JPH0679179A - Tungsten sulfide catalyst for reducing carbon dioxide gas - Google Patents

Tungsten sulfide catalyst for reducing carbon dioxide gas

Info

Publication number
JPH0679179A
JPH0679179A JP4262821A JP26282192A JPH0679179A JP H0679179 A JPH0679179 A JP H0679179A JP 4262821 A JP4262821 A JP 4262821A JP 26282192 A JP26282192 A JP 26282192A JP H0679179 A JPH0679179 A JP H0679179A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
gas
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4262821A
Other languages
Japanese (ja)
Other versions
JPH0773676B2 (en
Inventor
Hiroshi Taoda
垰田博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4262821A priority Critical patent/JPH0773676B2/en
Publication of JPH0679179A publication Critical patent/JPH0679179A/en
Publication of JPH0773676B2 publication Critical patent/JPH0773676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare a catalyst for reducing carbon dioxide gas for reducing the carbon dioxide gas selectively and economically under the mild conditions of low temperature and normal pressure for the purpose of solidifying carbon dioxide gas as a prime factor of global greenhouse effect at high speed and in large production amount. CONSTITUTION:A tungsten sulfide catalyst for reducing carbon dioxide gas composed of tungsten sulfide to which nickel and cobalt are added or tungsten sulfide is carried on a carrier of alumina, silica, active carbon, zeolite, active china clay, iron oxide, zirconia, titania, fee, yttrirrite, thoria, lanthania, neodymia or the like. Tungsten sulfide is an inexpensive substance, and is strong against acid and of good durability. The carbon dioxide gas is reacted with hydrogen and reduced effectively into carbon monoxide at low temperature, and the reaction is the gas phase reaction which can be carried out at high speed to reduce the large amount of carbon dioxide gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ガスを還元して一
酸化炭素に変換し、化成品の原料や燃料として利用する
ための炭酸ガス還元用触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide reducing catalyst for reducing carbon dioxide to convert it into carbon monoxide and using it as a raw material or fuel for chemical products.

【0002】[0002]

【従来の技術】近年、地球規模の環境汚染が人類の生存
を脅かす問題として大きくクローズアップされている
が、その中で最も対策の難しい問題が炭酸ガスによる地
球温暖化である。炭酸ガスは、これまで問題になってき
た窒素酸化物や硫黄酸化物などと異なり、それ自身には
毒性はないが、全世界で年間約200億トンという膨大
な量が排出されており、大気中の炭酸ガス濃度の上昇に
伴い、温室効果による気候変動が起こり、何千万人もの
環境難民が発生すると危ぐされている。これを防止する
ため、エネルギー代替や省エネルギーなどによる炭酸ガ
ス排出の抑制が政策的に推進されようとしているが、炭
酸ガスの排出は経済社会の発展と密接な関係を持ってい
るため、その大幅な抑制は極めて難しい情勢である。し
たがって、炭酸ガスによる地球温暖化を阻止するために
は炭酸ガスの還元・固定化技術の開発が不可欠である。
2. Description of the Related Art In recent years, environmental pollution on a global scale has been widely highlighted as a problem that threatens the survival of humankind. Among them, the most difficult problem to address is global warming due to carbon dioxide. Unlike nitrogen oxides and sulfur oxides, which have been problematic so far, carbon dioxide is not toxic in itself, but it emits a huge amount of about 20 billion tons per year worldwide, and it is released into the atmosphere. With the increase of carbon dioxide concentration in the environment, climate change due to greenhouse effect will occur, and it is threatened that tens of millions of environmental refugees will occur. In order to prevent this, the suppression of carbon dioxide emissions through energy substitution and energy saving is being promoted as a policy, but since carbon dioxide emissions are closely related to economic and social development, the Suppression is an extremely difficult situation. Therefore, in order to prevent the global warming caused by carbon dioxide, the development of carbon dioxide reduction / immobilization technology is indispensable.

【0003】炭酸ガスを水素と反応させて還元する接触
水素化反応による炭酸ガスの還元・固定化法は、光化学
反応法や電気化学反応法、高分子合成による方法、有機
合成による方法などと比べ、単位時間、単位面積当りの
炭酸ガスの還元・固定化能力が大きく、大量の炭酸ガス
の処理が可能である。また、既存のフィッシャー・トロ
プシュ法炭化水素合成技術などが応用でき、気相反応で
あるため、生成物の分離が容易などの利点も持ってい
る。これまで接触水素化反応による炭酸ガスの還元・固
定化法として、ルテニウムやロジウムなどの貴金属触媒
を用いる方法が研究されてきた(例えば、F. Solymosi
and A. Erdohelyi, J. Mol. Catal., Vol.8, 471 (198
0))。
The carbon dioxide reduction / immobilization method by catalytic hydrogenation reaction in which carbon dioxide gas is reacted with hydrogen for reduction is compared with photochemical reaction method, electrochemical reaction method, polymer synthesis method, organic synthesis method and the like. The ability to reduce and immobilize carbon dioxide per unit time and unit area is large, and a large amount of carbon dioxide can be processed. In addition, existing Fischer-Tropsch hydrocarbon synthesis technology can be applied, and since it is a gas phase reaction, it also has the advantage of easy separation of products. Until now, a method using a noble metal catalyst such as ruthenium or rhodium has been studied as a reduction / immobilization method of carbon dioxide gas by a catalytic hydrogenation reaction (for example, F. Solymosi
and A. Erdohelyi, J. Mol. Catal., Vol.8, 471 (198
0)).

【0004】しかしこの方法は、1)使用する触媒が高
価であり、硫化水素や亜硫酸ガスなどのイオウ化合物に
よって簡単に被毒され、触媒活性が急激に低下する、
2)この反応では炭酸ガスがメタンに還元されるが、こ
の反応は原料よりも生成物のエネルギーが低くなる発熱
反応であるため、エネルギー歩留まりが悪い、3)高圧
にしないと反応がうまく進行しないことが多い、4)一
般に、反応が高温で行われ、その温度を得るのに化石燃
料を使用するため、実質的に炭酸ガスの排出抑制になら
ない、などの欠点を持っていた。
However, in this method, 1) the catalyst used is expensive, and it is easily poisoned by sulfur compounds such as hydrogen sulfide and sulfurous acid gas, and the catalytic activity is drastically reduced.
2) Carbon dioxide gas is reduced to methane in this reaction, but since this reaction is an exothermic reaction in which the energy of the product is lower than that of the raw material, the energy yield is poor. 3) The reaction does not proceed well unless the pressure is high. 4) Generally, the reaction is carried out at a high temperature, and since fossil fuel is used for obtaining the temperature, there is a drawback that carbon dioxide emission is not substantially suppressed.

【0005】硫化タングステンは水素添加脱硫触媒やエ
チレン系炭化水素の水素化触媒として使われている例が
あるが、硫化水素や亜硫酸ガスなどの硫黄化合物によっ
て被毒されず、無毒で酸にも強く、耐久性があるという
特長を持っている。しかも、高価な貴金属を使用する必
要がない。また、硫化タングステンは黒色で太陽光をよ
く吸収する。しかし、これまで硫化タングステン触媒を
炭酸ガス還元に用いた研究はほとんど報告されていな
い。
Although tungsten sulfide is used as a hydrodesulfurization catalyst or a hydrogenation catalyst for ethylene-based hydrocarbons in some cases, it is not poisoned by sulfur compounds such as hydrogen sulfide and sulfurous acid gas, is non-toxic and strong against acid. It has the feature of being durable. Moreover, there is no need to use expensive precious metals. Tungsten sulfide is black and absorbs sunlight well. However, almost no studies have been reported so far using a tungsten sulfide catalyst for carbon dioxide reduction.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、炭酸ガスによる地球温暖化に対処して、硫黄化合物
によって被毒されず、耐久性があり、経済的で、低温か
つ常圧という温和な条件で炭酸ガスを選択的に一酸化炭
素に還元できる、炭酸ガス還元用硫化タングステン触媒
の提供をを目的とするものである。
In view of the above points, the present invention addresses global warming caused by carbon dioxide, is not poisoned by sulfur compounds, is durable, economical, and has low temperature and atmospheric pressure. An object of the present invention is to provide a tungsten sulfide catalyst for carbon dioxide gas reduction, which can selectively reduce carbon dioxide gas to carbon monoxide under mild conditions.

【0007】[0007]

【課題を解決するための手段】本発明の炭酸ガス還元用
触媒は、硫化タングステンにニッケルやコバルトを添加
したことを特徴とする硫化タングステン触媒、あるいは
それを担体に担持したことを特徴とする硫化タングステ
ン触媒である。本発明の触媒は、炭酸ガスを水素ガスと
反応させ、効率良く一酸化炭素に還元する。
The catalyst for carbon dioxide gas reduction of the present invention is a tungsten sulfide catalyst characterized by adding nickel or cobalt to tungsten sulfide, or a sulfide characterized by supporting it on a carrier. It is a tungsten catalyst. The catalyst of the present invention reacts carbon dioxide gas with hydrogen gas to efficiently reduce carbon monoxide.

【0008】本発明者らは上記の目的を達成するため鋭
意研究を行った結果、硫化タングステンだけでは炭酸ガ
ス還元に対する活性が低いが、硫化タングステンにニッ
ケルあるいはコバルトを添加すると、炭酸ガス還元に対
する活性が大幅に向上することを見いだし、さらにそれ
を担体に担持することにより飛躍的に活性が向上するこ
とを見いだした。
The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, although tungsten sulfide alone has a low activity for reducing carbon dioxide gas, addition of nickel or cobalt to tungsten sulfide has an activity for reducing carbon dioxide gas. It was found that the activity was significantly improved, and by further supporting it on a carrier, the activity was dramatically improved.

【0009】本発明に用いられる硫化タングステンは、
二硫化タングステンや三硫化タングステンなどの硫化タ
ングステンであり、1)所定量のタングステンと硫黄の
混合物を窒素気流中で800〜900℃で24時間加熱
する、2)三酸化タングステンを炭酸カリウムと共に熱
し、硫黄、硫化水素、二硫化炭素などと反応させる、
3)六塩化タングステンを硫化水素気流中で熱する、
4)三酸化タングステン、ホウ砂、硫酸ナトリウム、フ
ッ化ナトリウムなどの混合物を融解電解する、5)三酸
化タングステンを硫化水素気流中や硫化水素と水素の混
合ガス気流中で加熱するなどの方法でも調製されるが、
6)灰重石・鉄マンガン重石などのタングステン酸塩に
強酸を加えて得られるタングステン酸をアンモニア水に
溶かしてタングステン酸アンモニウムに変換し、それに
硫化水素や硫化アンモニウムを飽和させるなどして得ら
れたテトラチオタングステン酸アンモニウムを、水素、
窒素、あるいはアルゴンやヘリウムなどの不活性ガス気
流中で400〜700℃の温度で加熱分解することによ
って調製したものや、7)三硫化タングステンをさらに
水素、窒素、あるいはアルゴンやヘリウムなどの不活性
ガス気流中で加熱して分解することによって調製したも
のが特に触媒活性が高い。
Tungsten sulfide used in the present invention is
Tungsten sulfide such as tungsten disulfide and tungsten trisulfide, 1) heating a predetermined amount of a mixture of tungsten and sulfur in a nitrogen stream at 800 to 900 ° C. for 24 hours, 2) heating tungsten trioxide with potassium carbonate, React with sulfur, hydrogen sulfide, carbon disulfide, etc.,
3) heating tungsten hexachloride in a hydrogen sulfide stream,
4) A method of melting and electrolyzing a mixture of tungsten trioxide, borax, sodium sulfate, sodium fluoride, etc. 5) Heating tungsten trioxide in a hydrogen sulfide stream or a mixed gas stream of hydrogen sulfide and hydrogen. Is prepared,
6) Obtained by dissolving tungstic acid obtained by adding strong acid to tungstates such as scheelite and iron manganese heavies in ammonium water to convert it to ammonium tungstate, and saturating it with hydrogen sulfide and ammonium sulfide. Ammonium tetrathiotungstate, hydrogen,
What was prepared by heating and decomposing at a temperature of 400 to 700 ° C in a stream of nitrogen or an inert gas such as argon or helium, or 7) tungsten trisulfide was further inert to hydrogen, nitrogen, or argon or helium. Those prepared by heating and decomposing in a gas stream have particularly high catalytic activity.

【0010】本発明に用いられる担体としては、アルミ
ナやシリカ、活性炭、ゼオライト、活性白土、酸化鉄、
ジルコニア、チタニア、フェライト、イットリア、トリ
ア、ランタニア、ネオジミアやそれらの混合物などが挙
げられる。これらの担体は多孔質や微粒子などの表面積
の大きなものが好ましい。また、アルミナはγ−アルミ
ナが最も好ましい。
The carrier used in the present invention includes alumina, silica, activated carbon, zeolite, activated clay, iron oxide,
Examples thereof include zirconia, titania, ferrite, yttria, thoria, lanthania, neodymia and mixtures thereof. It is preferable that these carriers have a large surface area such as porous and fine particles. Further, the alumina is most preferably γ-alumina.

【0011】本発明の炭酸ガス還元用硫化タングステン
触媒は、タングステン酸アンモニウムの水溶液に硫化水
素や硫化アンモニウムを飽和させるなどして得られるテ
トラチオタングステン酸アンモニウムの水溶液あるいは
アンモニア水溶液あるいは硝酸、塩酸、硫酸などによる
その酸性溶液に、ニッケル塩あるいはコバルト塩を添加
し、またはさらに多孔質や微粒子、ゾルなどの状態の担
体を攪拌しながら加え、乾燥した後、水素、窒素、ある
いはアルゴンやヘリウムなどの不活性ガス気流中で加熱
して分解することによって調製される。また、二硫化タ
ングステンや三硫化タングステンなどの硫化タングステ
ンまたは担体に担持された硫化タングステンを、水素、
窒素、あるいはアルゴンやヘリウムなどの不活性ガス気
流中で加熱して分解した後、ニッケル塩溶液あるいはコ
バルト塩溶液に添加して乾燥することなどによっても調
製される。その際の加熱温度は400℃〜700℃が好
ましい。さらに、硫化タングステンまたは担体に担持さ
れた硫化タングステンにニッケルあるいはコバルトを添
加して加熱することなどによっても調製される。その際
の加熱温度は600℃〜900℃が好ましい。
The tungsten sulfide catalyst for carbon dioxide reduction of the present invention is an aqueous solution of ammonium tetrathiotungstate obtained by saturating an aqueous solution of ammonium tungstate with hydrogen sulfide or ammonium sulfide, an aqueous ammonia solution, nitric acid, hydrochloric acid or sulfuric acid. Nickel salt or cobalt salt is added to the acidic solution, or a carrier in the state of porous particles, fine particles, sol, etc. is added with stirring and dried, and then hydrogen, nitrogen, or an inert gas such as argon or helium is added. It is prepared by heating and decomposing in an active gas stream. In addition, tungsten sulfide such as tungsten disulfide or tungsten trisulfide, or tungsten sulfide supported on a carrier is converted into hydrogen,
It is also prepared by heating in an inert gas stream such as nitrogen or argon or helium for decomposition, and then adding to a nickel salt solution or cobalt salt solution and drying. The heating temperature at that time is preferably 400 ° C to 700 ° C. Further, it is also prepared by adding nickel or cobalt to tungsten sulfide or tungsten sulfide supported on a carrier and heating. The heating temperature at that time is preferably 600 ° C to 900 ° C.

【0012】担体に担持された硫化タングステンは、タ
ングステン酸アンモニウムの水溶液に多孔質や微粒子、
ゾルなどの状態の担体を攪拌しながら加え、硫化水素や
硫化アンモニウムで飽和させた後、塩酸や硫酸などの酸
によって中和し、濾過した後、窒素や不活性ガス雰囲気
下で100〜150℃で一晩加熱乾燥することによって
得られる。また、タングステン酸アンモニウムの硫化ア
ンモニウム溶液やアンモニア水溶液に多孔質や微粒子、
ゾルなどの状態の担体を攪拌しながら加えて乾燥した
後、酸素気流中で加熱し、その後、硫化水素あるいは水
素と硫化水素の混合ガスの気流中で350〜600℃で
加熱することによっても得られる。
Tungsten sulphide supported on a carrier is obtained by adding porous or fine particles to an aqueous solution of ammonium tungstate,
A carrier in the form of a sol is added with stirring, saturated with hydrogen sulfide or ammonium sulfide, neutralized with an acid such as hydrochloric acid or sulfuric acid, filtered, and then in a nitrogen or inert gas atmosphere at 100 to 150 ° C. It is obtained by heating and drying overnight at. In addition, ammonium tungstate ammonium sulphate solution or ammonia solution in the porous or fine particles,
It can also be obtained by adding a carrier such as a sol with stirring to dry it, heating it in an oxygen stream, and then heating it at 350 to 600 ° C. in a stream of hydrogen sulfide or a mixed gas of hydrogen and hydrogen sulfide. To be

【0013】本発明の炭酸ガス還元用触媒中のニッケル
あるいはコバルトの含有量は、Ni/MoあるいはCo
/Moの原子量比で0.0001〜2であることが望ま
しい。硫化タングステンにニッケルあるいはコバルトを
添加することにより、触媒の活性点及び表面積が増加し
て、炭酸ガス還元に対する触媒活性が大幅に向上する
が、触媒中のニッケル及びコバルトの含有量がそれ以上
になると触媒の表面積が小さくなり、触媒活性が低下す
る。また、本発明の触媒の担体に対する担持量としては
0.001〜35重量%が好ましい。
The content of nickel or cobalt in the carbon dioxide reduction catalyst of the present invention is Ni / Mo or Co.
The atomic weight ratio of / Mo is preferably 0.0001 to 2. By adding nickel or cobalt to tungsten sulfide, the active sites and surface area of the catalyst are increased, and the catalytic activity for carbon dioxide reduction is significantly improved. However, when the content of nickel and cobalt in the catalyst becomes higher than that. The surface area of the catalyst is reduced and the catalytic activity is reduced. The amount of the catalyst of the present invention supported on the carrier is preferably 0.001 to 35% by weight.

【0014】こうして得られた本発明の触媒に炭酸ガス
と水素を含んだガスを流通させることにより、炭酸ガス
は触媒上で水素と反応し、ほぼ100%の選択率で一酸
化炭素に変換される。このとき反応ガスにアルゴンやヘ
リウムなどの不活性ガスや窒素ガス、硫化水素などが含
まれていてもよい。不活性ガスや窒素が含まれていても
反応にほとんど影響がなく、硫化水素が含まれている場
合には逆に触媒活性が向上する。また、反応ガス中の炭
酸ガス/水素のモル比は1に近い方が好ましい。反応生
成物である一酸化炭素はそのまま燃料としても使用でき
るし、既存の合成ガス(一酸化炭素と水素)からのメタ
ノール製造プロセスやC1化学技術などを利用して、最
近、自動車用燃料として脚光を浴びているメタノールや
化成品の原料に変換して利用することもできる。この炭
酸ガスを一酸化炭素に変換する反応は吸熱反応であるた
め、エネルギー歩留まりが良く、生成物である一酸化炭
素は太陽エネルギーや廃熱など、熱源の熱を蓄えたこと
になる。
By passing a gas containing carbon dioxide and hydrogen through the catalyst of the present invention thus obtained, carbon dioxide reacts with hydrogen on the catalyst and is converted into carbon monoxide with a selectivity of almost 100%. It At this time, the reaction gas may contain an inert gas such as argon or helium, a nitrogen gas, or hydrogen sulfide. Even if an inert gas or nitrogen is contained, the reaction is hardly affected, and when hydrogen sulfide is contained, the catalytic activity is improved. Further, the molar ratio of carbon dioxide gas / hydrogen in the reaction gas is preferably close to 1. Carbon monoxide, which is a reaction product, can be used as a fuel as it is, and recently, using the existing methanol production process from synthesis gas (carbon monoxide and hydrogen) and C1 chemical technology, it has recently been used as a fuel for automobiles. It can also be used by converting it into the raw material for methanol and chemical products that are being bathed. Since the reaction for converting carbon dioxide gas into carbon monoxide is an endothermic reaction, the energy yield is good, and carbon monoxide as a product has stored heat from a heat source such as solar energy or waste heat.

【0015】[0015]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
EXAMPLES Among the examples of the present invention, particularly representative ones are shown below.

【0016】実施例1 テトラチオタングステン酸アンモニウムのアンモニア水
溶液に硝酸ニッケル・6水塩(テトラチオタングステン
酸アンモニウムに対して80モル%)と担体としてチタ
ニアの微粉末(テトラチオタングステン酸アンモニウム
に対して500重量%)を攪拌しながら加え、室温で真
空乾燥した後、水素気流中、450℃で1時間加熱し
た。得られた触媒1gを直径1cmの石英製U字型反応
管に充填し炭酸ガスと水素1:1の混合ガスを30ml
/minの流量で流通させて反応させ、反応生成物をガ
スクロマトグラフを用いて分析した。その結果、200
℃で2%、300℃で9%、400℃で20%、500
℃で31%の炭酸ガスが一酸化炭素に転化していた。一
酸化炭素以外の反応生成物は見られなかった。
Example 1 Nickel nitrate hexahydrate (80 mol% with respect to ammonium tetrathiotungstate) in an aqueous ammonia solution of ammonium tetrathiotungstate and fine powder of titania as a carrier (with respect to ammonium tetrathiotungstate) (500% by weight) was added with stirring, vacuum-dried at room temperature, and then heated in a hydrogen stream at 450 ° C. for 1 hour. 1 g of the obtained catalyst was filled in a quartz U-shaped reaction tube having a diameter of 1 cm, and 30 ml of a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added.
The reaction product was analyzed by using a gas chromatograph. As a result, 200
2% at ℃, 9% at 300 ℃, 20% at 400 ℃, 500
At 30 ° C., 31% of carbon dioxide had been converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0017】比較例1 市販の二硫化タングステン(WS2)1gを直径1cm
の石英製U字型反応管に充填し、実施例1と同様にして
炭酸ガスと水素1:1の混合ガスを30ml/minの
流量で流通させて反応させ、得られた反応生成物をガス
クロマトグラフを用いて分析した。その結果、炭酸ガス
の一酸化炭素への変換率は200℃で0%、300℃で
0.2%、400℃で2%、500℃で9%であった。
COMPARATIVE EXAMPLE 1 1 g of commercially available tungsten disulfide (WS2) was used to have a diameter of 1 cm.
In a U-shaped reaction tube made of quartz, and a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was circulated at a flow rate of 30 ml / min for reaction in the same manner as in Example 1, and the obtained reaction product was subjected to gas chromatography. It was analyzed using a graph. As a result, the conversion rate of carbon dioxide gas to carbon monoxide was 0% at 200 ° C, 0.2% at 300 ° C, 2% at 400 ° C, and 9% at 500 ° C.

【0018】実施例2 テトラチオタングステン酸アンモニウムのアンモニア水
溶液に硝酸コバルト・6水塩(テトラチオタングステン
酸アンモニウムに対して50モル%)と担体として、γ
−アルミナの微粉末(テトラチオタングステン酸アンモ
ニウムに対して400重量%)を攪拌しながら加え、室
温で真空乾燥した後、水素気流中、500℃で50分間
加熱した。得られた触媒1gを用いて、実施例1と同様
にして炭酸ガスと水素1:1の混合ガスを30ml/m
inの流量で流通させて反応させ、反応生成物をガスク
ロマトグラフにより分析した。その結果、200℃で
1.2%、300℃で7.5%、400℃で18%、5
00℃で29%の炭酸ガスが一酸化炭素に転化してい
た。一酸化炭素以外の反応生成物は見られなかった。
Example 2 Cobalt nitrate hexahydrate (50 mol% relative to ammonium tetrathiotungstate) was added to an aqueous ammonia solution of ammonium tetrathiotungstate, and γ was used as a carrier.
-Alumina fine powder (400 wt% with respect to ammonium tetrathiotungstate) was added with stirring, vacuum dried at room temperature, and then heated in a hydrogen stream at 500 ° C for 50 minutes. Using 1 g of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added in an amount of 30 ml / m in the same manner as in Example 1.
The reaction product was analyzed by a gas chromatograph by circulating the reaction product at a flow rate of in. As a result, 1.2% at 200 ° C, 7.5% at 300 ° C, 18% at 400 ° C, 5%
At 00 ° C, 29% of carbon dioxide was converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0019】実施例3 テトラチオタングステン酸アンモニウムを、水素気流
中、450℃で1時間加熱した後、その1gを硝酸ニッ
ケル・6水塩の10%水溶液、5mlに添加し、窒素気
流中で1晩攪拌した後、真空乾燥した。得られた触媒5
00mgを用いて、実施例1と同様にして炭酸ガスと水
素と硫化水素5:5:1の混合ガスを30ml/min
の流量で流通させて反応させ、反応生成物をガスクロマ
トグラフを用いて分析した。その結果、200℃で0.
8%、300℃で5%、400℃で12%、500℃で
20%の炭酸ガスが一酸化炭素に転化していた。
Example 3 Ammonium tetrathiotungstate was heated in a hydrogen stream at 450 ° C. for 1 hour, and 1 g of the ammonium tetrathiotungstate was added to 5 ml of a 10% nickel nitrate hexahydrate aqueous solution. After stirring overnight, it was vacuum dried. The obtained catalyst 5
In the same manner as in Example 1, using 00 mg, a mixed gas of carbon dioxide gas, hydrogen, and hydrogen sulfide 5: 5: 1 was added at 30 ml / min.
The reaction product was analyzed by using a gas chromatograph. As a result, at 200.degree.
Carbon dioxide gas of 8%, 5% at 300 ° C., 12% at 400 ° C., and 20% at 500 ° C. was converted to carbon monoxide.

【0020】実施例4 90重量%の活性炭に担持された三硫化タングステンを
アルゴンガス気流中、400℃で1時間20分間加熱し
た。その1gを硝酸コバルト・6水塩の10%水溶液、
7mlに添加し、窒素気流中で1晩攪拌しながら乾燥し
た。得られた触媒500mgを用いて、実施例1と同様
にして炭酸ガスと水素とアルゴン3:3:1の混合ガス
を30ml/minの流量で流通させて反応させ、反応
生成物をガスクロマトグラフを用いて分析した。その結
果、200℃で1%、300℃で5.5%、400℃で
13%、500℃で22%の炭酸ガスが一酸化炭素に転
化していた。
Example 4 Tungsten trisulfide supported on 90% by weight of activated carbon was heated in an argon gas stream at 400 ° C. for 1 hour and 20 minutes. 1 g of 10% aqueous solution of cobalt nitrate hexahydrate,
It was added to 7 ml and dried in a nitrogen stream with stirring overnight. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and argon 3: 3: 1 was caused to flow at a flow rate of 30 ml / min for reaction in the same manner as in Example 1, and the reaction product was subjected to gas chromatography. Used for analysis. As a result, 1% at 200 ° C., 5.5% at 300 ° C., 13% at 400 ° C., and 22% at 500 ° C. were converted to carbon monoxide.

【0021】実施例5 85モル%の三二酸化鉄に担持された三硫化タングステ
ンをヘリウムガス気流中で、550℃で30分間加熱し
た。その1gを硝酸ニッケル・6水塩の20%水溶液、
4mlに添加し、窒素気流中で1晩攪拌しながら乾燥し
た。得られた触媒500mgを用いて、実施例1と同様
にして炭酸ガスと水素とアルゴン1:1:1の混合ガス
を10ml/minの流量で流通させて反応させ、反応
生成物をガスクロマトグラフを用いて分析した。その結
果、200℃で2.5%、300℃で8%、400℃で
21%、500℃で31%の炭酸ガスが一酸化炭素に転
化していた。
Example 5 Tungsten trisulfide supported on 85 mol% iron sesquioxide was heated at 550 ° C. for 30 minutes in a helium gas stream. 1 g of the 20% aqueous solution of nickel nitrate hexahydrate,
It was added to 4 ml and dried with stirring in a nitrogen stream overnight. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and argon 1: 1: 1 was circulated at a flow rate of 10 ml / min for reaction in the same manner as in Example 1, and the reaction product was subjected to gas chromatography. Used for analysis. As a result, 2.5% at 200 ° C., 8% at 300 ° C., 21% at 400 ° C., and 31% at 500 ° C. converted carbon dioxide into carbon monoxide.

【0022】実施例6 テトラチオタングステン酸アンモニウムの硝酸水溶液に
硝酸ニッケル・6水塩(テトラチオタングステン酸アン
モニウムに対して110モル%)と担体としてゼオライ
トのペレット(テトラチオタングステン酸アンモニウム
に対して800重量%)を攪拌しながら加え、室温で真
空乾燥した後、窒素気流中、500℃で1時間加熱し
た。得られた触媒1gを用いて、実施例1と同様にして
炭酸ガスと水素と窒素1:1:1の混合ガスを30ml
/minの流量で流通させて反応させ、反応生成物をガ
スクロマトグラフを用いて分析した。その結果、200
℃で2%、300℃で6%、400℃で19%、500
℃で27%の炭酸ガスが一酸化炭素に転化していた。
Example 6 Nickel nitrate hexahydrate (110 mol% with respect to ammonium tetrathiotungstate) in a nitric acid aqueous solution of ammonium tetrathiotungstate and zeolite pellets as a carrier (800 with respect to ammonium tetrathiotungstate) (% By weight) was added with stirring, vacuum dried at room temperature, and then heated in a nitrogen stream at 500 ° C. for 1 hour. Using 1 g of the obtained catalyst, in the same manner as in Example 1, 30 ml of a mixed gas of carbon dioxide gas, hydrogen and nitrogen 1: 1: 1.
The reaction product was analyzed by using a gas chromatograph. As a result, 200
2% at ℃, 6% at 300 ℃, 19% at 400 ℃, 500
27% of carbon dioxide gas had been converted to carbon monoxide at 0 ° C.

【0023】実施例7 テトラチオタングステン酸アンモニウムの水溶液に硝酸
コバルト・6水塩(テトラチオタングステン酸アンモニ
ウムに対して50モル%)と、担体としてイットリアの
微粉末(タングステン酸アンモニウムに対して700重
量%)を攪拌しながら加え、室温で真空乾燥した後、窒
素気流中、500℃で1時間加熱した。得られた触媒1
gを用いて、実施例1と同様にして炭酸ガスと水素1:
1の混合ガスを30ml/minの流量で流通させて反
応させ、反応生成物をガスクロマトグラフを用いて分析
した。その結果、200℃で0.6%、300℃で4.
5%、400℃で11%、500℃で19%の炭酸ガス
が一酸化炭素に転化していた。
Example 7 Cobalt nitrate hexahydrate (50 mol% based on ammonium tetrathiotungstate) in an aqueous solution of ammonium tetrathiotungstate, and yttria fine powder as a carrier (700 wt% based on ammonium tungstate). %) Was added with stirring, dried in vacuum at room temperature, and then heated at 500 ° C. for 1 hour in a nitrogen stream. Catalyst 1 obtained
g in the same manner as in Example 1, carbon dioxide and hydrogen 1:
The mixed gas of No. 1 was circulated at a flow rate of 30 ml / min to cause reaction, and the reaction product was analyzed using a gas chromatograph. As a result, 0.6% at 200 ° C and 4.
Carbon dioxide gas of 5%, 11% at 400 ° C., and 19% at 500 ° C. was converted to carbon monoxide.

【0024】実施例8 テトラチオタングステン酸アンモニウムの水溶液に硝酸
ニッケル・6水塩(テトラチオタングステン酸アンモニ
ウムに対して100モル%)と担体としてフェライトの
微粉末(テトラチオタングステン酸アンモニウムに対し
て900重量%)を攪拌しながら加え、室温で真空乾燥
した後、窒素気流中、550℃で45分間加熱した。得
られた触媒1gを用いて、実施例1と同様にして炭酸ガ
スと水素とアルゴン2:2:1の混合ガスを30ml/
minの流量で流通させて反応させ、反応生成物をガス
クロマトグラフを用いて分析した。その結果、200℃
で2.1%、300℃で7.1%、400℃で19.5
%、500℃で28.5%の炭酸ガスが一酸化炭素に転
化していた。
Example 8 Nickel nitrate hexahydrate (100 mol% with respect to ammonium tetrathiotungstate) in an aqueous solution of ammonium tetrathiotungstate and fine ferrite powder (900 with respect to ammonium tetrathiotungstate as a carrier). (% By weight) was added with stirring, vacuum-dried at room temperature, and then heated at 550 ° C. for 45 minutes in a nitrogen stream. Using 1 g of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and argon 2: 2: 1 was added in an amount of 30 ml / in the same manner as in Example 1.
The reaction product was circulated at a flow rate of min for reaction, and the reaction product was analyzed using a gas chromatograph. As a result, 200 ℃
2.1%, 7.1% at 300 ° C, 19.5% at 400 ° C.
%, 28.5% of carbon dioxide gas was converted to carbon monoxide at 500 ° C.

【0025】実施例9 テトラチオタングステン酸アンモニウムのアンモニア水
溶液に硝酸ニッケル・6水塩(テトラチオモリブデン酸
アンモニウムに対して60モル%)と担体としてシリカ
の微粉末(タングステン酸アンモニウムに対して800
重量%)を攪拌しながら加え、室温で真空乾燥した後、
水素気流中、500℃で50分間加熱した。得られた触
媒1gを用いて、実施例1と同様にして炭酸ガスと水素
1:1の混合ガスを30ml/minの流量で流通させ
て反応させ、反応生成物をガスクロマトグラフを用いて
分析した。その結果、200℃で2.5%、300℃で
8%、400℃で17%、500℃で26%の炭酸ガス
が一酸化炭素に転化していた。
Example 9 Nickel nitrate hexahydrate (60 mol% relative to ammonium tetrathiomolybdate) in an aqueous ammonia solution of ammonium tetrathiotungstate and fine silica powder (800 to ammonium tungstate as a carrier).
(% By weight) is added with stirring and vacuum-dried at room temperature,
It heated at 500 degreeC for 50 minutes in hydrogen stream. Using 1 g of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was circulated at a flow rate of 30 ml / min for reaction in the same manner as in Example 1, and the reaction product was analyzed using a gas chromatograph. . As a result, 2.5% at 200 ° C., 8% at 300 ° C., 17% at 400 ° C., and 26% at 500 ° C. were converted to carbon monoxide.

【0026】実施例10 テトラチオタングステン酸アンモニウムのアンモニア水
溶液に硝酸コバルト・6水塩(テトラチオモリブデン酸
アンモニウムに対して100モル%)と担体としてジル
コニアの微粉末(テトラチオタングステン酸アンモニウ
ムに対して700重量%)を攪拌しながら加え、室温で
真空乾燥した後、水素気流中、450℃で1時間加熱し
た。得られた触媒1gを用いて実施例1と同様にして炭
酸ガスと水素の1:1の混合ガスを20ml/minの
流量で流通させて反応させ、反応生成物をガスクロマト
グラフを用いて分析した。その結果、200℃で1.5
%、300℃で5.5%、400℃で14.5%、50
0℃で24%の炭酸ガスが一酸化炭素に転化していた。
Example 10 Cobalt nitrate hexahydrate (100 mol% with respect to ammonium tetrathiomolybdate) in an aqueous ammonia solution of ammonium tetrathiotungstate and fine powder of zirconia as a carrier (with respect to ammonium tetrathiotungstate) (700 wt%) was added with stirring, and the mixture was vacuum dried at room temperature and then heated at 450 ° C. for 1 hour in a hydrogen stream. Using 1 g of the obtained catalyst, a 1: 1 mixed gas of carbon dioxide and hydrogen was circulated at a flow rate of 20 ml / min for reaction in the same manner as in Example 1, and the reaction product was analyzed using a gas chromatograph. . As a result, at 200 ℃ 1.5
%, 5.5% at 300 ° C., 14.5% at 400 ° C., 50
At 0 ° C., 24% of carbon dioxide was converted to carbon monoxide.

【0027】実施例11 テトラチオタングステン酸アンモニウムの水溶液に硝酸
コバルト・6水塩(テトラチオタングステン酸アンモニ
ウムに対して50モル%)と担体としてネオジミアの微
粉末(テトラチオタングステン酸アンモニウムに対して
850重量%)を攪拌しながら加え、乾燥した後、水素
−硫化水素気流中で500℃で40分間加熱した。得ら
れた触媒1gを用いて、実施例1と同様にして炭酸ガス
と水素1:1の混合ガスを30ml/minの流量で流
通させて反応させ、反応生成物をガスクロマトグラフに
より分析した。その結果、200℃で1.2%、300
℃で5%、400℃で14%、500℃で23%の炭酸
ガスが一酸化炭素に転化していた。
Example 11 Cobalt nitrate hexahydrate (50 mol% relative to ammonium tetrathiotungstate) in an aqueous solution of ammonium tetrathiotungstate and fine powder of neodymia as a carrier (850 relative to ammonium tetrathiotungstate) (% By weight) was added with stirring, dried, and then heated in a hydrogen-hydrogen sulfide stream at 500 ° C. for 40 minutes. Using 1 g of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was circulated at a flow rate of 30 ml / min for reaction in the same manner as in Example 1, and the reaction product was analyzed by gas chromatography. As a result, at 200 ℃ 1.2%, 300
Carbon dioxide of 5% at 40 ° C., 14% at 400 ° C. and 23% at 500 ° C. was converted to carbon monoxide.

【0028】実施例12 85重量%のランタニアに担持された三硫化タングステ
ンを硫化水素と水素の1:1の混合ガス気流中で550
℃で45分間、加熱した。その1gを硝酸ニッケル・6
水塩の20%水溶液、4mlに添加し、窒素気流中で1
晩攪拌しながら乾燥した。得られた触媒500mgを用
いて、実施例1と同様にして炭酸ガスと水素とアルゴン
7:7:1の混合ガスを20ml/minの流量で流通
させて反応させ、反応生成物をガスクロマトグラフを用
いて分析した。その結果、200℃で2.3%、300
℃で7.8%、400℃で20.5%、500℃で3
0.5%の炭酸ガスが一酸化炭素に転化していた。
Example 12 Tungsten trisulfide supported on 85% by weight of lanthanum was 550 in a mixed gas flow of hydrogen sulfide and hydrogen of 1: 1.
Heat at 45 ° C. for 45 minutes. 1g of nickel nitrate-6
Add to 4 ml of 20% aqueous solution of hydrate, and add 1 in a nitrogen stream.
Dry overnight with stirring. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and argon 7: 7: 1 was circulated at a flow rate of 20 ml / min for reaction in the same manner as in Example 1, and the reaction product was analyzed by gas chromatography. Used for analysis. As a result, at 200 ℃ 2.3%, 300
7.8% at ℃, 20.5% at 400 ℃, 3 at 500 ℃
0.5% of carbon dioxide had been converted to carbon monoxide.

【0029】実施例13 90重量%のトリアに担持された三硫化タングステンを
水素気流中、430℃で1時間20分間加熱した。その
1gを硝酸ニッケル・6水塩の10%水溶液、8mlに
添加し、窒素気流中で1晩攪拌しながら乾燥した。得ら
れた触媒500mgを用いて、実施例1と同様にして炭
酸ガスと水素と窒素3:3:1の混合ガスを30ml/
minの流量で流通させて反応させ、反応生成物をガス
クロマトグラフを用いて分析した。その結果、200℃
で1.1%、300℃で6.5%、400℃で17.5
%、500℃で28%の炭酸ガスが一酸化炭素に転化し
ていた。
Example 13 90% by weight of thoria-supported tungsten trisulfide was heated in a stream of hydrogen at 430 ° C. for 1 hour and 20 minutes. 1 g thereof was added to 8 ml of a 10% aqueous solution of nickel nitrate hexahydrate, and the mixture was dried with stirring in a nitrogen stream overnight. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and nitrogen 3: 3: 1 was added in an amount of 30 ml / in the same manner as in Example 1.
The reaction product was circulated at a flow rate of min for reaction, and the reaction product was analyzed using a gas chromatograph. As a result, 200 ℃
1.1%, 6.5% at 300 ° C, 17.5 at 400 ° C
%, 28% of carbon dioxide at 500 ° C. was converted to carbon monoxide.

【0030】実施例14 テトラチオタングステン酸アンモニウムのアンモニア水
溶液に硝酸コバルト・6水塩(テトラチオタングステン
酸アンモニウムに対して120モル%)と担体として活
性白土(テトラチオタングステン酸アンモニウムに対し
て900重量%)を攪拌しながら加え、室温で真空乾燥
した後、水素とアルゴンの混合気流中、470℃で50
分間加熱した。得られた触媒1gを用いて実施例1と同
様にして炭酸ガスと水素とヘリウム4:4:1の混合ガ
スを30ml/minの流量で流通させて反応させ、反
応生成物をガスクロマトグラフを用いて分析した。その
結果、200℃で0.5%、300℃で4.2%、40
0℃で10.5%、500℃で17.5%の炭酸ガスが
一酸化炭素に転化していた。
Example 14 Cobalt nitrate hexahydrate (120 mol% based on ammonium tetrathiotungstate) in an aqueous ammonia solution of ammonium tetrathiotungstate and activated clay (900 wt% based on ammonium tetrathiotungstate) as a carrier. %) While stirring and vacuum drying at room temperature, and then at 50 ° C. at 470 ° C. in a mixed gas flow of hydrogen and argon.
Heated for minutes. Using 1 g of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and helium 4: 4: 1 was caused to flow at a flow rate of 30 ml / min for reaction in the same manner as in Example 1, and the reaction product was analyzed by gas chromatography. Analyzed. As a result, 0.5% at 200 ° C, 4.2% at 300 ° C, 40%
Carbon dioxide gas of 10.5% at 0 ° C. and 17.5% at 500 ° C. was converted to carbon monoxide.

【0031】実施例15 三硫化タングステンを水素気流中で、550℃で45分
間加熱した。その1gを硝酸コバルト・6水塩の20%
水溶液、4mlに添加し、窒素気流中で1晩攪拌しなが
ら乾燥した。得られた触媒500mgを用いて、炭酸ガ
スと水素1:1の混合ガスを1ml/minの流量で流
通させながら、直径1.5mのフレネルレンズによって
集光した太陽光を照射して反応させ、得られた反応生成
物をガスクロマトグラフを用いて分析した。その結果、
約4%の炭酸ガスが一酸化炭素に転化していた。
Example 15 Tungsten trisulfide was heated in a hydrogen stream at 550 ° C. for 45 minutes. 20% of cobalt nitrate hexahydrate
The solution was added to 4 ml of the aqueous solution and dried with stirring in a nitrogen stream overnight. Using 500 mg of the obtained catalyst, while circulating a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 at a flow rate of 1 ml / min, a sunlight collected by a Fresnel lens having a diameter of 1.5 m was irradiated and reacted. The obtained reaction product was analyzed using a gas chromatograph. as a result,
About 4% of carbon dioxide was converted to carbon monoxide.

【0032】実施例16 二硫化タングステンの微粉末に18重量%のニッケル微
粉末を加えてよく混ぜ合わせ、アルゴン気流中で、80
0℃で45分間加熱した。得られた触媒500mgを用
いて、炭酸ガスと水素1:1の混合ガスを1ml/mi
nの流量で流通させながら、直径1.5mのフレネルレ
ンズによって集光した太陽光を照射して反応させ、得ら
れた反応生成物をガスクロマトグラフを用いて分析し
た。その結果、約5%の炭酸ガスが一酸化炭素に転化し
ていた。
Example 16 To a fine powder of tungsten disulfide, 18% by weight of nickel fine powder was added and mixed well, and the mixture was mixed in an argon stream at 80% by weight.
Heated at 0 ° C. for 45 minutes. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added at 1 ml / mi.
While circulating at a flow rate of n, sunlight condensed by a Fresnel lens having a diameter of 1.5 m was irradiated to cause a reaction, and the obtained reaction product was analyzed using a gas chromatograph. As a result, about 5% of carbon dioxide was converted into carbon monoxide.

【0033】[0033]

【発明の効果】本発明は以上説明したように、耐久性が
あり経済的で低温かつ常圧という温和な条件で炭酸ガス
を選択的に一酸化炭素に還元できる、炭酸ガス還元用硫
化タングステン触媒を提供したものである。硫化タング
ステンは硫黄化合物によって被毒されず、安価で無毒の
物質であり、酸にも強く耐久性があるという特長を持っ
ている。本発明の触媒により、炭酸ガスは逆水性ガスシ
フト反応を起こして選択的に一酸化炭素に還元される
が、この反応は気相反応であるため大量の炭酸ガスの処
理が可能であり、吸熱反応であるためエネルギーの歩留
まりが良く、熱源として太陽熱や廃熱を利用すれば、生
成物である一酸化炭素はそれらの熱を蓄えたことになる
し、ヒートポンプとしての利用も可能である。また、反
応生成物である一酸化炭素はそのまま燃料としても利用
できるし、既存のC1化学技術を用いて自動車用燃料と
して脚光を浴びているメタノールや化成品の原料に変換
して利用することもできるため、地球環境保全の面から
もエネルギー対策の面からも非常に効果が大きい。
INDUSTRIAL APPLICABILITY As described above, the present invention is a tungsten sulfide catalyst for carbon dioxide gas reduction, which is durable, economical, and capable of selectively reducing carbon dioxide gas to carbon monoxide under mild conditions of low temperature and atmospheric pressure. Is provided. Tungsten sulphide is a cheap, non-toxic substance that is not poisoned by sulfur compounds, and has the characteristics that it is strong and durable against acids. With the catalyst of the present invention, carbon dioxide gas undergoes a reverse water gas shift reaction and is selectively reduced to carbon monoxide, but since this reaction is a gas phase reaction, it is possible to treat a large amount of carbon dioxide gas and endothermic reaction. Therefore, the energy yield is good, and if solar heat or waste heat is used as a heat source, the product carbon monoxide will have stored those heats and can also be used as a heat pump. Further, carbon monoxide, which is a reaction product, can be used as a fuel as it is, or it can be used by converting it into a raw material for methanol or a chemical product, which is in the limelight as an automobile fuel, by using the existing C1 chemical technology. Therefore, it is very effective in terms of global environment conservation and energy measures.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫化タングステンにニッケル及びコバル
トのうちの少なくともどちらか一方を添加したことを特
徴とする炭酸ガス還元用硫化タングステン触媒。
1. A tungsten sulfide catalyst for carbon dioxide gas reduction, wherein at least one of nickel and cobalt is added to tungsten sulfide.
【請求項2】 アルミナ、シリカ、活性炭、ゼオライ
ト、活性白土、酸化鉄、ジルコニア、チタニア、フェラ
イト、イットリア、トリア、ランタニア、ネオジミアの
中から選ばれた、少なくとも1種以上の担体に担持した
ことを特徴とする請求項1記載の炭酸ガス還元用硫化タ
ングステン触媒。
2. Support on at least one carrier selected from alumina, silica, activated carbon, zeolite, activated clay, iron oxide, zirconia, titania, ferrite, yttria, thoria, lanthanum, neodymia. The tungsten sulfide catalyst for carbon dioxide reduction according to claim 1, which is characterized in that.
【請求項3】 触媒中のNi/MoあるいはCo/Mo
の原子量比が0.0001〜2であることを特徴とする
請求項1または2記載の炭酸ガス還元用硫化タングステ
ン触媒。
3. Ni / Mo or Co / Mo in the catalyst
The tungsten sulfide catalyst for carbon dioxide gas reduction according to claim 1 or 2, wherein the atomic weight ratio is 0.0001 to 2.
JP4262821A 1992-09-04 1992-09-04 Tungsten sulfide catalyst for carbon dioxide reduction Expired - Lifetime JPH0773676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4262821A JPH0773676B2 (en) 1992-09-04 1992-09-04 Tungsten sulfide catalyst for carbon dioxide reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4262821A JPH0773676B2 (en) 1992-09-04 1992-09-04 Tungsten sulfide catalyst for carbon dioxide reduction

Publications (2)

Publication Number Publication Date
JPH0679179A true JPH0679179A (en) 1994-03-22
JPH0773676B2 JPH0773676B2 (en) 1995-08-09

Family

ID=17381086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4262821A Expired - Lifetime JPH0773676B2 (en) 1992-09-04 1992-09-04 Tungsten sulfide catalyst for carbon dioxide reduction

Country Status (1)

Country Link
JP (1) JPH0773676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054820A1 (en) * 2019-09-20 2021-03-25 Universiti Kebangsaan Malaysia A catalyst composition and method of making thereof for carbon monoxide production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054820A1 (en) * 2019-09-20 2021-03-25 Universiti Kebangsaan Malaysia A catalyst composition and method of making thereof for carbon monoxide production

Also Published As

Publication number Publication date
JPH0773676B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US6099819A (en) Catalysts for the selective oxidation of hydrogen sulfide to sulfur
US5346679A (en) Method for reduction of carbon dioxide, catalyst for the reduction, and method for production of the catalyst
JPH0768171A (en) Catalyst for reduction reaction of carbon dioxide
US20060258528A1 (en) Catalyst for removing aromatic halogenated compounds comprising dioxin, carbon monoxide, and nitrogen oxide and use thereof
EP0208434B1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
Kim et al. Supported PdCl2 CuCl2 catalysts for carbon monoxide oxidation 1. Effects of catalyst composition and reaction conditions
US5466427A (en) Catalysis and treatment of gases with the catalysts
Lee et al. Integrated sol-gel and hydrothermal synthesis of V2O5–TiO2 nanocatalysts for enhanced catalytic removal of H2S
US6297189B1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
US5665668A (en) Method of making a catalyst
JP2600091B2 (en) Molybdenum sulfide catalyst for carbon dioxide reduction and method for producing carbon monoxide
JPH0679179A (en) Tungsten sulfide catalyst for reducing carbon dioxide gas
JP2007038155A (en) Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
EP0741607B1 (en) Method of making a catalyst
JPH0679178A (en) Molybdenum sulfide catalyst for reducing carbon dioxide gas
Xie et al. The black rock series supported SCR catalyst for NO x removal
JPS6120342B2 (en)
Leerat et al. Lean-burn NO x Reduction by Propene over Gold Supported on Alumina Catalysts Derived from the Sol–Gel Method
JPH0685874B2 (en) Tungsten sulfide catalyst for carbon dioxide reduction and method for producing the same
KR102600502B1 (en) Catalyst coated with n―gqd for improving selective catalyst reduction and method of fabricating the same
JPH0543215A (en) Carbon dioxide reducing method
Xingyi et al. Low-temperature catalytic combustion of trichloroethylene over La, Ce, and Pt catalysts supported on MCM-41
JPS6341843B2 (en)
EP0765188A1 (en) Oxidation catalyst
JPH0723207B2 (en) Carbon dioxide reduction method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term