JPH0679487B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH0679487B2
JPH0679487B2 JP63127268A JP12726888A JPH0679487B2 JP H0679487 B2 JPH0679487 B2 JP H0679487B2 JP 63127268 A JP63127268 A JP 63127268A JP 12726888 A JP12726888 A JP 12726888A JP H0679487 B2 JPH0679487 B2 JP H0679487B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63127268A
Other languages
Japanese (ja)
Other versions
JPH01296567A (en
Inventor
史朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63127268A priority Critical patent/JPH0679487B2/en
Publication of JPH01296567A publication Critical patent/JPH01296567A/en
Publication of JPH0679487B2 publication Critical patent/JPH0679487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解質二次電池の改良に関するものであ
る。
TECHNICAL FIELD The present invention relates to improvements in non-aqueous electrolyte secondary batteries.

従来技術とその問題点 リチウム、ナトリウム等のアルカリ金属を負極活物質と
し、プロピレンカーボネート、エチレンカーボネート、
テトラヒドロフラン、ジメトキシエタン等の溶媒中に過
塩素酸リチウム、ホウ弗化リチウム等の溶質を溶解した
非水溶液を電解質とし、マンガン、モリブテン、バナジ
ウム等の遷移金属の酸化物、硫化物等を正極活物質とし
た非水電解質二次電池の開発が、盛んに進められてい
る。
Prior art and its problems Alkali metals such as lithium and sodium are used as a negative electrode active material, and propylene carbonate, ethylene carbonate,
A non-aqueous solution prepared by dissolving a solute such as lithium perchlorate or lithium borofluoride in a solvent such as tetrahydrofuran or dimethoxyethane is used as an electrolyte, and an oxide or sulfide of a transition metal such as manganese, molybdenum, or vanadium is used as a positive electrode active material. The development of the non-aqueous electrolyte secondary battery has been actively promoted.

しかしながら、二次電池としての特性に多くの問題点を
残している。その一例として、正極、負極各々の電気化
学的可逆性の低下が最も大きい問題である。
However, many problems remain in the characteristics of the secondary battery. As one example, the most serious problem is the decrease in the electrochemical reversibility of each of the positive electrode and the negative electrode.

正極活物質として、硫化物と酸化物があるが、これを比
較した場合、以下の如くである。
There are sulfides and oxides as the positive electrode active material, and the comparison is as follows.

硫化物では、遊離硫黄が負極活物質と反応する点、一般
的には硫化物より酸化物の方が、多くのアルカリ金属イ
オンを取り込めるため高容量である点等から酸化物の方
が優位である。
Among sulfides, oxides are superior to sulfides in that free sulfur reacts with the negative electrode active material, and generally oxides are higher than sulfides because they have a higher capacity because they can take in more alkali metal ions. is there.

又、安全面及び合成法から考慮しても酸化物が有利であ
る。
Oxides are also advantageous in terms of safety and synthesis method.

酸化物の内でバナジウム酸化物に関して、多くの研究が
なされてきた。例えば、V2O5、非晶質V2O5、V6O13等が
ある。これらを正極活物質として用いた電池は、いずれ
も高容量であるが、放電特性が複数段になることや、サ
イクル進行時に、構造破壊を生じるといった欠点があ
る。
Much research has been done on vanadium oxides among the oxides. For example, there are V 2 O 5 , amorphous V 2 O 5 , V 6 O 13, and the like. Batteries using these as the positive electrode active material all have high capacities, but have the drawbacks that the discharge characteristics are in multiple stages and that structural breakdown occurs during cycle progress.

又、V2O5やV6O13は過放電に対して電極が劣化しやすい
と言った欠点がある。
In addition, V 2 O 5 and V 6 O 13 have a drawback in that the electrodes are likely to deteriorate due to overdischarge.

これらを改良するべく、予めリチウムを結晶格子中に挿
入したリチエートバナジウム酸化物である。LixV3O8
過放電に強く、高容量であり、放電特性も平坦性である
という優れた性能を有する物質が見い出された。しかし
ながらこの物は、合成法によりその特性が大きく左右さ
れ、電圧平坦性が悪く、サイクル特性が低下するといっ
た欠点を有す。
In order to improve these, it is a lithium vanadium oxide in which lithium is inserted in the crystal lattice in advance. LixV 3 O 8 was found to be a substance having excellent performances such as strong resistance to overdischarge, high capacity, and flat discharge characteristics. However, this product has the drawbacks that the characteristics are greatly influenced by the synthesis method, the voltage flatness is poor, and the cycle characteristics are deteriorated.

簡単な熱処理合成により大量に合成したLixV3O8は上記
の性質が顕著である。
LixV 3 O 8 produced in large quantities by simple heat treatment synthesis has the above-mentioned properties remarkably.

発明の目的 本発明は、上記従来の問題点を解決したもので、耐過放
電性能の優れた、高容量、放電々圧の平坦性の優れた、
長寿命の非水電解質二次電池を提供することを目的とす
る。
The present invention is to solve the above-mentioned conventional problems, excellent in over-discharge resistance performance, high capacity, excellent flatness of discharge constant pressure,
An object is to provide a long-life non-aqueous electrolyte secondary battery.

発明の構成 本発明は、上記目的を達成するべく負極活物質としてア
ルカリ金属を、電解質としてアルカリ金属イオン導電性
の非水電解質を用いる電池の正極活物質として、水溶液
処理により遊離したLi2O、Li2CO3及びバナジウム酸化物
等を除去したリチエートバナジウム酸化物であるLixV3O
8を用いることを特徴とする非水電解質二次電池であ
る。
Structure of the invention The present invention is, to achieve the above object, an alkali metal as a negative electrode active material, as a positive electrode active material of a battery using an alkali metal ion conductive non-aqueous electrolyte as an electrolyte, Li 2 O liberated by aqueous solution treatment, LixV 3 O, a lithiated vanadium oxide from which Li 2 CO 3 and vanadium oxide have been removed
It is a non-aqueous electrolyte secondary battery characterized by using 8 .

実施例 以下、本発明の詳細について一実施例により説明する。Example Hereinafter, details of the present invention will be described by way of an example.

市販特級試薬の五酸化バナジウムと炭酸リチウムをモル
比5:2を用い、乳鉢により充分混合した。
Vanadium pentoxide, which is a commercially available special grade reagent, and lithium carbonate were used in a molar ratio of 5: 2, and were thoroughly mixed in a mortar.

次にこれを空気中約700℃で48時間以上熱処理合成し、L
i1.2V3O8を得た。このLi1.2V3O8を自動乳鉢で粉砕し、4
00mlsh篩を通し粒径を平均20μmとした。
Next, heat-synthesize this in air at about 700 ° C for 48 hours or longer, and
i 1.2 V 3 O 8 was obtained. Crush this Li 1.2 V 3 O 8 in an automatic mortar and
The particles were passed through a 00 mlsh sieve to an average particle size of 20 μm.

粒径を調節したLi1.2V3O8を、水溶液処理として緩衝溶
液等の水溶液に溶かし、遊離したLi2O、Li2CO3及びバナ
ジウム酸化物等をロ過して除去した。その後、数回水洗
してロ紙より取り出し、約400℃にて24時間以上乾燥し
た。
Li 1.2 V 3 O 8 whose particle size was adjusted was dissolved in an aqueous solution such as a buffer solution as an aqueous solution treatment, and liberated Li 2 O, Li 2 CO 3 and vanadium oxide were removed by filtration. Then, it was washed several times with water, taken out from the paper, and dried at about 400 ° C. for 24 hours or more.

この活物質と導電剤、アセチレンブラック及びバインダ
ーであるポリテトラフルオロエチレンとを、重量比80:1
5:5を乳鉢で混練した。これをローラープレスにより0.8
mm厚のシート状に作成した。真空下、200℃で乾燥し、
正極を得た。
The active material, the conductive agent, acetylene black, and polytetrafluoroethylene as the binder were mixed in a weight ratio of 80: 1.
5: 5 was kneaded in a mortar. This is 0.8 with a roller press.
It was made into a sheet with a thickness of mm. Dried under vacuum at 200 ℃,
A positive electrode was obtained.

次に厚み0.3mmのリチウム薄板を打ち抜きこれを負極と
した。
Next, a thin lithium plate having a thickness of 0.3 mm was punched out and used as a negative electrode.

電解液は、プロピレンカーボネイト(PC)とジメトキシ
エタン(DME)との等体積混合溶媒に1mol濃度のLiClO4
を溶解した。
The electrolyte was 1 mol concentration of LiClO 4 in a mixed solvent of equal volume of propylene carbonate (PC) and dimethoxyethane (DME).
Was dissolved.

上記正極、負極、電解液及びセパレータを用いてコイン
形電池を作成し、本発明の電池を得た。
A coin battery was prepared using the positive electrode, the negative electrode, the electrolytic solution and the separator to obtain the battery of the present invention.

比較のため従来品として、正極に熱処理合成により得た
Li1.2V3O8を用い、負極、電解液及びセパレータは同じ
とした同様のコイン形電池を作成した。
For comparison, the conventional product was obtained by heat treatment synthesis on the positive electrode.
A similar coin-shaped battery was prepared using Li 1.2 V 3 O 8 and using the same negative electrode, electrolytic solution and separator.

本発明の電池と従来品電池を用いて、サイクル寿命試験
を行った。尚、この時のカット電圧は、上限3.4V,下限
2.0Vとした。この結果を第1図と第2図に示した。
A cycle life test was performed using the battery of the present invention and the conventional battery. The cut voltage at this time is the upper limit of 3.4V and the lower limit.
It was set to 2.0V. The results are shown in FIGS. 1 and 2.

第1図は、放電々圧特性の比較を示した図である。FIG. 1 is a diagram showing a comparison of discharge pressure characteristics.

サイクル試験における の特性図である。In cycle test FIG.

本発明の電池は、従来品に比べて、極めて放電電圧の平
坦性が優れている。
The battery of the present invention is extremely excellent in flatness of discharge voltage as compared with the conventional product.

又、第2図はサイクル寿命と容量との関係を示した図で
ある。こゝでも本発明の電池は、サイクルにおける容量
低下が極めて少ないことがわかる。
FIG. 2 is a diagram showing the relationship between cycle life and capacity. Here again, it is understood that the battery of the present invention has a very small decrease in capacity during cycling.

リチエートバナジウム酸化物は、TiS2等に比べるとリチ
ウムイオンがインターカレーション時に、溶媒を伴なわ
ないために、空孔の広がりが少なくサイクル進行による
構造破壊が少ない。又1モル当たり3モルのリチウムイ
オンを収容する能力があるので、高容量であり理論エネ
ルギー密度は815WH/kgである。過放電に対してもV6O13
等と比べると強く、構造安定性がある。
Lithiumate vanadium oxide has less pore expansion and less structural destruction due to cycle progress because lithium ions do not accompany the solvent during intercalation compared to TiS 2 and the like. Since it has a capacity of accommodating 3 mol of lithium ions per mol, it has a high capacity and a theoretical energy density of 815 WH / kg. V 6 O 13 even for over discharge
It is stronger and more stable than other materials.

発明の効果 上述した如く、本発明は耐過放電性能の優れた高容量、
放電々圧の平坦性の優れた、長寿命の非水電解質二次電
池を提供することが出来るので、その工業的価値は極め
て大である。
EFFECTS OF THE INVENTION As described above, the present invention provides a high capacity with excellent over-discharge resistance,
Since it is possible to provide a long-life non-aqueous electrolyte secondary battery having excellent flatness of discharge constant pressure, its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電池と従来品電池の放電々圧特性を比
較した図、第2図は本発明と従来品とのサイクル寿命と
容量の関係を示した図である。
FIG. 1 is a diagram comparing the discharge pressure characteristics of the battery of the present invention and a conventional product, and FIG. 2 is a diagram showing the relationship between the cycle life and the capacity of the present invention and the conventional product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極活物質としてアルカリ金属を、電解質
としてアルカリ金属イオン導電性の非水電解質を用いる
電池の正極活物質として、水溶液処理により遊離したLi
2O、Li2CO3及びバナジウム酸化物等を除去したリチエー
トバナジウム酸化物であるLixV3O8を用いることを特徴
とする非水電解質二次電池。
1. Li liberated by treatment with an aqueous solution as a positive electrode active material of a battery using an alkali metal as a negative electrode active material and an alkali metal ion conductive non-aqueous electrolyte as an electrolyte.
A non-aqueous electrolyte secondary battery using LixV 3 O 8 which is a lithium vanadium oxide from which 2 O, Li 2 CO 3 and vanadium oxide have been removed.
JP63127268A 1988-05-25 1988-05-25 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0679487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127268A JPH0679487B2 (en) 1988-05-25 1988-05-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127268A JPH0679487B2 (en) 1988-05-25 1988-05-25 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH01296567A JPH01296567A (en) 1989-11-29
JPH0679487B2 true JPH0679487B2 (en) 1994-10-05

Family

ID=14955804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127268A Expired - Fee Related JPH0679487B2 (en) 1988-05-25 1988-05-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0679487B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831715B1 (en) * 2001-10-25 2004-03-19 Centre Nat Rech Scient LITHIUM AND VANADIUM OXIDE, ITS USE AS AN ACTIVE ELECTRODE MATERIAL
FR2877146B1 (en) * 2004-10-22 2007-01-19 Batscap Sa NANOSTRUCTURE MATERIAL, PROCESS FOR ITS PREPARATION.
WO2008125647A2 (en) * 2007-04-16 2008-10-23 Basf Se Method for the production of lithium-rich metal oxides

Also Published As

Publication number Publication date
JPH01296567A (en) 1989-11-29

Similar Documents

Publication Publication Date Title
US4194062A (en) Rechargeable dichalcogenide cell
EP0565273A1 (en) Secondary battery and manufacturing method therefor
JPH0746607B2 (en) Non-aqueous secondary battery
JP2964732B2 (en) Rechargeable battery
JPH1027626A (en) Lithium secondary battery
JPH07335261A (en) Lithium secondary battery
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
CA2863827A1 (en) Energy storage systems having an electrode comprising lixsy
EP0809868A1 (en) Delithiated cobalt oxide and nickel oxide phases and method of preparing same
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JPH04253162A (en) Lithium secondary battery
JPH0679487B2 (en) Non-aqueous electrolyte secondary battery
JPH1197062A (en) Organic electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
Menetrier et al. Utilization of V6O13 as the positive electrode in lithium batteries
JPH0945330A (en) Nonaqueous secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JP2528183B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH0359963A (en) Lithium secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JP2001126730A (en) Nonaqueous electrolytic secondary cell and method for preparing the same
JP3163444B2 (en) Lithium secondary battery
JP3066086B2 (en) Non-aqueous secondary battery
JPH02270269A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees