JPH067978A - Method for laser beam welding galvanized steel sheets - Google Patents
Method for laser beam welding galvanized steel sheetsInfo
- Publication number
- JPH067978A JPH067978A JP4132084A JP13208492A JPH067978A JP H067978 A JPH067978 A JP H067978A JP 4132084 A JP4132084 A JP 4132084A JP 13208492 A JP13208492 A JP 13208492A JP H067978 A JPH067978 A JP H067978A
- Authority
- JP
- Japan
- Prior art keywords
- galvanized steel
- insert material
- zinc
- laser welding
- galvanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Landscapes
- Laminated Bodies (AREA)
- Electroplating Methods And Accessories (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、亜鉛メッキ鋼板同士、
あるいは亜鉛メッキ鋼板と他の金属とを重ね溶接するレ
ーザ溶接法に関する。The present invention relates to galvanized steel sheets,
Alternatively, the present invention relates to a laser welding method for lap welding a galvanized steel sheet and another metal.
【0002】[0002]
【従来の技術】亜鉛メッキ鋼板の重ね溶接は抵抗溶接法
によるのが一般的である。例えば特公昭54−2621
3号公報に示すように、上下に配置された電極ローラに
それぞれワイヤ電極を巻き掛け、そのワイヤ電極間に亜
鉛メッキ鋼板の重ね部を通すことにより重ね部をシーム
抵抗溶接することができる。しかしながら、シーム抵抗
溶接法では電極ローラ等を被溶接材の両側に配置しなけ
ればならないので構造的に複雑になり、また一般的に溶
接部が直線でかつ平坦なものに限られる。したがって、
片面溶接や曲線・曲面の溶接には適していない。2. Description of the Related Art Lap welding of galvanized steel sheets is generally performed by a resistance welding method. For example, Japanese Patent Publication No. 54-2621
As shown in Japanese Patent Publication No. 3, a wire electrode is wound around each of the upper and lower electrode rollers, and a lap portion of a galvanized steel sheet is passed between the wire electrodes, whereby the lap portion can be seam resistance welded. However, in the seam resistance welding method, the electrode rollers and the like have to be arranged on both sides of the material to be welded, so that the structure is complicated, and generally, the welding portion is limited to a straight and flat welding portion. Therefore,
Not suitable for single-sided welding and welding of curved and curved surfaces.
【0003】一方、アーク溶接法によると、アーク熱に
よりメッキ層から多量の亜鉛蒸気が発生し、これが溶融
金属内に閉じ込められたりして、ビードにポロシティや
表面クレータ等の気孔(以下、これらの気孔をブローホ
ールという)を多数発生させビードの荒れがひどくなる
ことが知られている。On the other hand, according to the arc welding method, a large amount of zinc vapor is generated from the plating layer due to the arc heat, which is trapped in the molten metal and causes porosity (such as porosity and surface craters) in the beads. It is known that the bead becomes aggravated by generating a large number of pores (called blow holes).
【0004】また、レーザ溶接法の場合でもこの現象を
減らすことは困難である。ビードの荒れの現象を図で説
明すると、図7に示すように、レーザ溶接ではレーザビ
ーム10によるキーホール溶接であるが、溶接時に、亜
鉛メッキ鋼板1,2の重ね部にあるメッキ層3,4から
低融点・低沸点の亜鉛が激しく蒸発するため、この亜鉛
蒸気5により溶融池6の溶けた鋼を吹き飛ばしたり、溶
鋼中に亜鉛蒸気が侵入したりして、ビード7に多数のブ
ローホール8を発生させることになる。したがって、レ
ーザ溶接法でも亜鉛メッキ鋼板の重ね溶接はビードの欠
陥が多く、一般には適用できないものとされている。Further, it is difficult to reduce this phenomenon even in the case of the laser welding method. The phenomenon of bead roughening will be described with reference to the drawing. As shown in FIG. 7, the laser welding is keyhole welding with the laser beam 10. Since low-melting-point and low-boiling-point zinc evaporates violently from 4, molten zinc in the molten pool 6 is blown away by this zinc vapor 5, or zinc vapor penetrates into the molten steel, resulting in a large number of blowholes in the bead 7. 8 will be generated. Therefore, even with the laser welding method, lap welding of galvanized steel sheets has many bead defects and is generally not applicable.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、レーザ
溶接法は溶融池を小さくできるのでブローホールの発生
を抑制するためには有効な溶接法であると考えられるこ
と、直線、曲線に関係なく溶接線形状を自由にでき、溶
接の制御性や操作性が優れていることなどから、亜鉛メ
ッキ鋼板の重ね溶接には最も適しているものと思われ
る。特に曲線・曲面溶接が多く、亜鉛メッキ鋼板を多量
に使用する自動車産業界ではその実用化に向けて期待が
大きい。However, the laser welding method is considered to be an effective welding method for suppressing the generation of blow holes because the weld pool can be made small. It is considered to be the most suitable for lap welding of galvanized steel sheets because it can be freely shaped and has excellent controllability and operability of welding. In particular, there are many curved and curved surface welds, and there are great expectations for their practical application in the automobile industry, which uses a large amount of galvanized steel sheets.
【0006】本発明は、このような要望に応えるべく開
発したものであり、レーザ溶接法による亜鉛メッキ鋼板
の重ね溶接において、上記のようなブローホールの発生
をできるだけ防止し、良好なビードを得ることを目的と
するものである。The present invention was developed to meet such a demand, and in the lap welding of galvanized steel sheets by the laser welding method, the occurrence of blow holes as described above is prevented as much as possible and a good bead is obtained. That is the purpose.
【0007】[0007]
【課題を解決するための手段】本発明は、第一に、亜鉛
メッキ鋼板同士または亜鉛メッキ鋼板と他の金属との間
に有機物の薄いインサート材を挾んでその重ね部をレー
ザ溶接するものである。ここで、亜鉛メッキ鋼板には、
電気メッキによるもの及び溶融メッキによるものを含む
ものである。また、有機物製インサート材には高分子系
及びセルロース系のものを含むものである。第二に、対
象とする鋼板は薄鋼板であって、亜鉛メッキ量を10g
/m2 〜120g/m2 とする。第三に、インサート材
の厚さを10μm〜200μmとする。第四に、インサ
ート材の片面または両面を接着する。第五に、インサー
ト材そのものを樹脂コーティングで形成する。第六に、
亜鉛メッキ鋼板が2枚の鋼板の間に樹脂を挾んで一体構
成された制振鋼板を含むものとする。According to the present invention, firstly, a thin insert material of an organic material is sandwiched between galvanized steel sheets or between a galvanized steel sheet and another metal, and the overlapping portion is laser-welded. is there. Here, the galvanized steel sheet,
It includes those by electroplating and those by hot dipping. In addition, the organic insert material includes a polymer material and a cellulose material. Secondly, the target steel sheet is a thin steel sheet, and the zinc plating amount is 10 g.
/ M 2 to 120 g / m 2 . Thirdly, the thickness of the insert material is set to 10 μm to 200 μm. Fourthly, one side or both sides of the insert material are bonded. Fifth, the insert material itself is formed by resin coating. Sixth,
It is assumed that the galvanized steel sheet includes a damping steel sheet integrally formed by sandwiching a resin between two steel sheets.
【0008】[0008]
【作用】本発明によりビードのブローホール発生が防止
されるメカニズムについて説明する。インサート材を構
成する有機物は亜鉛の融点420℃,沸点905℃に対
し融点、沸点が低いため、図1(a)に示すように、レ
ーザビーム10がインサート材11に到達する過程で、
まずインサート材11の樹脂が溶融し、メッキ層3,4
の亜鉛よりも低温で気化する。これに引き続いて亜鉛が
気化する際、その樹脂中の炭素の一部が図1(b)に矢
印aで示すように溶融池内に入り、一方樹脂の気化によ
りできた隙間にメッキ層3,4からの亜鉛蒸気の一部が
矢印bのように入るため(この作用を「隙間の効果」と
呼ぶ)、溶融池内に入る亜鉛蒸気が減少する。またこの
ように炭素を少量含有した溶鋼は粘性が低下するため、
亜鉛蒸気が表面から抜けやすく、溶鋼中に閉じ込められ
ることが少ないものと考えられる。ビード7の断面を観
察すると、図2に示すように継手金属の組成中に炭素1
2が固溶した状態になっていることが認められ、上記隙
間の効果と溶鋼の粘性低下の作用によりブローホールを
減少させるものと推定される。The mechanism of preventing blowholes in the bead according to the present invention will be described. Since the organic material that constitutes the insert material has a low melting point and a low boiling point with respect to zinc having a melting point of 420 ° C. and a boiling point of 905 ° C., as shown in FIG.
First, the resin of the insert material 11 is melted and the plated layers 3 and 4 are
It vaporizes at a lower temperature than zinc. When zinc is subsequently vaporized, a part of carbon in the resin enters the molten pool as shown by an arrow a in FIG. 1 (b), while the plating layers 3, 4 are formed in the gap formed by the vaporization of the resin. Since a part of the zinc vapor from the inside enters as shown by the arrow b (this action is referred to as a "gap effect"), the amount of zinc vapor entering the molten pool decreases. In addition, since the viscosity of molten steel containing a small amount of carbon decreases,
It is considered that zinc vapor easily escapes from the surface and is rarely trapped in molten steel. When the cross section of the bead 7 is observed, carbon 1 is contained in the composition of the joint metal as shown in FIG.
2 is in a solid solution state, and it is presumed that blowholes are reduced by the effect of the above gap and the action of decreasing the viscosity of molten steel.
【0009】[0009]
【実施例】以下、本発明の実施例について説明する。 (1)亜鉛メッキ量について まず、本発明において、亜鉛メッキ量は亜鉛蒸発量に直
接影響を及ぼすものであるから、亜鉛メッキ量とブロー
ホール個数の関係について調べた。図3は横軸に亜鉛メ
ッキ量(g/m2 )を、縦軸にブローホール個数(個/
m)をとって示した実験結果である。実験は下記の条件
で行った。 レーザ条件:CO2 レーザ、出力3kw(一定)、連続
発振、シールドガス無し 材料:両面亜鉛メッキ鋼板(鋼板板厚0.2mm,0.8
mm,3.2mm) インサート材(セロハンテープ、テープ厚150μm) 溶接速度:1m/min 〜10m/minEXAMPLES Examples of the present invention will be described below. (1) Zinc plating amount First, in the present invention, since the zinc plating amount directly affects the zinc evaporation amount, the relationship between the zinc plating amount and the number of blow holes was investigated. In FIG. 3, the horizontal axis represents the zinc plating amount (g / m 2 ), and the vertical axis represents the number of blow holes (pieces /
It is the experimental result shown by taking m). The experiment was conducted under the following conditions. Laser conditions: CO 2 laser, output 3 kw (constant), continuous oscillation, no shield gas Material: Double-sided galvanized steel plate (steel plate thickness 0.2 mm, 0.8
mm, 3.2 mm) Insert material (cellophane tape, tape thickness 150 μm) Welding speed: 1 m / min to 10 m / min
【0010】鋼板板厚t=0.2mmの場合(図3(a)
参照)、亜鉛メッキ量や溶接速度が大となってもブロー
ホール数はおおむね少なく抑えられている。鋼板の板厚
が厚くなるにつれて(図3(b)、(c)参照)、溶鋼
量は多くなるので、ブローホール数も多くなる。したが
って、ブローホール数を減少させるためには亜鉛メッキ
量を少なくするか、溶接速度を遅くする必要がある。実
用上差し支えない程度のブローホール数を最大限n=3
0個/mとすれば、薄鋼板(4.5mm厚以下)に対する
通常の溶接速度(3m/min 以下)では亜鉛メッキ量の
上限を120g/m2 としてよいであろう。When the steel plate thickness t = 0.2 mm (FIG. 3A)
However, the number of blowholes is generally small even if the amount of galvanizing and the welding speed increase. As the plate thickness of the steel plate increases (see FIGS. 3B and 3C), the molten steel amount increases, and the number of blow holes also increases. Therefore, in order to reduce the number of blow holes, it is necessary to reduce the galvanizing amount or slow the welding speed. Maximum number of blow holes is n = 3
If the number is 0 / m, the upper limit of the galvanizing amount may be 120 g / m 2 at a normal welding speed (3 m / min or less) for a thin steel plate (4.5 mm or less).
【0011】(2)インサートの厚さについて 次に、有機物インサートの厚さ(μm)とブローホール
個数(個/m)の関係について調べた。図4に実験結果
を示す。実験は、上記材料と同様に鋼板板厚0.2mm,
0.8mm,3.2mmについて、レーザ出力3kw,亜鉛
メッキ量40g/m2 と一定にして行った。インサート
材にはセロハンテープを使用した。(2) Thickness of Insert Next, the relationship between the thickness (μm) of the organic material insert and the number of blowholes (number / m) was investigated. The experimental results are shown in FIG. The experiment was performed with the same steel plate thickness of 0.2 mm,
With respect to 0.8 mm and 3.2 mm, the laser output was 3 kw and the galvanizing amount was 40 g / m 2, which were constant. Cellophane tape was used as the insert material.
【0012】図4の結果から、まず有機物インサートの
厚さがあまり薄いと、亜鉛蒸発量に比べて樹脂蒸発量が
少ないため前記隙間の効果が十分に発揮されない。この
ため、インサート材厚は10μm以上必要である。ま
た、インサート材厚がある程度厚くなると、ブローホー
ル数が溶接速度の増加とともに急増する傾向にある。こ
れは、溶接速度が速くなれば樹脂蒸気が溶鋼中を抜け出
る速度よりも溶鋼の冷却速度が速いためである。さら
に、鋼板板厚の増加にともない一層樹脂蒸気の脱出が困
難になり、ブローホール数が急増する。また、従来のよ
うにインサート材無しの場合、ブローホールが多発す
る。ブローホール数を上記と同じ基準n=30個/mと
すれば、インサート材厚の上限は200μmでよい。From the results shown in FIG. 4, first, if the organic insert is too thin, the amount of resin evaporation is smaller than the amount of zinc evaporation, so that the effect of the gap is not sufficiently exhibited. Therefore, the insert material thickness is required to be 10 μm or more. Moreover, when the insert material thickness is increased to some extent, the number of blow holes tends to increase rapidly as the welding speed increases. This is because the faster the welding speed is, the faster the molten steel is cooled than the rate at which the resin vapor exits the molten steel. Further, as the thickness of the steel plate increases, it becomes more difficult for the resin vapor to escape, and the number of blow holes increases sharply. Further, as in the conventional case, when there is no insert material, blow holes frequently occur. If the number of blow holes is set to the same standard n = 30 holes / m as described above, the upper limit of the insert material thickness may be 200 μm.
【0013】図5は以上の結果を溶接速度v=7m/mi
n ,鋼板板厚t=0.8mmのものについて整理したもの
であり、横軸に亜鉛メッキ量、縦軸にブローホール数を
とり、インサート材厚ごとの変化を示すグラフである。
n=30個/m以下の場合、亜鉛メッキ量120g/m
2 以下、インサート材厚200μm以下が適当である。
また、n=30個/m以下の条件で、亜鉛メッキ量とイ
ンサート材厚の使用可能範囲を示すと、図6の斜線で示
すように矩形の範囲となる。なお、亜鉛メッキ鋼板とし
ての実用上の要求から亜鉛メッキ量の下限を10g/m
2 としたものである。FIG. 5 shows the above results of welding speed v = 7 m / mi
n is a graph in which the steel plate thickness t = 0.8 mm is arranged, and is a graph showing changes with respect to insert material thickness, where the horizontal axis represents the zinc plating amount and the vertical axis represents the number of blow holes.
When n = 30 pieces / m or less, zinc plating amount 120 g / m
A thickness of 2 or less and an insert material thickness of 200 μm or less are suitable.
Further, when the usable range of the zinc plating amount and the insert material thickness is shown under the condition of n = 30 pieces / m or less, it becomes a rectangular range as shown by the hatched line in FIG. In addition, the lower limit of the galvanized amount is 10 g / m from the practical requirement as a galvanized steel sheet.
It is supposed to be 2 .
【0014】また、インサート材の取り付けに際して
は、片面または両面を接着するか、もしくは樹脂コーテ
ィングで形成するとよい。また、本発明はいわゆる制振
鋼板(2枚の鋼板の間に合成樹脂を挾んで複合化したも
の)にも適用することができる。When the insert material is attached, one side or both sides may be adhered or may be formed by resin coating. Further, the present invention can also be applied to a so-called vibration-damping steel plate (composite by sandwiching a synthetic resin between two steel plates).
【0015】[0015]
【発明の効果】以上のように本発明によれば、亜鉛メッ
キ鋼板と亜鉛メッキ鋼板の間、あるいは亜鉛メッキ鋼板
と普通鋼板との間に、有機物の薄いインサート材を挾ん
でレーザ溶接するものであるから、溶接時、亜鉛より低
融点・低沸点の樹脂が最初に蒸発することにより、その
樹脂蒸気によりできた隙間に亜鉛蒸気が入り、亜鉛蒸気
の溶鋼中に入る量を実質的に減らすとともに、溶鋼中に
固溶した樹脂の炭素で溶鋼の粘性を減少させる結果亜鉛
蒸気の排出を良好にするため、ブローホールの発生がほ
とんどない良好なビードが得られる。As described above, according to the present invention, a thin insert material of an organic material is sandwiched between a galvanized steel sheet and a galvanized steel sheet, or between a galvanized steel sheet and a normal steel sheet, and laser welding is performed. Therefore, during welding, the resin with a lower melting point and lower boiling point than zinc evaporates first, which causes zinc vapor to enter the gap created by the resin vapor and substantially reduce the amount of zinc vapor entering the molten steel. As a result of reducing the viscosity of the molten steel with the carbon of the resin solid-dissolved in the molten steel, the zinc vapor is satisfactorily discharged, so that good beads with almost no blowholes can be obtained.
【図1】本発明によりブローホールの発生が防止される
メカニズムの説明図である。FIG. 1 is an explanatory diagram of a mechanism for preventing the generation of blowholes according to the present invention.
【図2】本実施例におけるビードの断面図である。FIG. 2 is a cross-sectional view of a bead in this example.
【図3】亜鉛メッキ量とブローホール数の実験結果を示
すグラフである。FIG. 3 is a graph showing experimental results of galvanizing amount and blowhole number.
【図4】インサート材厚とブローホール数の実験結果を
示すグラフである。FIG. 4 is a graph showing experimental results of insert material thickness and number of blow holes.
【図5】亜鉛メッキ量とブローホール数とインサート材
厚の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the zinc plating amount, the number of blow holes, and the insert material thickness.
【図6】ブローホール数n≦30の条件で亜鉛メッキ量
とインサート材厚の使用可能範囲を示す図である。FIG. 6 is a diagram showing a usable range of a zinc plating amount and an insert material thickness under the condition of the number of blow holes n ≦ 30.
【図7】従来のレーザ溶接法によるブローホール発生状
況を示す説明図である。FIG. 7 is an explanatory diagram showing a blowhole generation situation by a conventional laser welding method.
1,2 亜鉛メッキ鋼板 3,4 メッキ層 7 ビード 10 レーザビーム 11 インサート材 1, 2 Galvanized steel plate 3, 4 Plating layer 7 Bead 10 Laser beam 11 Insert material
Claims (6)
または亜鉛メッキ鋼板と他の金属との重ね溶接におい
て、 重ね部に有機物の薄いインサート材を介在させてレーザ
溶接をすることを特徴とする亜鉛メッキ鋼板のレーザ溶
接方法。1. Zinc plating, characterized in that, in the lap welding of galvanized steel plates to each other or of a galvanized steel plate and another metal by laser welding, laser welding is performed by interposing a thin insert material of an organic material in the lap part. Laser welding method for steel sheets.
キ量を10g/m2〜120g/m2 としたことを特徴
とする請求項1記載の亜鉛メッキ鋼板のレーザ溶接方
法。Wherein a steel sheet steel sheet of interest, the laser welding method of the galvanized steel sheet according to claim 1, characterized in that the galvanized amount of 10g / m 2 ~120g / m 2 .
00μmとしたことを特徴とする請求項1記載の亜鉛メ
ッキ鋼板のレーザ溶接方法。3. The thickness of the insert material is 10 μm to 2
The method for laser welding a galvanized steel sheet according to claim 1, wherein the laser welding method is 00 μm.
着してなることを特徴とする請求項1記載の亜鉛メッキ
鋼板のレーザ溶接方法。4. The laser welding method for galvanized steel sheet according to claim 1, wherein one side or both sides of the insert material are bonded.
ィングで形成したことを特徴とする請求項1記載の亜鉛
メッキ鋼板のレーザ溶接方法。5. The method for laser welding a galvanized steel sheet according to claim 1, wherein the insert material is formed on the overlapped portion by coating.
で形成される制振鋼板を含むことを特徴とする請求項1
記載の亜鉛メッキ鋼板のレーザ溶接方法。6. A vibration-damping steel plate formed by sandwiching a resin between two galvanized steel plates.
A method for laser welding galvanized steel sheet according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4132084A JP2743708B2 (en) | 1992-05-25 | 1992-05-25 | Laser welding method for galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4132084A JP2743708B2 (en) | 1992-05-25 | 1992-05-25 | Laser welding method for galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH067978A true JPH067978A (en) | 1994-01-18 |
JP2743708B2 JP2743708B2 (en) | 1998-04-22 |
Family
ID=15073129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4132084A Expired - Fee Related JP2743708B2 (en) | 1992-05-25 | 1992-05-25 | Laser welding method for galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2743708B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1331071A1 (en) | 2000-10-19 | 2003-07-30 | Toyo Kohan Co., Ltd. | Method for trimming resin film |
WO2007094442A1 (en) * | 2006-02-17 | 2007-08-23 | Taiyo Nippon Sanso Corporation | Shield gas for hybrid welding and method of hybrid welding using the gas |
JP2007216274A (en) * | 2006-02-17 | 2007-08-30 | Taiyo Nippon Sanso Corp | Shield gas for hybrid welding, and hybrid welding method using the shield gas |
WO2008105163A1 (en) * | 2007-02-28 | 2008-09-04 | Osaka University | Method for forming joint part having excellent sealing properties between dissimilar metal materials, and dissimilar metal composite |
US11376691B2 (en) | 2016-03-30 | 2022-07-05 | Panasonic Intellectual Property Management Co., Ltd. | Joint structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1505553B (en) | 2001-04-27 | 2010-07-07 | 本田技研工业株式会社 | Laser beam welding method and apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6174793A (en) * | 1984-09-20 | 1986-04-17 | プリマ インダストリ エス,ピ−,エ− | Laser welding method of metal sheet to be protected coated with low evaporation temperature material |
JPH03165994A (en) * | 1989-11-22 | 1991-07-17 | Fanuc Ltd | Laser beam welding for galvanized steel plate |
JPH04279291A (en) * | 1991-03-06 | 1992-10-05 | Fanuc Ltd | Laser beam welding method |
JPH04288986A (en) * | 1991-03-19 | 1992-10-14 | Sanyo Mach Works Ltd | Laser beam welding method |
-
1992
- 1992-05-25 JP JP4132084A patent/JP2743708B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6174793A (en) * | 1984-09-20 | 1986-04-17 | プリマ インダストリ エス,ピ−,エ− | Laser welding method of metal sheet to be protected coated with low evaporation temperature material |
JPH03165994A (en) * | 1989-11-22 | 1991-07-17 | Fanuc Ltd | Laser beam welding for galvanized steel plate |
JPH04279291A (en) * | 1991-03-06 | 1992-10-05 | Fanuc Ltd | Laser beam welding method |
JPH04288986A (en) * | 1991-03-19 | 1992-10-14 | Sanyo Mach Works Ltd | Laser beam welding method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1331071A1 (en) | 2000-10-19 | 2003-07-30 | Toyo Kohan Co., Ltd. | Method for trimming resin film |
WO2007094442A1 (en) * | 2006-02-17 | 2007-08-23 | Taiyo Nippon Sanso Corporation | Shield gas for hybrid welding and method of hybrid welding using the gas |
JP2007216274A (en) * | 2006-02-17 | 2007-08-30 | Taiyo Nippon Sanso Corp | Shield gas for hybrid welding, and hybrid welding method using the shield gas |
WO2008105163A1 (en) * | 2007-02-28 | 2008-09-04 | Osaka University | Method for forming joint part having excellent sealing properties between dissimilar metal materials, and dissimilar metal composite |
JP5119458B2 (en) * | 2007-02-28 | 2013-01-16 | 国立大学法人大阪大学 | Method for forming joints of dissimilar metal materials having excellent sealing properties |
US11376691B2 (en) | 2016-03-30 | 2022-07-05 | Panasonic Intellectual Property Management Co., Ltd. | Joint structure |
Also Published As
Publication number | Publication date |
---|---|
JP2743708B2 (en) | 1998-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ono et al. | Development of laser-arc hybrid welding | |
US5618452A (en) | Method and apparatus for laser welding with an assist gas including dried air and the assist gas composition | |
US6479168B2 (en) | Alloy based laser welding | |
US5968672A (en) | Weldment produced by beam welding | |
WO1991007250A1 (en) | Laser welding method for zinc-plated steel sheet | |
JPH0596392A (en) | Method for laser welding of zinc plated steel | |
US7820939B2 (en) | Zero-gap laser welding | |
JPH067978A (en) | Method for laser beam welding galvanized steel sheets | |
JP3767375B2 (en) | Method of lap welding of galvanized steel sheet and welded thin sheet | |
JP2003094184A (en) | Lap laser-beam welding method for galvanized steel sheet | |
JP2002178178A (en) | Laser lap welding method for metal with surface coating | |
US20060065639A1 (en) | Method of welding galvanized steel components | |
JP3533450B2 (en) | Lamination laser welding method of aluminum plated steel plate | |
JPH05318155A (en) | Laser welding method for zinc electroplated steel plate | |
Ono et al. | Welding properties of thin steel sheets by laser-arc hybrid welding: laser-focused arc welding | |
JP2002066774A (en) | Welding method for galvanized steel sheet | |
KR20040058615A (en) | Apparatus for Eliminating of Coating Material on Coated Metal Plate and Welding Method Using That | |
JP2002331375A (en) | Lap laser beam welding method for galvanized sheet iron | |
JP3223172B2 (en) | Welding method of laser welded body made of aluminum plated steel sheet | |
JPH05318154A (en) | Laser welding method for dumping steel plate | |
JPH03243276A (en) | Welding method for aluminum alloys | |
Yao et al. | Performance improvements of aluminum foam with different solder compositions via liquid diffusion welding | |
WO2024106053A1 (en) | Method for manufacturing dissimilar material joint structure, and dissimilar material joint structure | |
JP6885088B2 (en) | Steel members with welded joints and their manufacturing methods | |
JPH08215882A (en) | Laser beam welding method of lap joint of galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |