip 1 is obtained by multiplying the difference in thermal expansion coefficient between the semiconductor chip 1 and the lead frame 2a by the temperature difference generated at the time of bonding, the heating temperature at the time of bonding is low. The lower the value, the smaller the thermal stress acting on the semiconductor chip 1. That is, 190 ° C
If a heat resistance of 280 ° C is obtained by joining with the above method, the residual thermal stress at 250 ° C will be reduced by about 35% compared with the case of joining with a solder material of a single composition at 280 ° C as in the past. become. Due to this characteristic, the semiconductor chip 1 and the base material 2
Depending on the combination with
A sufficient thermal stress reduction effect can be obtained when the thickness is about μm. However, if the thickness of the first solder 6 is too thin, it becomes difficult to maintain the flatness thereof, so that the thickness needs to be 10 μm or more.

【0022】なお、上記実施例では、シリコン半導体を
Cuリードフレームにダイボンディングする場合に付い
て説明したが、これに限るものではなく、一般に脆弱な
化合物半導体によるチップや電子部品の基材への接合に
適用しても同様の効果が得られることは言うまでもな
い。さらに、上記実施例では95Pb−5Sn半田と6
3Sn−37Pb半田の組み合わせに付いて説明した
が、第1半田6(図1)としては、PbかInあるいは
Sn,Auなどを主成分とする合金であればよく、Pb
−Sn合金に限るものではない。第2半田材としては、
選定した第1半田6の材料よりも低い融点を有する合金
であるか、または、その第1半田6と反応してそれより
低い融点を持つ合金を生成する合金であればよく、例え
ば第1半田6としてPb,第2半田7a,7bとしてS
nを用いても良く、上記実施例の合金に限るものではな
い。また、第2半田7a,7bから第1半田6へ原子を
拡散させて、第2半田7a,7bを溶解させた温度のま
までそれを凝固させる場合におけるプロセス時間短縮の
ために、その拡散係数を増大させることができるCu,
Zn,Au,Ni,Co,Agなどの元素を小量添加す
ることも効果的である。
In the above embodiment, the case where the silicon semiconductor is die-bonded to the Cu lead frame has been described. However, the present invention is not limited to this, and generally a fragile compound semiconductor is used to bond a chip or an electronic component to a base material. It goes without saying that the same effect can be obtained even when applied to joining. Further, in the above-mentioned embodiment, it is possible to use 95Pb-5Sn solder and
The combination of 3Sn-37Pb solder has been described, but the first solder 6 (FIG. 1) may be Pb or In, or an alloy containing Sn, Au, or the like as a main component.
-It is not limited to Sn alloy. As the second solder material,
It may be an alloy having a melting point lower than that of the selected first solder 6, or an alloy that reacts with the first solder 6 to generate an alloy having a lower melting point, for example, the first solder. Pb as 6 and S as the second solder 7a, 7b
n may be used, and the alloy is not limited to the alloy of the above-mentioned embodiment. Further, in order to shorten the process time when the atoms are diffused from the second solder 7a, 7b to the first solder 6 and the second solder 7a, 7b is solidified at the melting temperature, the diffusion coefficient thereof is reduced. Cu, which can increase
It is also effective to add small amounts of elements such as Zn, Au, Ni, Co and Ag.

【0023】[0023]

【発明の効果】以上のように、この発明によれば、第1
の半田とその両面に配設しそれより融点の低い第2の半
田とで、接合部材を構成したので、被接合部材の間隔を
所定の間隔に形成することが容易となり、その被接合部
材間の熱応力を低減することができ、それらの損傷を制
御できる効果がある。また、以上のことにより被接合部
材同士の位置精度が向上し、接合工程の時間短縮が計
れ、接合時の処理温度よりも高い耐熱性を有することが
できるなどの効果がある。
As described above, according to the present invention, the first
Since the joining member is constituted by the solder and the second solder which is disposed on both surfaces thereof and has a lower melting point than that, it becomes easy to form the members to be joined at a predetermined interval, It is possible to reduce the thermal stress of the above, and it is possible to control those damages. Further, as described above, the positional accuracy of the members to be joined is improved, the time of the joining process can be shortened, and heat resistance higher than the processing temperature at the time of joining can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例である半導体装置の構成を
示す断面図である。
FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device that is an embodiment of the present invention.

【図2】この発明におけるダイに半田7a,7bの厚さ
と接合性の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the thickness of solder 7a, 7b and the bondability of the die according to the present invention.

【図3】この発明の第2の実施例におけるPb−Sn半
田の凝固過程を説明するPb−Snの状態図である。
FIG. 3 is a Pb-Sn phase diagram for explaining the solidification process of Pb-Sn solder in the second embodiment of the present invention.

【図4】この発明の第2の実施例における第2半田7
a,7bの厚さとその凝固時間との関係を示す相関図で
ある。
FIG. 4 is a second solder 7 according to a second embodiment of the present invention.
It is a correlation diagram which shows the relationship between the thickness of a and 7b, and its solidification time.

【図5】従来の半導体装置の構成を示す断面図である。FIG. 5 is a cross-sectional view showing a configuration of a conventional semiconductor device.

【図6】特願平3−004832号記載の半導体装置の
構成を示す断面図である。
FIG. 6 is a sectional view showing a configuration of a semiconductor device described in Japanese Patent Application No. 3-004832.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2a リードフレーム 6 第1の半田 7a,7b 第2の半田 1 Semiconductor Chip 2a Lead Frame 6 First Solder 7a, 7b Second Solder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B23K 101:40 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // B23K 101: 40

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の半田と、 前記第1の半田よりも低い融点を有する材料または前記
第1の半田と反応してその第1の半田よりも低い融点の
合金を生成する材料からなり、前記第1の半田の両面に
配置された厚さが1μm以上5μm未満の第2の半田と
を備えたことを特徴とする半田材。
1. A first solder and a material having a melting point lower than that of the first solder or a material which reacts with the first solder to form an alloy having a melting point lower than that of the first solder. And a second solder having a thickness of 1 μm or more and less than 5 μm arranged on both surfaces of the first solder.
【請求項2】 第1の半田の両面に、この第1の半田よ
りも低い融点を有する材料または第1の半田と反応して
第1の半田よりも低い融点の合金を生成する材料からな
る厚さ1μm以上5μm未満の第2の半田を配して形成
された半田材を被接合部材の間に挾み、 前記第2の半田または第2の半田から生成する合金の融
点以上で、かつ、前記第1の半田の融点未満の温度に加
熱し、前記第2の半田または合金を溶融させ、 その後冷却するかまたは溶融温度付近に保つことによっ
て、前記被接合部材を接合することを特徴とした接合方
法。
2. A material having a melting point lower than that of the first solder or a material which reacts with the first solder to form an alloy having a melting point lower than that of the first solder on both surfaces of the first solder. A solder material formed by arranging a second solder having a thickness of 1 μm or more and less than 5 μm is sandwiched between members to be joined, and the melting point of the second solder or an alloy generated from the second solder is equal to or higher than the melting point of the second solder. A member to be joined by heating to a temperature lower than the melting point of the first solder, melting the second solder or alloy, and then cooling or maintaining the temperature near the melting temperature. Joining method.
JP13346892A 1991-10-04 1992-05-26 Solder material and joining method Expired - Fee Related JP3243834B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13346892A JP3243834B2 (en) 1992-05-26 1992-05-26 Solder material and joining method
US07/955,307 US5372295A (en) 1991-10-04 1992-10-01 Solder material, junctioning method, junction material, and semiconductor device
US08/335,995 US5609287A (en) 1991-10-04 1994-11-08 Solder material, junctioning method, junction material, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13346892A JP3243834B2 (en) 1992-05-26 1992-05-26 Solder material and joining method

Publications (2)

Publication Number Publication Date
JPH067990A true JPH067990A (en) 1994-01-18
JP3243834B2 JP3243834B2 (en) 2002-01-07

Family

ID=15105486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13346892A Expired - Fee Related JP3243834B2 (en) 1991-10-04 1992-05-26 Solder material and joining method

Country Status (1)

Country Link
JP (1) JP3243834B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319583A (en) * 1995-05-19 1996-12-03 Toyota Motor Corp Production of sliding member and production of double-layer member
US5673388A (en) * 1995-03-31 1997-09-30 Intel Corporation Memory testing in a multiple processor computer system
US6474531B2 (en) * 1999-12-09 2002-11-05 Sony Corporation Semiconductor light-emitting device and method of manufacturing the same and mounting plate
WO2005124850A1 (en) * 2004-06-17 2005-12-29 Renesas Technology Corp. Semiconductor device and production method for semiconductor device
US7442582B2 (en) 1997-07-14 2008-10-28 Infineon Technologies Ag Method for producing a chip-substrate connection
US7626275B2 (en) 2005-12-16 2009-12-01 Mitsubishi Electric Corporation Semiconductor device
CN104384743A (en) * 2014-09-27 2015-03-04 宁波银马焊材科技有限公司 Low-silver cadmium-free solder and preparation method thereof
WO2019163145A1 (en) * 2018-02-26 2019-08-29 新電元工業株式会社 Semiconductor device production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673388A (en) * 1995-03-31 1997-09-30 Intel Corporation Memory testing in a multiple processor computer system
JPH08319583A (en) * 1995-05-19 1996-12-03 Toyota Motor Corp Production of sliding member and production of double-layer member
US7442582B2 (en) 1997-07-14 2008-10-28 Infineon Technologies Ag Method for producing a chip-substrate connection
US6761303B2 (en) 1999-12-09 2004-07-13 Sony Corporation Semiconductor light-emitting device and method of manufacturing the same and mounting plate
US7078730B2 (en) 1999-12-09 2006-07-18 Sony Corporation Semiconductor light-emitting device and method of manufacturing the same and mounting plate
US6474531B2 (en) * 1999-12-09 2002-11-05 Sony Corporation Semiconductor light-emitting device and method of manufacturing the same and mounting plate
WO2005124850A1 (en) * 2004-06-17 2005-12-29 Renesas Technology Corp. Semiconductor device and production method for semiconductor device
US7626275B2 (en) 2005-12-16 2009-12-01 Mitsubishi Electric Corporation Semiconductor device
CN104384743A (en) * 2014-09-27 2015-03-04 宁波银马焊材科技有限公司 Low-silver cadmium-free solder and preparation method thereof
WO2019163145A1 (en) * 2018-02-26 2019-08-29 新電元工業株式会社 Semiconductor device production method
JP6641524B1 (en) * 2018-02-26 2020-02-05 新電元工業株式会社 Method for manufacturing semiconductor device
CN111602233A (en) * 2018-02-26 2020-08-28 新电元工业株式会社 Method for manufacturing semiconductor device
CN111602233B (en) * 2018-02-26 2023-06-20 新电元工业株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3243834B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US5609287A (en) Solder material, junctioning method, junction material, and semiconductor device
US5990560A (en) Method and compositions for achieving a kinetically controlled solder bond
JPS61154764A (en) Method of combining metal with structural member and combining material
US3046651A (en) Soldering technique
US7442582B2 (en) Method for producing a chip-substrate connection
JP2000210767A (en) Method for joining two parts
US20020092895A1 (en) Formation of a solder joint having a transient liquid phase by annealing and quenching
JPS59155950A (en) Low melting-point glass seal type ceramic package for semiconductor device
JPS58107295A (en) Solder alloy
EP0119691A2 (en) Bonding semiconductive bodies
JP3243834B2 (en) Solder material and joining method
JP2797958B2 (en) Optical semiconductor device bonding structure and bonding method
JP2557268B2 (en) Device mounting method
JPH02117772A (en) Bonding of metal surface
JP4959539B2 (en) Laminated solder material, soldering method and solder joint using the same
JPH04270092A (en) Solder material and joining method
JP2966079B2 (en) Lead frame, semiconductor device using the same, and method of mounting semiconductor device
JPH0146228B2 (en)
JP3214638B2 (en) Ceramic lid for semiconductor package and method of manufacturing the same
KR19990029741A (en) How to solder without flux using gold plated solder material and solder
GB1478498A (en) Joining metal surfaces
JP2892455B2 (en) TAB tape
JP2891427B2 (en) Al electrode pad structure of semiconductor device
JP3586363B2 (en) Manufacturing method of electronic components
JPS61181136A (en) Die bonding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees