JPH0679478A - Device and method for working by vacuum ultraviolet rays - Google Patents

Device and method for working by vacuum ultraviolet rays

Info

Publication number
JPH0679478A
JPH0679478A JP4238532A JP23853292A JPH0679478A JP H0679478 A JPH0679478 A JP H0679478A JP 4238532 A JP4238532 A JP 4238532A JP 23853292 A JP23853292 A JP 23853292A JP H0679478 A JPH0679478 A JP H0679478A
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
ultraviolet light
wavelength conversion
processing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4238532A
Other languages
Japanese (ja)
Other versions
JP2571740B2 (en
Inventor
Tomoyuki Wada
智之 和田
Koji Sugioka
幸次 杉岡
Hideo Tashiro
英夫 田代
Koichi Toyoda
浩一 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP4238532A priority Critical patent/JP2571740B2/en
Publication of JPH0679478A publication Critical patent/JPH0679478A/en
Application granted granted Critical
Publication of JP2571740B2 publication Critical patent/JP2571740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To provide the device and the method for working by vacuum ultraviolet rays, by which many vacuum ultraviolet rays being suitable for working can be obtained, and also, variegated working can be executed with high accuracy. CONSTITUTION:A laser light from a laser light source 1 is constituted so as to be made incident on a Raman cell 4 through a mirror 2, and a condensing lens 3. In the Raman cell 4, a gas pressure controller 5 is provided. Vacuum ultraviolet rays generated by the Raman cell 4 are subjected to wavelength selection by a 60-degree dispersing prism 6, and radiated to a sample 12 held on a sample base 11 through a lens 8, a slit 9 and a mask 10 in a vacuum vessel 7. This sample base 11 is constituted so as to be movable between the inside of an optical path and the outside of the optical path, and in a state that the sample base 11 is moved to the outside of the optical path, the vacuum ultraviolet rays are made incident on a beam splitter 13, divided into two, and made incident on a fluorescent screen 14 and an output detecting machine 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光を利用した
加工装置および加工方法に係り、特に、真空紫外領域に
光の吸収が存在する物質の加工に好適な真空紫外光によ
る加工装置および加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing apparatus and a processing method using laser light, and particularly to a processing apparatus and processing using vacuum ultraviolet light suitable for processing a substance having absorption of light in the vacuum ultraviolet region. Regarding the method.

【0002】[0002]

【従来の技術】従来から、レーザー光を利用して各種の
物質を加工することが行われている。このようなレーザ
ー光として真空紫外光を利用した場合次のような利点が
ある。 光の波長が短いことから高い加工精度が得られる。
2. Description of the Related Art Conventionally, various materials have been processed using laser light. The use of vacuum ultraviolet light as such laser light has the following advantages. Since the wavelength of light is short, high processing accuracy can be obtained.

【0003】 加工対象物質の光の吸収率の高い波長
を選択すると、光子のエネルギーが高いことから光によ
って物質を構成する分子の結合を切ることができ、熱加
工に見られるような損傷を与えることなく物質を加工で
きる。
When a wavelength of a material to be processed having a high light absorptivity is selected, the photon energy is high, so that the light can break the bonds of the molecules constituting the material, resulting in damage as seen in thermal processing. Can process materials without

【0004】 光化学反応を利用した加工が可能であ
る。
Processing using a photochemical reaction is possible.

【0005】従来、このような加工用の真空紫外光の実
用可能なコヒーレント光源としては、ArFレーザー
(波長193nm)、F2 レーザー(波長157nm)
の2種がある。
Conventionally, as a practical coherent light source of vacuum ultraviolet light for such processing, ArF laser (wavelength 193 nm), F 2 laser (wavelength 157 nm) has been used.
There are two types.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
においては、実用可能な加工用の真空紫外光の光源が2
種類(2波長)しかなく、加工対象となる物質や加工方
法が限定されるという問題があった。
As described above, in the prior art, there have been two practically available vacuum ultraviolet light sources for processing.
There is only one type (two wavelengths), and there is a problem that the material to be processed and the processing method are limited.

【0007】また、このような真空紫外光の波長域を拡
大する方法として、完成度の高い紫外レーザーを非線形
波長変換法で真空紫外光に変換する方法が知られてい
る。しかしながら、この方法の場合、得られる真空紫外
光の出力が数キロワット程度と弱いこと、また、得られ
る真空紫外光ビームの空間強度分布(ビーム形状)がビ
ーム中心部の強度が弱いドーナツ状になる等の問題があ
り、加工用としては用いられていない。
As a method of expanding the wavelength range of such vacuum ultraviolet light, there is known a method of converting a highly complete ultraviolet laser into vacuum ultraviolet light by a nonlinear wavelength conversion method. However, in the case of this method, the output of the obtained vacuum ultraviolet light is as weak as several kilowatts, and the spatial intensity distribution (beam shape) of the obtained vacuum ultraviolet light beam becomes a donut shape in which the intensity at the beam center is weak. However, it is not used for processing.

【0008】本発明は、かかる従来の事情に対処してな
されたもので、加工用に適したより多くの真空紫外光を
得ることができ、高精度かつ多彩な加工を行うことので
きる真空紫外光による加工装置および加工方法を提供し
ようとするものである。
The present invention has been made in consideration of such conventional circumstances, and it is possible to obtain a larger amount of vacuum ultraviolet light suitable for processing and to perform a highly accurate and various processing. It is intended to provide a processing device and a processing method according to the present invention.

【0009】[0009]

【課題を解決するための手段】本発明の真空紫外光によ
る加工装置は、励起光を発生させるレーザー光源と、前
記レーザー光源からの前記励起光を波長変換する波長変
換物質が充填された波長変換セルと、前記波長変換セル
から放出される真空紫外光を、内部に収容した被加工物
に照射して加工を行う真空チャンバと、前記真空紫外光
を観察可能として、該真空紫外光のビーム形状をモニタ
するためのビームモニタ機構と、前記波長変換セル内の
圧力を変更し、前記真空紫外光のビームを加工に適する
よう調節するための圧力調節機構とを具備したことを特
徴とする。
A processing apparatus using vacuum ultraviolet light according to the present invention is a wavelength conversion device filled with a laser light source for generating excitation light and a wavelength conversion substance for wavelength converting the excitation light from the laser light source. Cell, a vacuum chamber for performing processing by irradiating a workpiece housed therein with vacuum ultraviolet light emitted from the wavelength conversion cell, and observing the vacuum ultraviolet light, and a beam shape of the vacuum ultraviolet light And a pressure adjusting mechanism for changing the pressure in the wavelength conversion cell and adjusting the beam of the vacuum ultraviolet light to be suitable for processing.

【0010】また、請求項2記載の本発明の真空紫外光
による加工装置は、上記構成に加えて、前記真空紫外光
の出力を測定するための出力測定機構と、前記真空紫外
光を前記ビームモニタ機構および前記出力測定機構に入
射させるビームスプリッターとを具備したことを特徴と
する。
According to a second aspect of the present invention, there is provided a processing apparatus using vacuum ultraviolet light according to the present invention, in addition to the above configuration, an output measuring mechanism for measuring the output of the vacuum ultraviolet light, and the vacuum ultraviolet light as the beam. It is characterized by comprising a monitor mechanism and a beam splitter incident on the output measuring mechanism.

【0011】また、本発明の真空紫外光による加工方法
は、レーザー光源からの励起光を波長変換物質が充填さ
れた波長変換セルに入射させて真空紫外光を発生させ、
この真空紫外光を被加工物に照射して加工を行う加工方
法であって、予め、前記真空紫外光を可視化してそのビ
ーム形状をモニタしつつ、前記波長変換セル内の波長変
換物質の圧力、および/または、前記レーザー光源から
の励起光の状態を変更し、前記真空紫外光のビーム形状
を加工に適した形状に調節しておくことを特徴とする。
Further, in the processing method using vacuum ultraviolet light of the present invention, excitation light from a laser light source is incident on a wavelength conversion cell filled with a wavelength conversion material to generate vacuum ultraviolet light,
This is a processing method of irradiating a workpiece with this vacuum ultraviolet light to perform processing, in advance while visualizing the vacuum ultraviolet light and monitoring the beam shape thereof, the pressure of the wavelength conversion substance in the wavelength conversion cell. And / or the state of the excitation light from the laser light source is changed to adjust the beam shape of the vacuum ultraviolet light to a shape suitable for processing.

【0012】本発明の真空紫外光による加工方法は、真
空紫外領域に光の吸収が存在する物質、例えばポリテト
ラフルオロエチレン(テフロン)、石英ガラス等からな
る被加工物の加工に好適である。
The processing method using vacuum ultraviolet light according to the present invention is suitable for processing a workpiece made of a substance having light absorption in the vacuum ultraviolet region, such as polytetrafluoroethylene (Teflon) or quartz glass.

【0013】[0013]

【作用】高強度のレーザー光を水素ガス等のラマン活性
な媒質に入力すると、誘導ラマン散乱によりラマン媒質
特有のエネルギー量の整数倍だけ波長のシフトしたコヒ
ーレント光が発生する。この時、入射したレーザー光
(励起光)の周波数をωin、エネルギーのシフト量をω
r とすると短波長側で得られる変換光の周波数ω
ou t は、次式で与えられる。
When a high-intensity laser beam is input to a Raman-active medium such as hydrogen gas, stimulated Raman scattering produces coherent light whose wavelength is shifted by an integral multiple of the amount of energy peculiar to the Raman medium. At this time, the frequency of the incident laser light (excitation light) is ω in , and the energy shift amount is ω
Let r be the frequency ω of the converted light obtained on the short wavelength side.
ou t is given by the following equation.

【0014】 ωout =ωin+Nωr (Nは正の整数) このことから、反ストークス誘導ラマン散乱により、真
空紫外領域に多くの波長成分の変換光を発生することが
できる。この時、変換効率は、位相整合条件と呼ばれる
変換に関与する光子の運動量の保存則に強く影響を受け
る。
Ω out = ω in + Nω r (N is a positive integer) From this, it is possible to generate converted light of many wavelength components in the vacuum ultraviolet region by anti-Stokes stimulated Raman scattering. At this time, the conversion efficiency is strongly influenced by the law of conservation of the momentum of photons involved in the conversion called the phase matching condition.

【0015】反ストークス誘導ラマン散乱によって発生
する真空紫外光を加工に適用するためには、高い光強度
が必要である。このような光強度を反ストークス光によ
って達成するためには、高出力化を図ることと、十分集
光できる空間強度分布(ビーム形状)の優れたビームを
発生させることが必要となるが、従来、このような反ス
トークス光を得ることは困難とされていた。
In order to apply vacuum ultraviolet light generated by anti-Stokes stimulated Raman scattering to processing, high light intensity is required. In order to achieve such light intensity with anti-Stokes light, it is necessary to increase the output and generate a beam with an excellent spatial intensity distribution (beam shape) that can sufficiently focus light. , It has been difficult to obtain such anti-Stokes light.

【0016】しかしながら、本発明者等が鋭意研究を重
ねた結果、次のような知見を得ることができた。
However, as a result of earnest studies by the present inventors, the following knowledge could be obtained.

【0017】すなわち、反ストークス光のビーム形状
は、出力(変換効率)と同様に、反ストークス誘導ラマ
ン散乱過程における位相整合条件に強く影響を受ける。
この位相整合条件は、励起レーザー光の状態(励起レー
ザー光の波長、集光状態等)と、ラマン媒質の状態(ラ
マン媒質の種類、圧力等)によって変化し、これらの条
件を調節することにより、加工に最適なビーム形状を得
ることができる。
That is, the beam shape of the anti-Stokes light is strongly influenced by the phase matching condition in the anti-Stokes stimulated Raman scattering process as well as the output (conversion efficiency).
This phase matching condition changes depending on the state of the pump laser light (wavelength of the pump laser light, condensed state, etc.) and the state of the Raman medium (type of Raman medium, pressure, etc.), and by adjusting these conditions It is possible to obtain the optimum beam shape for processing.

【0018】具体的には、励起レーザーおよびラマン媒
質に応じて、蛍光板等によって真空紫外光のビーム形状
をモニターしながら、集光光学系およびラマン媒質の圧
力を調整することにより、加工に最適なビーム形状を得
ることができる。
Specifically, depending on the excitation laser and the Raman medium, the pressure of the condensing optical system and the Raman medium is adjusted while monitoring the beam shape of the vacuum ultraviolet light with a fluorescent plate or the like, which is optimal for processing. The beam shape can be obtained.

【0019】なお、ある励起レーザー光の状態におい
て、ラマン媒質の圧力を変化させると、ある圧力で出力
は最大となる。これは、低圧側では、利得が減少し、高
圧側では位相不整合量が増加するためである。ところ
が、このように出力が最大となる条件と、上述した加工
に最適なビーム形状を得ることができる条件とは、必ず
しも一致しない。このため、ビーム形状と出力とを同時
にモニターしつつラマン媒質の圧力等を調整することに
より、加工に最適なビームを得ることが好ましい。ここ
で、ラマン媒質としては、水素、重水素を用いるのが好
ましい。
When the pressure of the Raman medium is changed under a certain excitation laser light state, the output becomes maximum at a certain pressure. This is because the gain decreases on the low voltage side and the amount of phase mismatch increases on the high voltage side. However, the conditions for maximizing the output power and the conditions for obtaining the optimum beam shape for the above-described processing do not necessarily match. Therefore, it is preferable to obtain the optimum beam for processing by adjusting the pressure of the Raman medium and the like while simultaneously monitoring the beam shape and the output. Here, it is preferable to use hydrogen or deuterium as the Raman medium.

【0020】このようにして、本願発明では、真空紫外
領域の多くの波長において、加工に適用できるレベルの
強度を持つレーザービームを得ることができる。
As described above, according to the present invention, it is possible to obtain a laser beam having an intensity of a level applicable to processing at many wavelengths in the vacuum ultraviolet region.

【0021】[0021]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0022】図1は、本発明の一実施例の真空紫外光に
よる加工装置の構成を示すもので、同図において1は励
起光を発生するためのレーザー光源である。このレーザ
ー光源1から発せられたレーザー光は、ミラー2、集光
レンズ3を介してラマン媒質が充填されたラマンセル4
に入射するよう構成されている。このラマンセル4に
は、ガス圧力調節機5が配設されており、ラマンセル4
内の圧力を調節可能に構成されている。
FIG. 1 shows the structure of a processing apparatus using vacuum ultraviolet light according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a laser light source for generating excitation light. The laser light emitted from the laser light source 1 is passed through a mirror 2 and a condenser lens 3 to a Raman cell 4 filled with a Raman medium.
Is configured to be incident on. A gas pressure regulator 5 is arranged in the Raman cell 4 and
The internal pressure is adjustable.

【0023】上記ラマンセル4から後のビーム光路部分
は、真空に保持されるよう構成されている。そして、ラ
マンセル4で発生した真空紫外光は、この真空雰囲気下
に配置された60度分散プリズム6によって波長選択さ
れ、真空容器7内のレンズ8、スリット9、マスク10
を介して、試料台11に保持された試料12に照射され
るよう構成されている。
The beam optical path portion after the Raman cell 4 is configured to be maintained in vacuum. The vacuum ultraviolet light generated in the Raman cell 4 is wavelength-selected by the 60-degree dispersion prism 6 arranged in this vacuum atmosphere, and the lens 8, the slit 9, and the mask 10 in the vacuum container 7 are selected.
The sample 12 held on the sample table 11 is irradiated with the light through the.

【0024】この試料台11は、図中矢印で示すよう
に、ラマンセル4からの真空紫外光の光路内と光路外の
間を移動可能に構成されており、試料台11の後方に
は、ビームスプリッター13が配設されている。そし
て、試料台11を光路外に移動させた状態では、ラマン
セル4からの真空紫外光が、ビームスプリッター13に
入射し、ここで2つに分けられて、ビームモニタ機構と
しての蛍光板14と、ビーム出力を検出する出力検出機
15に入射するよう構成されている。なお、ビームモニ
タ機構としては、蛍光板14の換わりに、CCDカメラ
等を用いることもできる。
As shown by the arrow in the figure, the sample table 11 is constructed so as to be movable between the inside and outside of the optical path of the vacuum ultraviolet light from the Raman cell 4, and the beam is provided behind the sample table 11. A splitter 13 is provided. Then, in a state where the sample table 11 is moved to the outside of the optical path, the vacuum ultraviolet light from the Raman cell 4 is incident on the beam splitter 13, and is divided into two here, a fluorescent plate 14 as a beam monitor mechanism, and a beam. It is configured to be incident on the output detector 15 which detects the output. As the beam monitor mechanism, a CCD camera or the like can be used instead of the fluorescent plate 14.

【0025】本実施例では、レーザー光源1としてN
d:YAGレーザーを用い、その第4高調波を励起光と
して用いた。また、ラマン媒質としては水素を用い、得
られた変換光から60度分散プリズム6によって波長1
60nmの真空紫外光を取り出した。
In this embodiment, N is used as the laser light source 1.
A d: YAG laser was used, and its fourth harmonic was used as excitation light. Further, hydrogen is used as the Raman medium, and the converted light thus obtained is converted into the wavelength 1 by the 60-degree dispersion prism 6.
Vacuum ultraviolet light of 60 nm was extracted.

【0026】そして、まず試料台11を真空紫外光の光
路外に移動させた状態で、ラマンセル4からの真空紫外
光を、蛍光板14および出力検出機15に入射させ、そ
のビーム形状(空間強度分布)を蛍光板14によって可
視化してモニターするとともに、出力検出機15で出力
を測定しつつ、ガス圧力調節機5によってラマンセル4
内の圧力を調節した。
First, with the sample stage 11 moved outside the optical path of the vacuum ultraviolet light, the vacuum ultraviolet light from the Raman cell 4 is made incident on the fluorescent screen 14 and the output detector 15, and its beam shape (spatial intensity distribution) is obtained. ) Is visualized and monitored by the fluorescent screen 14, and the output is measured by the output detector 15, while the Raman cell 4 is measured by the gas pressure controller 5.
The pressure inside was adjusted.

【0027】この時、蛍光板14によって観察された真
空紫外光のビーム形状の変化の様子を図2に模式的に示
す。同図に示すように、ラマンセル4内のラマン媒質の
圧力を変化させると、ラマンセル4からの真空紫外光の
ビーム形状が変化し、ラマンセル4内のラマン媒質の圧
力が1.5〜3.0kg/cm2 の比較的低圧域ではほ
ぼ円形のビーム形状となり、7.0〜9.0kg/cm
2 の比較的高圧域では環状(ドーナツ状)のビーム形状
となり、その中間の5.0kg/cm2 付近では、これ
らの中間的な形状となっている。
FIG. 2 schematically shows how the beam shape of the vacuum ultraviolet light observed by the fluorescent plate 14 changes at this time. As shown in the figure, when the pressure of the Raman medium in the Raman cell 4 is changed, the beam shape of the vacuum ultraviolet light from the Raman cell 4 is changed, and the pressure of the Raman medium in the Raman cell 4 is 1.5 to 3.0 kg. In a relatively low pressure region of / cm 2 , the beam shape becomes almost circular and 7.0-9.0 kg / cm 2.
In the comparatively high pressure region of 2 , the beam shape is an annular (donut-like) shape, and in the middle of 5.0 kg / cm 2 , the beam shape is intermediate.

【0028】このようなビーム形状の変化を、ビームの
空間強度分布として、縦軸をビーム強度、横軸をビーム
位置とした図3のグラフに示すと、ラマンセル4内のラ
マン媒質の圧力が1.5kg/cm2 付近では、図中一
点鎖線Aで示すように、空間強度分布がビーム中心をピ
ークとするガウス分布状の分布となっており、圧力が増
加するに従って図中実線Bで示すようにこの分布が広が
り、圧力が7.0kg/cm2 以上となると、図中点線
Cで示すように2つのピークを有するビーム中心の出力
が低下した分布となる。ここで、加工に適したビームと
しては、図3の一点鎖線Aまたは実線Bで示すビームと
なる。
This change in beam shape is shown as a spatial intensity distribution of the beam in the graph of FIG. 3 in which the vertical axis is the beam intensity and the horizontal axis is the beam position. The pressure of the Raman medium in the Raman cell 4 is 1 In the vicinity of 0.5 kg / cm 2 , the spatial intensity distribution has a Gaussian distribution-like shape with a peak at the beam center, as indicated by the chain line A in the figure, and as shown by the solid line B in the figure as the pressure increases. When the distribution becomes wider and the pressure becomes 7.0 kg / cm 2 or more, the output at the beam center having two peaks decreases as shown by the dotted line C in the figure. Here, a beam suitable for processing is the beam shown by the one-dot chain line A or the solid line B in FIG.

【0029】そこで、蛍光板14によって観察されるビ
ーム形状がほぼ円形となるようにガス圧力調節機5によ
ってラマンセル4内のラマン媒質の圧力を調節した。な
お、ラマンセル4内のラマン媒質の圧力を必要以上に低
下させると、利得が減少し、出力が低下してしまうの
で、この時、同時に出力検出機15によってビーム出力
をモニタし、ビーム形状およびビーム出力が最適化され
るように圧力調節を行った。
Therefore, the pressure of the Raman medium in the Raman cell 4 was adjusted by the gas pressure adjuster 5 so that the beam shape observed by the fluorescent screen 14 became substantially circular. If the pressure of the Raman medium in the Raman cell 4 is reduced more than necessary, the gain is reduced and the output is reduced. At this time, the beam output is simultaneously monitored by the output detector 15 to determine the beam shape and the beam shape. The pressure was adjusted so that the output was optimized.

【0030】この後、試料台11をビームの光路内に移
動させ、25μm×25μmの矩形状開口を有するニッ
ケル製マスク10(厚さ100μm、縦10mm、横1
0mm)を介して、ポリテトラフルオロエチレン(テフ
ロン)製の板(厚さ2mm、縦10mm、横10mm)
からなる試料12に、上述のようにして最適化した真空
紫外光のビームを照射した。
Thereafter, the sample stage 11 is moved into the optical path of the beam, and the nickel mask 10 (thickness 100 μm, length 10 mm, width 1) having a rectangular opening of 25 μm × 25 μm.
0 mm) through a plate made of polytetrafluoroethylene (Teflon) (thickness 2 mm, length 10 mm, width 10 mm)
Sample 12 consisting of was irradiated with a beam of vacuum ultraviolet light optimized as described above.

【0031】これにより、波長160nmの真空紫外光
ビームによるレーザーアブレーションにより、テフロン
製の試料12の25μm×25μmの矩形状の領域に対
してエッチング加工が行われる。照射後の試料12を電
子顕微鏡で観察したところ、加工縁部等に熱的な損傷の
ない良好な形状の矩形状の凹部が形成されており、良好
な加工が施されていることが確認された。
As a result, the 25 μm × 25 μm rectangular region of the Teflon sample 12 is etched by laser ablation with a vacuum ultraviolet light beam having a wavelength of 160 nm. When the sample 12 after irradiation was observed with an electron microscope, it was confirmed that a well-shaped rectangular recess having no thermal damage was formed at the processed edge portion, etc., and that good processing was performed. It was

【0032】次に、反ストークス誘導ラマン散乱によっ
て発生した真空紫外光の全波長を、石英ガラス板(厚さ
1mm、縦10mm、横10mm)からなる試料12に
照射し、上述した実施例と同様にして加工を行った。
Next, all the wavelengths of vacuum ultraviolet light generated by anti-Stokes stimulated Raman scattering are applied to a sample 12 made of a quartz glass plate (thickness 1 mm, length 10 mm, width 10 mm), and the same as in the above-mentioned embodiment. And processed.

【0033】そして、加工を施した試料を、触針法によ
るスタイラス・プロファイル・モニターで測定した。こ
の測定結果を、縦軸を深さ、横軸を面内位置とした図4
に示す。同図に示すように、石英ガラス板からなる試料
12には深さ約0.7μmの凹部が形成されており、こ
の凹部内側面の傾斜幅は3μm以内とシャープな開口エ
ッジ部が得られ、また凹部底面も平坦な良好な加工が施
されていることが確認できた。一方、YAGの4次高調
波である266nmの波長のみで加工を行うと、加工形
状が悪化し、さらに加工速度も半減する。このことより
本真空紫外光を用いることの優位性が示された。
Then, the processed sample was measured by a stylus profile monitor by a stylus method. This measurement result is shown in FIG. 4 where the vertical axis is the depth and the horizontal axis is the in-plane position.
Shown in. As shown in the figure, the sample 12 made of a quartz glass plate was formed with a recess having a depth of about 0.7 μm, and the inclination width of the inner side surface of this recess was within 3 μm, and a sharp opening edge was obtained. It was also confirmed that the bottom surface of the recess was also flat and processed well. On the other hand, when processing is performed only with the wavelength of 266 nm, which is the fourth harmonic of YAG, the processed shape deteriorates and the processing speed is halved. From this, the superiority of using this vacuum ultraviolet light was shown.

【0034】なお、従来のレーザー光による石英ガラス
の加工では、ほとんどの場合、照射部が溶融してしま
い、所望形状の加工を行うことができず、加工精度が非
常に悪かった。
In the conventional processing of quartz glass by laser light, in most cases, the irradiated portion was melted and the desired shape could not be processed, and the processing accuracy was very poor.

【0035】このように、本実施例では、加工用に適し
たより多くの真空紫外光を得ることができ、高精度かつ
多彩な加工を行うことができた。なお、縦軸を出力エネ
ルギー、横軸を波長とした図5のグラフに、本実施例の
加工装置によって得られたレーザー光の波長とその出力
エネルギーを示す。
As described above, in this embodiment, more vacuum ultraviolet light suitable for processing can be obtained, and highly accurate and various processing can be performed. The graph of FIG. 5, in which the vertical axis represents the output energy and the horizontal axis represents the wavelength, shows the wavelength of the laser beam and its output energy obtained by the processing apparatus of this example.

【0036】[0036]

【発明の効果】以上説明したように、本発明の真空紫外
光による加工装置および加工方法によれば、加工用に適
したより多くの真空紫外光を得ることができ、高精度か
つ多彩な加工を行うことができる。
As described above, according to the processing apparatus and processing method by vacuum ultraviolet light of the present invention, more vacuum ultraviolet light suitable for processing can be obtained, and highly accurate and versatile processing can be performed. It can be carried out.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の真空紫外光による加工装置
の構成を示す図。
FIG. 1 is a diagram showing a configuration of a processing apparatus using vacuum ultraviolet light according to an embodiment of the present invention.

【図2】蛍光板によって観察されたビーム形状の変化を
説明するための図。
FIG. 2 is a diagram for explaining a change in beam shape observed by a fluorescent plate.

【図3】ビームの空間強度分布の違いを説明するための
図。
FIG. 3 is a diagram for explaining a difference in spatial intensity distribution of beams.

【図4】加工を行った石英ガラス板のスタイラス・プロ
ファイル・モニターの測定結果を示す図。
FIG. 4 is a view showing a measurement result of a stylus profile monitor of a processed quartz glass plate.

【図5】図1の装置によって得られた各波長の真空紫外
光の出力を示す図。
5 is a diagram showing the output of vacuum ultraviolet light of each wavelength obtained by the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 ミラー 3 集光レンズ 4 ラマンセル 5 ガス圧力調節機 6 60度分散プリズム 7 真空容器 8 レンズ 9 スリット 10 マスク 11 試料台 12 試料 13 ビームスプリッター 14 蛍光板 15 出力検出機 1 Laser Light Source 2 Mirror 3 Condensing Lens 4 Raman Cell 5 Gas Pressure Regulator 6 60 Degree Dispersion Prism 7 Vacuum Container 8 Lens 9 Slit 10 Mask 11 Sample Stage 12 Sample 13 Beam Splitter 14 Fluorescent Plate 15 Output Detector

フロントページの続き (72)発明者 豊田 浩一 埼玉県和光市広沢2番1号 理化学研究所 内Continuation of the front page (72) Inventor Koichi Toyota, Hirosawa No. 2-1, Hirosawa, Wako City, Saitama Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励起光を発生させるレーザー光源と、 前記レーザー光源からの前記励起光を波長変換する波長
変換物質が充填された波長変換セルと、 前記波長変換セルから放出される真空紫外光を、内部に
収容した被加工物に照射して加工を行う真空チャンバ
と、 前記真空紫外光を観察可能として、該真空紫外光のビー
ム形状をモニタするためのビームモニタ機構と、 前記波長変換セル内の圧力を変更し、前記真空紫外光の
ビームを加工に適するよう調節するための圧力調節機構
とを具備したことを特徴とする真空紫外光による加工装
置。
1. A laser light source for generating excitation light, a wavelength conversion cell filled with a wavelength conversion substance for wavelength converting the excitation light from the laser light source, and vacuum ultraviolet light emitted from the wavelength conversion cell. A vacuum chamber for irradiating a workpiece housed therein to perform processing, a beam monitor mechanism for observing the vacuum ultraviolet light and monitoring the beam shape of the vacuum ultraviolet light, and the inside of the wavelength conversion cell And a pressure adjusting mechanism for adjusting the pressure of the vacuum ultraviolet light so as to adjust the beam of the vacuum ultraviolet light to be suitable for processing.
【請求項2】 励起光を発生させるレーザー光源と、 前記レーザー光源からの前記励起光を波長変換する波長
変換物質が充填された波長変換セルと、 前記波長変換セルから放出される真空紫外光を、内部に
収容した被加工物に照射して加工を行う真空チャンバ
と、 前記真空紫外光を観察可能として、該真空紫外光のビー
ム形状をモニタするためのビームモニタ機構と、 前記真空紫外光の出力を測定するための出力測定機構
と、 前記真空紫外光を前記ビームモニタ機構および前記出力
測定機構に入射させるビームスプリッターと、 前記波長変換セル内の圧力を変更し、前記真空紫外光の
ビームを加工に適するように調節するための圧力調節機
構とを具備したことを特徴とする真空紫外光による加工
装置。
2. A laser light source for generating excitation light, a wavelength conversion cell filled with a wavelength conversion substance for converting the wavelength of the excitation light from the laser light source, and vacuum ultraviolet light emitted from the wavelength conversion cell. A vacuum chamber for irradiating a workpiece contained therein for processing, a beam monitor mechanism for observing the vacuum ultraviolet light and monitoring the beam shape of the vacuum ultraviolet light, and a vacuum monitor for the vacuum ultraviolet light. An output measurement mechanism for measuring the output, a beam splitter that makes the vacuum ultraviolet light incident on the beam monitor mechanism and the output measurement mechanism, and changes the pressure in the wavelength conversion cell to generate a beam of the vacuum ultraviolet light. A processing device using vacuum ultraviolet light, comprising: a pressure adjusting mechanism for adjusting the pressure so as to be suitable for processing.
【請求項3】 レーザー光源からの励起光を波長変換物
質が充填された波長変換セルに入射させて真空紫外光を
発生させ、この真空紫外光を被加工物に照射して加工を
行う加工方法であって、 予め、前記真空紫外光を可視化してそのビーム形状をモ
ニタしつつ、前記波長変換セル内の波長変換物質の圧
力、および/または、前記レーザー光源からの励起光の
状態を変更し、前記真空紫外光のビーム形状を加工に適
した形状に調節しておくことを特徴とする真空紫外光に
よる加工方法。
3. A processing method in which excitation light from a laser light source is incident on a wavelength conversion cell filled with a wavelength conversion substance to generate vacuum ultraviolet light, and the vacuum ultraviolet light is applied to a workpiece to perform processing. In advance, the pressure of the wavelength conversion material in the wavelength conversion cell and / or the state of excitation light from the laser light source is changed while visualizing the vacuum ultraviolet light and monitoring the beam shape thereof. A processing method using vacuum ultraviolet light, wherein the beam shape of the vacuum ultraviolet light is adjusted to a shape suitable for processing.
【請求項4】 レーザー光源からの励起光を波長変換物
質が充填された波長変換セルに入射させて真空紫外光を
発生させ、この真空紫外光をポリテトラフルオロエチレ
ンからなる被加工物に照射して加工を行う加工方法であ
って、 予め、前記真空紫外光を可視化してそのビーム形状を観
察しつつ、前記波長変換セル内の波長変換物質の圧力、
および/または、前記レーザー光源からの励起光の状態
を変更し、前記真空紫外光のビーム形状を加工に適した
形状に調節しておくことを特徴とする真空紫外光による
加工方法。
4. Excitation light from a laser light source is made incident on a wavelength conversion cell filled with a wavelength conversion substance to generate vacuum ultraviolet light, and this vacuum ultraviolet light is applied to a workpiece made of polytetrafluoroethylene. In the processing method, the pressure of the wavelength conversion material in the wavelength conversion cell is visualized in advance while observing the beam shape by visualizing the vacuum ultraviolet light.
And / or, the processing method by vacuum ultraviolet light, characterized in that the state of excitation light from the laser light source is changed to adjust the beam shape of the vacuum ultraviolet light to a shape suitable for processing.
【請求項5】 レーザー光源からの励起光を波長変換物
質が充填された波長変換セルに入射させて真空紫外光を
発生させ、この真空紫外光を石英ガラスからなる被加工
物に照射して加工を行う加工方法であって、 予め、前記真空紫外光を可視化してそのビーム形状を観
察しつつ、前記波長変換セル内の波長変換物質の圧力、
および/または、前記レーザー光源からの励起光の状態
を変更し、前記真空紫外光のビーム形状を加工に適した
形状に調節しておくことを特徴とする真空紫外光による
加工方法。
5. Excitation light from a laser light source is made incident on a wavelength conversion cell filled with a wavelength conversion substance to generate vacuum ultraviolet light, and this vacuum ultraviolet light is applied to a workpiece made of quartz glass for processing. In the processing method of performing, in advance, while observing the beam shape by visualizing the vacuum ultraviolet light, the pressure of the wavelength conversion substance in the wavelength conversion cell,
And / or, the processing method by vacuum ultraviolet light, characterized in that the state of excitation light from the laser light source is changed to adjust the beam shape of the vacuum ultraviolet light to a shape suitable for processing.
JP4238532A 1992-09-07 1992-09-07 Processing apparatus and processing method using vacuum ultraviolet light Expired - Fee Related JP2571740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238532A JP2571740B2 (en) 1992-09-07 1992-09-07 Processing apparatus and processing method using vacuum ultraviolet light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238532A JP2571740B2 (en) 1992-09-07 1992-09-07 Processing apparatus and processing method using vacuum ultraviolet light

Publications (2)

Publication Number Publication Date
JPH0679478A true JPH0679478A (en) 1994-03-22
JP2571740B2 JP2571740B2 (en) 1997-01-16

Family

ID=17031654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238532A Expired - Fee Related JP2571740B2 (en) 1992-09-07 1992-09-07 Processing apparatus and processing method using vacuum ultraviolet light

Country Status (1)

Country Link
JP (1) JP2571740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636297B2 (en) * 1999-01-20 2003-10-21 Gigaphoton, Inc. Vacuum ultraviolet laser wavelength measuring apparatus
JP2017537334A (en) * 2014-08-27 2017-12-14 ヌブル インク Applications, methods and systems for material processing using visible Raman lasers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636297B2 (en) * 1999-01-20 2003-10-21 Gigaphoton, Inc. Vacuum ultraviolet laser wavelength measuring apparatus
JP2017537334A (en) * 2014-08-27 2017-12-14 ヌブル インク Applications, methods and systems for material processing using visible Raman lasers

Also Published As

Publication number Publication date
JP2571740B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US7931850B2 (en) Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light
Figg et al. Elemental fractionation of glass using laser ablation inductively coupled plasma mass spectrometry
Marinero et al. Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm)
Kuraica et al. Plasma diagnostics of the Grimm-type glow discharge
JP2008199019A (en) Monitoring of optical emission spectroscopic process and measurement of material characteristics
Chérigier et al. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging
CN111307757A (en) Method for measuring semiconductor band gap intermediate energy level with ultrahigh time resolution
Viswanathan et al. Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum
Remigy et al. Absolute N-atom density measurement in an Ar/N2 micro-hollow cathode discharge jet by means of ns-two-photon absorption laser-induced fluorescence
Ishizawa et al. High-order harmonic generation from a solid surface plasma by using a picosecond laser
JP2571740B2 (en) Processing apparatus and processing method using vacuum ultraviolet light
Abbas Study the impact of laser energy on laser-induced copper plasma parameters by spectroscopic analysis technique
Grilj et al. A beamline for time-resolved extreme ultraviolet and soft x-ray spectroscopy
Kaku et al. Vacuum ultraviolet spectroscopic system using a laser-produced plasma
JP2007005410A (en) Intermediate infrared light/ultraviolet light emitting device
JP2006153660A (en) Laser ablation apparatus, laser ablation method, sample analyzer and sample analyzing method
Li et al. Study on energy threshold and spectral characteristics with spot radius based on LIBS technology
Iida et al. Laser Induced Plasmas Observed with and Optical Imaging Spectrometer
Sayrac Generation of coherent XUV radiation at different interaction lengths using the ultrashort laser system
Takeyasu et al. A tunable picosecond dye laser for use in dioxin analysis
Kostadinov et al. High-beam-quality sealed-off master oscillator–power amplifier system oscillating in the visible spectral range on atomic copper transitions for micromachining in research and technology
JP2003059988A (en) Method and equipment for detecting defect of semiconductor device
JP2602928B2 (en) Laser emission spectroscopy
JP2005205446A (en) Material machining method by multi-wavelength ultrashort pulse laser beam
Kojima et al. Refinement of time‐resolved x‐ray measurement system for studying the lattice deformation of silicon under pulsed Nd: YAG laser irradiation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees