JPH0679178A - Molybdenum sulfide catalyst for reducing carbon dioxide gas - Google Patents

Molybdenum sulfide catalyst for reducing carbon dioxide gas

Info

Publication number
JPH0679178A
JPH0679178A JP4262820A JP26282092A JPH0679178A JP H0679178 A JPH0679178 A JP H0679178A JP 4262820 A JP4262820 A JP 4262820A JP 26282092 A JP26282092 A JP 26282092A JP H0679178 A JPH0679178 A JP H0679178A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
molybdenum sulfide
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4262820A
Other languages
Japanese (ja)
Other versions
JPH0761449B2 (en
Inventor
Hiroshi Taoda
垰田博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4262820A priority Critical patent/JPH0761449B2/en
Publication of JPH0679178A publication Critical patent/JPH0679178A/en
Publication of JPH0761449B2 publication Critical patent/JPH0761449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a catalyst for reducing carbon dioxide gas for reducing the carbon dioxide gas selectively and economically under the mild conditions of low temperature and normal pressure for the purpose of solidifying carbon dioxide gas as a prime factor of global greenhouse effect at high speed and in large production amount. CONSTITUTION:A molybdenum sulfide catalyst for reducing carbon dioxide gas composed of molybdenum sulfide to which nickel and cobalt are added or molybdenum sulfide is carried on a carrier of alumina, silica, active carbon, zeolite, active china clay, iron oxide, zirconia, titania, ferrite, yttria, thoria, lanthania, neodymia or the like. Molybdenum sulfide is sold in the market as a lubricant or the like, and no problems are found from the viewpoints of supply, toxicity, safety and the like, and inexpensive, not being inactivated by a sulfur compound and of good durability. The carbon dioxide gas is reacted with hydrogen and reduced effectively into carbon monoxide at low temperature, and the reaction is the gas phase reaction which can be carried out at high speed to reduce the large amount of carbon dioxide gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ガスを還元して一
酸化炭素に変換し、化成品の原料や燃料として利用する
ための炭酸ガス還元用触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide reducing catalyst for reducing carbon dioxide to convert it into carbon monoxide and using it as a raw material or fuel for chemical products.

【0002】[0002]

【従来の技術】近年、地球規模の環境汚染が人類の生存
を脅かす問題として大きくクローズアップされている
が、その中で最も対策の難しい問題が炭酸ガスによる地
球温暖化である。炭酸ガスは、これまで問題になってき
た窒素酸化物や硫黄酸化物などと異なり、それ自身には
毒性はないが、全世界で年間約200億トンという膨大
な量が排出されており、大気中の炭酸ガス濃度の上昇に
伴い、温室効果による気候変動が起こり、何千万人もの
環境難民が発生すると危ぐされている。これを防止する
ため、エネルギー代替や省エネルギーなどによる炭酸ガ
ス排出の抑制が政策的に推進されようとしているが、炭
酸ガスの排出は経済社会の発展と密接な関係を持ってい
るため、その大幅な抑制は極めて難しい情勢である。し
たがって、炭酸ガスによる地球温暖化を阻止するために
は炭酸ガスの還元・固定化技術の開発が不可欠である。
2. Description of the Related Art In recent years, environmental pollution on a global scale has been widely highlighted as a problem that threatens the survival of humankind. Among them, the most difficult problem to address is global warming due to carbon dioxide. Unlike nitrogen oxides and sulfur oxides, which have been problematic so far, carbon dioxide is not toxic in itself, but it emits a huge amount of about 20 billion tons per year worldwide, and it is released into the atmosphere. With the increase of carbon dioxide concentration in the environment, climate change due to greenhouse effect will occur, and it is threatened that tens of millions of environmental refugees will occur. In order to prevent this, the suppression of carbon dioxide emissions through energy substitution and energy saving is being promoted as a policy, but since carbon dioxide emissions are closely related to economic and social development, the Suppression is an extremely difficult situation. Therefore, in order to prevent the global warming caused by carbon dioxide, the development of carbon dioxide reduction / immobilization technology is indispensable.

【0003】炭酸ガスを水素と反応させて還元する接触
水素化反応による炭酸ガスの還元・固定化法は、光化学
反応法や電気化学反応法、高分子合成による方法、有機
合成による方法などと比べ、単位時間、単位面積当りの
炭酸ガスの還元・固定化能力が大きく、大量の炭酸ガス
の処理が可能である。また、既存のフィッシャー・トロ
プシュ法炭化水素合成技術などが応用でき、気相反応で
あるため、生成物の分離が容易などの利点も持ってい
る。これまで接触水素化反応による炭酸ガスの還元・固
定化法として、ルテニウムやロジウムなどの貴金属触媒
を用いる方法が研究されてきた(例えば、F. Solymosi
and A. Erdohelyi, J. Mol. Catal., Vol.8, 471 (198
0))。
The carbon dioxide reduction / immobilization method by catalytic hydrogenation reaction in which carbon dioxide gas is reacted with hydrogen for reduction is compared with photochemical reaction method, electrochemical reaction method, polymer synthesis method, organic synthesis method and the like. The ability to reduce and immobilize carbon dioxide per unit time and unit area is large, and a large amount of carbon dioxide can be processed. In addition, existing Fischer-Tropsch hydrocarbon synthesis technology can be applied, and since it is a gas phase reaction, it also has the advantage of easy separation of products. Until now, a method using a noble metal catalyst such as ruthenium or rhodium has been studied as a reduction / immobilization method of carbon dioxide gas by a catalytic hydrogenation reaction (for example, F. Solymosi
and A. Erdohelyi, J. Mol. Catal., Vol.8, 471 (198
0)).

【0004】しかしこの方法は、1)使用する触媒が高
価であり、硫化水素や亜硫酸ガスなどのイオウ化合物に
よって簡単に被毒され、触媒活性が急激に低下する、
2)この反応では炭酸ガスがメタンに還元されるが、こ
の反応は原料よりも生成物のエネルギーが低くなる発熱
反応であるため、エネルギー歩留まりが悪い、3)高圧
にしないと反応がうまく進行しないことが多い、4)一
般に、反応が高温で行われ、その温度を得るのに化石燃
料を使用するため、実質的に炭酸ガスの排出抑制になら
ない、などの欠点を持っていた。
However, in this method, 1) the catalyst used is expensive, and it is easily poisoned by sulfur compounds such as hydrogen sulfide and sulfurous acid gas, and the catalytic activity is drastically reduced.
2) Carbon dioxide gas is reduced to methane in this reaction, but since this reaction is an exothermic reaction in which the energy of the product is lower than that of the raw material, the energy yield is poor. 3) The reaction does not proceed well unless the pressure is high. 4) Generally, the reaction is carried out at a high temperature, and since fossil fuel is used for obtaining the temperature, there is a drawback that carbon dioxide emission is not substantially suppressed.

【0005】一方、硫化モリブデンは輝水鉛鉱として地
殻中に広く分布しており、潤滑剤などとして市販されて
いる安価で低毒性の物質である。硫化モリブデン触媒は
水素添加脱硫触媒や一酸化炭素のメタン化触媒として使
われている例があるが、高価な貴金属を必要とせず、硫
化水素や亜硫酸ガスなどの硫黄化合物によって被毒され
ず、耐久性があるという特長を持っている。しかし、こ
れまで硫化モリブデン触媒を炭酸ガス還元に用いた研究
はほとんど行われておらず、しかも硫化モリブデンは炭
酸ガス還元に対して低い活性しか持たないことが報告さ
れていた( M.Saito and R. B. Anderson, J. Catal.,
Vol. 67, 296 (1981))。
On the other hand, molybdenum sulfide is widely distributed in the crust as molybdenite, and is an inexpensive and low-toxic substance commercially available as a lubricant or the like. Molybdenum sulfide catalysts are used as hydrodesulfurization catalysts and carbon monoxide methanation catalysts, but they do not require expensive precious metals and are not poisoned by sulfur compounds such as hydrogen sulfide or sulfurous acid gas, which makes them durable. It has the characteristic that However, almost no research has been conducted so far using molybdenum sulfide catalysts for carbon dioxide reduction, and it was reported that molybdenum sulfide has low activity for carbon dioxide reduction (M.Saito and RB). Anderson, J. Catal.,
Vol. 67, 296 (1981)).

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、炭酸ガスによる地球温暖化問題に対処して、硫黄化
合物によって被毒されず、耐久性があり、経済的で、低
温かつ常圧という温和な条件で炭酸ガスを選択的に一酸
化炭素に還元できる、炭酸ガス還元用硫化モリブデン触
媒の提供を目的とするものである。
In view of the above points, the present invention addresses the global warming problem caused by carbon dioxide gas, is not poisoned by sulfur compounds, is durable, economical, and has low temperature and normal temperature. An object of the present invention is to provide a molybdenum sulfide catalyst for reducing carbon dioxide, which can selectively reduce carbon dioxide to carbon monoxide under mild conditions such as pressure.

【0007】[0007]

【課題を解決するための手段】本発明の炭酸ガス還元用
触媒は、硫化モリブデンにニッケルやコバルトを添加し
たことを特徴とする硫化モリブデン触媒、あるいはそれ
を担体に担持したことを特徴とする硫化モリブデン触媒
である。本発明の触媒は、炭酸ガスを水素ガスと反応さ
せ、効率良く一酸化炭素に還元する。
The catalyst for carbon dioxide reduction of the present invention is a molybdenum sulfide catalyst characterized by adding nickel or cobalt to molybdenum sulfide, or a sulfide characterized by supporting it on a carrier. It is a molybdenum catalyst. The catalyst of the present invention reacts carbon dioxide gas with hydrogen gas to efficiently reduce carbon monoxide.

【0008】本発明者らは上記の目的を達成するため鋭
意研究を行った結果、硫化モリブデンだけでは炭酸ガス
還元に対する活性が低いが、硫化モリブデンにニッケル
あるいはコバルトを添加すると、炭酸ガス還元に対する
活性が大幅に向上することを見いだし、さらにそれを担
体に担持することにより飛躍的に活性が向上することを
見いだした。
As a result of intensive studies to achieve the above object, the present inventors have found that molybdenum sulfide alone has a low activity for reducing carbon dioxide, but when molybdenum sulfide is added with nickel or cobalt, the activity for reducing carbon dioxide is reduced. It was found that the activity was significantly improved, and by further supporting it on a carrier, the activity was dramatically improved.

【0009】本発明に用いられる担体としては、アルミ
ナやシリカ、活性炭、ゼオライト、活性白土、酸化鉄、
ジルコニア、チタニア、フェライト、イットリア、トリ
ア、ランタニア、ネオジミアやそれらの混合物などが挙
げられる。これらの担体は多孔質や微粒子などの表面積
の大きなものが好ましい。また、アルミナはγ−アルミ
ナが最も好ましい。
The carrier used in the present invention includes alumina, silica, activated carbon, zeolite, activated clay, iron oxide,
Examples thereof include zirconia, titania, ferrite, yttria, thoria, lanthania, neodymia and mixtures thereof. It is preferable that these carriers have a large surface area such as porous and fine particles. Further, the alumina is most preferably γ-alumina.

【0010】本発明の炭酸ガス還元用触媒は、モリブデ
ン酸アンモニウムの水溶液に硫化水素や硫化アンモニウ
ムを飽和させるなどして得られるテトラチオモリブデン
酸アンモニウムのアンモニア水溶液あるいは硝酸、塩
酸、硫酸などによるその酸性溶液に、ニッケル塩あるい
はコバルト塩を添加し、またはさらに多孔質や微粒子、
ゾルなどの状態の担体を攪拌しながら加え、乾燥した
後、水素、窒素、あるいはアルゴンやヘリウムなどの不
活性ガス気流中で400℃〜700℃の温度で加熱する
ことによって調製される。また、二硫化モリブデンや三
硫化モリブデンなどの硫化モリブデンまたは担体に担持
された硫化モリブデンを、水素、窒素、あるいはアルゴ
ンやヘリウムなどの不活性ガス気流中で400℃〜70
0℃の温度で加熱した後、ニッケル塩溶液あるいはコバ
ルト塩溶液に添加して乾燥することなどによっても調製
される。さらに、硫化モリブデンまたは担体に担持され
た硫化モリブデンにニッケルあるいはコバルトを添加し
て加熱することなどによっても調製される。その際の加
熱温度は600℃〜900℃が好ましい。
The catalyst for reducing carbon dioxide of the present invention is an ammonium tetrathiomolybdate aqueous ammonia solution obtained by saturating an aqueous solution of ammonium molybdate with hydrogen sulfide or ammonium sulfide, or its acidity with nitric acid, hydrochloric acid, sulfuric acid or the like. Add nickel salt or cobalt salt to the solution, or add porous or fine particles,
It is prepared by adding a carrier such as a sol with stirring, drying it, and then heating it at a temperature of 400 to 700 ° C. in a stream of hydrogen, nitrogen, or an inert gas such as argon or helium. In addition, molybdenum sulfide such as molybdenum disulfide or molybdenum trisulfide or molybdenum sulfide supported on a carrier is heated at 400 ° C. to 70 ° C. in a stream of hydrogen, nitrogen, or an inert gas such as argon or helium.
It is also prepared by heating at a temperature of 0 ° C., adding to a nickel salt solution or a cobalt salt solution and drying. Further, it is also prepared by adding nickel or cobalt to molybdenum sulfide or molybdenum sulfide supported on a carrier and heating. The heating temperature at that time is preferably 600 ° C to 900 ° C.

【0011】担体に担持された硫化モリブデンは、モリ
ブデン酸アンモニウムの水溶液に多孔質や微粒子、ゾル
などの状態の担体を攪拌しながら加え、硫化水素や硫化
アンモニウムで飽和させた後、塩酸や硫酸などの酸によ
って中和し、濾過した後窒素や不活性ガス雰囲気下で1
00〜150℃で一晩加熱乾燥することによって得られ
る。また、モリブデン酸アンモニウムの硫化アンモニウ
ム溶液やアンモニア水溶液に多孔質や微粒子、ゾルなど
の状態の担体を攪拌しながら加えて乾燥した後、酸素気
流中で加熱し、その後、硫化水素あるいは水素と硫化水
素の混合ガスの気流中で350〜600℃に加熱するこ
とによっても得られる。
The molybdenum sulfide supported on the carrier is added to an aqueous solution of ammonium molybdate while stirring the carrier in a state of porous, fine particles or sol, and saturated with hydrogen sulfide or ammonium sulfide, and then hydrochloric acid or sulfuric acid. Neutralized with acid, filtered, and filtered under nitrogen or an inert gas atmosphere 1
It is obtained by heating and drying at 00 to 150 ° C. overnight. In addition, a carrier in the form of porous particles, fine particles, or sol is added to an ammonium sulfide solution of ammonium molybdate solution or an aqueous ammonia solution while stirring and dried, and then heated in an oxygen stream, and then hydrogen sulfide or hydrogen and hydrogen sulfide. It can also be obtained by heating to 350 to 600 ° C. in a mixed gas stream.

【0012】本発明の炭酸ガス還元用触媒中のニッケル
及びコバルトの含有量は、Ni/MoあるいはCo/M
oの原子量比で0.0001〜2であることが望まし
い。硫化モリブデンにニッケルあるいはコバルトを添加
することにより、触媒の活性、及び表面積が増加して、
炭酸ガス還元に対する触媒活性が大幅に向上するが、触
媒中のニッケル及びコバルトの含有量がそれ以上になる
と触媒の表面積が小さくなり、触媒活性が低下する。ま
た、本発明の触媒の担体に対する担持量としては0.0
01〜35重量%が好ましい。
The content of nickel and cobalt in the carbon dioxide reduction catalyst of the present invention is Ni / Mo or Co / M.
The atomic weight ratio of o is preferably 0.0001 to 2. Addition of nickel or cobalt to molybdenum sulfide increases the activity and surface area of the catalyst,
Although the catalytic activity for carbon dioxide reduction is significantly improved, when the content of nickel and cobalt in the catalyst is more than that, the surface area of the catalyst is reduced and the catalytic activity is lowered. The amount of the catalyst of the present invention supported on the carrier is 0.0
01 to 35% by weight is preferable.

【0013】こうして得られた本発明の触媒に炭酸ガス
と水素を含んだガスを流通させることにより、炭酸ガス
は触媒上で水素と反応し、ほぼ100%の選択率で一酸
化炭素に変換される。このとき反応ガスにアルゴンやヘ
リウムなどの不活性ガスや窒素ガス、硫化水素などが含
まれていてもよい。不活性ガスや窒素が含まれていても
反応にほとんど影響がなく、硫化水素が含まれている場
合には逆に触媒活性が向上する。また、反応ガス中の炭
酸ガス/水素のモル比は1に近い方が好ましい。反応生
成物である一酸化炭素はそのまま燃料としても使用でき
るし、既存の合成ガス(一酸化炭素と水素)からのメタ
ノール製造プロセスやC1化学技術などを利用して、最
近、自動車用燃料として脚光を浴びているメタノールや
化成品の原料に変換して利用することもできる。この炭
酸ガスを一酸化炭素に変換する反応は吸熱反応であるた
め、エネルギー歩留まりが良く、生成物である一酸化炭
素は太陽エネルギーや廃熱など、熱源の熱を蓄えたこと
になる。
By passing a gas containing carbon dioxide and hydrogen through the catalyst of the present invention thus obtained, carbon dioxide reacts with hydrogen on the catalyst and is converted into carbon monoxide with a selectivity of about 100%. It At this time, the reaction gas may contain an inert gas such as argon or helium, a nitrogen gas, or hydrogen sulfide. Even if an inert gas or nitrogen is contained, the reaction is hardly affected, and when hydrogen sulfide is contained, the catalytic activity is improved. Further, the molar ratio of carbon dioxide gas / hydrogen in the reaction gas is preferably close to 1. Carbon monoxide, which is a reaction product, can be used as a fuel as it is, and recently, using the existing methanol production process from synthesis gas (carbon monoxide and hydrogen) and C1 chemical technology, it has recently been used as a fuel for automobiles. It can also be used by converting it into the raw material for methanol and chemical products that are being bathed. Since the reaction for converting carbon dioxide gas into carbon monoxide is an endothermic reaction, the energy yield is good, and carbon monoxide as a product has stored heat from a heat source such as solar energy or waste heat.

【0014】[0014]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
EXAMPLES Among the examples of the present invention, particularly representative ones are shown below.

【0015】実施例1 テトラチオモリブデン酸アンモニウムのアンモニア水溶
液に硝酸ニッケル・6水塩(テトラチオモリブデン酸ア
ンモニウムに対して40モル%)と担体としてチタニア
の微粉末(テトラチオモリブデン酸アンモニウムに対し
て400重量%)を攪拌しながら加え、室温で真空乾燥
した後、水素気流中、450℃で1時間加熱した。得ら
れた触媒500mgを直径1cmの石英製U字型反応管
に充填し、炭酸ガスと水素1:1の混合ガスを20ml
/minの流量で流通させて反応させ、反応生成物をガ
スクロマトグラフを用いて分析した。その結果、200
℃で1.8%、300℃で8.5%、400℃で19.
5%、500℃で30%の炭酸ガスが一酸化炭素に変換
されていた。一酸化炭素以外の反応生成物は見られなか
った。
Example 1 Nickel nitrate hexahydrate (40 mol% with respect to ammonium tetrathiomolybdate) in an aqueous ammonia solution of ammonium tetrathiomolybdate and titania fine powder as a carrier (with respect to ammonium tetrathiomolybdate) (400% by weight) was added with stirring, and the mixture was vacuum dried at room temperature and then heated in a hydrogen stream at 450 ° C. for 1 hour. The obtained catalyst (500 mg) was filled in a quartz U-shaped reaction tube having a diameter of 1 cm, and 20 ml of a mixed gas of carbon dioxide and hydrogen (1: 1) was added.
The reaction product was analyzed by using a gas chromatograph. As a result, 200
1.8% at 300 ° C., 8.5% at 300 ° C., 19.
5% and 30% of carbon dioxide at 500 ° C. had been converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0016】比較例1 市販の二硫化モリブデン(MoS2)500mgを直径
1cmの石英製U字型反応管に充填し、実施例1と同様
にして炭酸ガスと水素1:1の混合ガスを20ml/m
inの流量で流通させて反応させ、得られた反応生成物
をガスクロマトグラフを用いて分析した。その結果、炭
酸ガスの一酸化炭素への変換率は200℃で0%、30
0℃で0%、400℃で0.3%、500℃で4%であ
った。
Comparative Example 1 500 mg of commercially available molybdenum disulfide (MoS2) was charged into a quartz U-shaped reaction tube having a diameter of 1 cm, and a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added in an amount of 20 ml / in the same manner as in Example 1. m
The reaction product was analyzed by using a gas chromatograph. As a result, the conversion rate of carbon dioxide gas to carbon monoxide was 0% at 200 ° C and 30%.
It was 0% at 0 ° C, 0.3% at 400 ° C, and 4% at 500 ° C.

【0017】実施例2 テトラチオモリブデン酸アンモニウムのアンモニア水溶
液に硝酸コバルト・6水塩(テトラチオモリブデン酸ア
ンモニウムに対して60モル%)と担体としてγ−アル
ミナの微粉末(テトラチオモリブデン酸アンモニウムに
対して600重量%)を攪拌しながら加え、室温で真空
乾燥した後、水素気流中、500℃で1時間加熱した。
得られた触媒500mgを用いて、実施例1と同様にし
て炭酸ガスと水素1:1の混合ガスを20ml/min
の流量で流通させて反応させ、反応生成物をガスクロマ
トグラフを用いて分析した。その結果、200℃で1.
3%、300℃で7%、400℃で18%、500℃で
28%の炭酸ガスが一酸化炭素に変換されていた。一酸
化炭素以外の反応生成物は見られなかった。
Example 2 Cobalt nitrate hexahydrate (60 mol% with respect to ammonium tetrathiomolybdate) in an aqueous ammonia solution of ammonium tetrathiomolybdate and γ-alumina fine powder as a carrier (ammonium tetrathiomolybdate) 600% by weight) was added with stirring, dried in vacuum at room temperature, and then heated in a hydrogen stream at 500 ° C. for 1 hour.
Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was added at 20 ml / min in the same manner as in Example 1.
The reaction product was analyzed by using a gas chromatograph. As a result, at 200 ° C.
3%, 7% at 300 ° C., 18% at 400 ° C. and 28% at 500 ° C. were converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0018】実施例3 テトラチオモリブデン酸アンモニウムのアンモニア水溶
液に硝酸ニッケル・6水塩(テトラチオモリブデン酸ア
ンモニウムに対して70モル%)と担体としてシリカの
微粉末(テトラチオモリブデン酸アンモニウムに対して
800重量%)を攪拌しながら加え、室温で真空乾燥し
た後、水素気流中、500℃で50分間加熱した。得ら
れた触媒500mgを用いて、実施例1と同様にして炭
酸ガスと水素1:1の混合ガスを20ml/minの流
量で流通させて反応させ、反応生成物をガスクロマトグ
ラフを用いて分析した。その結果、200℃で0.9
%、300℃で5%、400℃で13%、500℃で2
1%の炭酸ガスが一酸化炭素に変換されていた。一酸化
炭素以外の反応生成物は見られなかった。
EXAMPLE 3 Nickel nitrate hexahydrate (70 mol% with respect to ammonium tetrathiomolybdate) was added to an aqueous ammonia solution of ammonium tetrathiomolybdate, and silica fine powder was used as a carrier (with respect to ammonium tetrathiomolybdate). (800% by weight) was added with stirring, dried in vacuum at room temperature, and then heated in a hydrogen stream at 500 ° C. for 50 minutes. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was circulated at a flow rate of 20 ml / min for reaction in the same manner as in Example 1, and the reaction product was analyzed using a gas chromatograph. . As a result, 0.9 at 200 ℃
%, 5% at 300 ° C, 13% at 400 ° C, 2 at 500 ° C
1% of carbon dioxide was converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0019】実施例4 テトラチオモリブデン酸アンモニウムのアンモニア水溶
液に硝酸コバルト・6水塩(テトラチオモリブデン酸ア
ンモニウムに対して100モル%)と担体としてジルコ
ニアの微粉末(テトラチオモリブデン酸アンモニウムに
対して700重量%)を攪拌しながら加え、室温で真空
乾燥した後、水素気流中、450℃で1時間加熱した。
得られた触媒300mgを用いて実施例1と同様にして
炭酸ガスと水素の1:1の混合ガスを20ml/min
の流量で流通させて反応させ、反応生成物をガスクロマ
トグラフを用いて分析した。その結果、200℃で1.
2%、300℃で6.8%、400℃で16%、500
℃で25%の炭酸ガスが一酸化炭素に変換されていた。
Example 4 Cobalt nitrate hexahydrate (100 mol% with respect to ammonium tetrathiomolybdate) in an aqueous ammonia solution of ammonium tetrathiomolybdate and fine powder of zirconia as a carrier (with respect to ammonium tetrathiomolybdate) (700 wt%) was added with stirring, and the mixture was vacuum dried at room temperature and then heated at 450 ° C. for 1 hour in a hydrogen stream.
Using 300 mg of the obtained catalyst, a 1: 1 mixed gas of carbon dioxide and hydrogen was added in the same manner as in Example 1 at 20 ml / min.
The reaction product was analyzed by using a gas chromatograph. As a result, at 200 ° C.
2%, 6.8% at 300 ° C, 16% at 400 ° C, 500
25% of carbon dioxide gas was converted into carbon monoxide at 0 ° C.

【0020】実施例5 三硫化モリブデンをアルゴンガス気流中で、520℃で
55分間加熱した。その1gを硝酸ニッケル・6水塩の
10%水溶液、5mlに添加し、窒素気流中で1晩攪拌
しながら乾燥した。得られた触媒300mgを用いて、
実施例1と同様にして炭酸ガスと水素1:1の混合ガス
を20ml/minの流量で流通させて反応させ、反応
生成物をガスクロマトグラフを用いて分析した。その結
果、200℃で0.7%、300℃で4.6%、400
℃で12%、500℃で20%の炭酸ガスが一酸化炭素
に変換されていた。
Example 5 Molybdenum trisulfide was heated in an argon gas stream at 520 ° C. for 55 minutes. 1 g of the solution was added to 5 ml of a 10% aqueous solution of nickel nitrate hexahydrate and dried in a nitrogen stream with stirring overnight. Using 300 mg of the obtained catalyst,
In the same manner as in Example 1, a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was circulated at a flow rate of 20 ml / min to cause a reaction, and the reaction product was analyzed using a gas chromatograph. As a result, 0.7% at 200 ° C, 4.6% at 300 ° C, 400%
12% at 0 ° C and 20% at 500 ° C were converted to carbon monoxide.

【0021】実施例6 テトラチオモリブデン酸アンモニウムを水素気流中で、
550℃で45分間加熱した。その1gを硝酸コバルト
・6水塩の20%水溶液、4mlに添加し、窒素気流中
で1晩攪拌しながら乾燥した。得られた触媒300mg
を用いて、実施例1と同様にして炭酸ガスと水素1:1
の混合ガスを20ml/minの流量で流通させて反応
させ、反応生成物をガスクロマトグラフを用いて分析し
た。その結果、200℃で0.5%、300℃で4.2
%、400℃で10%、500℃で18%の炭酸ガスが
一酸化炭素に変換されていた。
Example 6 Ammonium tetrathiomolybdate was added in a stream of hydrogen,
Heated at 550 ° C. for 45 minutes. 1 g of the solution was added to 4 ml of a 20% aqueous solution of cobalt nitrate hexahydrate, and dried with stirring in a nitrogen stream overnight. 300 mg of the obtained catalyst
In the same manner as in Example 1 using carbon dioxide gas and hydrogen 1: 1
The mixed gas of was flowed at a flow rate of 20 ml / min to cause reaction, and the reaction product was analyzed using a gas chromatograph. As a result, 0.5% at 200 ° C and 4.2% at 300 ° C.
%, 10% at 400 ° C. and 18% at 500 ° C. were converted to carbon monoxide.

【0022】実施例7 80重量%の活性炭に担持された三硫化モリブデンをア
ルゴン気流中で、400℃で1時間20分間加熱した。
その1gを硝酸コバルト・6水塩の10%水溶液、7m
lに添加し、窒素気流中で1晩攪拌しながら乾燥した。
得られた触媒300mgを用いて、実施例1と同様にし
て炭酸ガスと水素1:1の混合ガスを20ml/min
の流量で流通させて反応させ、反応生成物をガスクロマ
トグラフを用いて分析した。その結果、200℃で0.
6%、300℃で5.5%、400℃で14%、500
℃で23%の炭酸ガスが一酸化炭素に変換されていた。
Example 7 Molybdenum trisulfide supported on 80% by weight of activated carbon was heated in an argon stream at 400 ° C. for 1 hour and 20 minutes.
1g of it is a 10% aqueous solution of cobalt nitrate hexahydrate, 7m
It was added to 1 and dried in a nitrogen stream with stirring overnight.
Using 300 mg of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added at 20 ml / min in the same manner as in Example 1.
The reaction product was analyzed by using a gas chromatograph. As a result, at 200.degree.
6%, 5.5% at 300 ° C, 14% at 400 ° C, 500
23% of carbon dioxide gas was converted into carbon monoxide at 0 ° C.

【0023】実施例8 75モル%の三二酸化鉄に担持された三硫化モリブデン
をヘリウムガス気流中で、550℃で半時間、加熱し
た。その1gを硝酸ニッケル・6水塩の20%水溶液、
4mlに添加し、窒素気流中で1晩攪拌しながら乾燥し
た。得られた触媒300mgを用いて、実施例1と同様
にして炭酸ガスと水素とアルゴン4:4:1の混合ガス
を20ml/minの流量で流通させて反応させ、反応
生成物をガスクロマトグラフを用いて分析した。その結
果、200℃で2.2%、300℃で8.8%、400
℃で19.8%、500℃で31%の炭酸ガスが一酸化
炭素に変換されていた。
Example 8 Molybdenum trisulfide supported on 75 mol% iron sesquioxide was heated in a helium gas stream at 550 ° C. for half an hour. 1 g of the 20% aqueous solution of nickel nitrate hexahydrate,
It was added to 4 ml and dried with stirring in a nitrogen stream overnight. Using 300 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and argon 4: 4: 1 was caused to flow at a flow rate of 20 ml / min for reaction in the same manner as in Example 1, and the reaction product was subjected to gas chromatography. Used for analysis. As a result, 2.2% at 200 ° C, 8.8% at 300 ° C, 400%
Carbon dioxide gas of 19.8% at 0 ° C and 31% at 500 ° C was converted into carbon monoxide.

【0024】実施例9 テトラチオモリブデン酸アンモニウムの硝酸水溶液に硝
酸ニッケル・6水塩(テトラチオモリブデン酸アンモニ
ウムに対して110モル%)と担体としてゼオライトの
微粉末(テトラチオモリブデン酸アンモニウムに対して
300重量%)を攪拌しながら加え、室温で真空乾燥し
た後、窒素気流中、500℃で1時間加熱した。得られ
た触媒500mgを用いて、実施例1と同様にして炭酸
ガスと水素と窒素1:1:1の混合ガスを30ml/m
inの流量で流通させて反応させ、反応生成物をガスク
ロマトグラフを用いて分析した。その結果、200℃で
1%、300℃で6%、400℃で15%、500℃で
24%の炭酸ガスが一酸化炭素に変換されていた。
Example 9 Nickel nitrate hexahydrate (110 mol% with respect to ammonium tetrathiomolybdate) in a nitric acid aqueous solution of ammonium tetrathiomolybdate and zeolite fine powder as a carrier (with respect to ammonium tetrathiomolybdate) (300% by weight) was added with stirring, and vacuum drying was performed at room temperature, followed by heating in a nitrogen stream at 500 ° C. for 1 hour. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and nitrogen 1: 1: 1 was added in an amount of 30 ml / m in the same manner as in Example 1.
The reaction product was analyzed by using a gas chromatograph by circulating the reaction product at a flow rate of in. As a result, 1% at 200 ° C., 6% at 300 ° C., 15% at 400 ° C., and 24% at 500 ° C. were converted into carbon monoxide.

【0025】実施例10 テトラチオモリブデン酸アンモニウムの水溶液に硝酸コ
バルト・6水塩(テトラチオモリブデン酸アンモニウム
に対して60モル%)と担体としてネオジミアの微粉末
(テトラチオモリブデン酸アンモニウムに対して750
重量%)を攪拌しながら加え、乾燥した後、水素−硫化
水素気流中で500℃で加熱した。得られた触媒500
mgを用いて、実施例1と同様にして炭酸ガスと水素と
アルゴン2:2:1の混合ガスを30ml/minの流
量で流通させて反応させ、反応生成物をガスクロマトグ
ラフにより分析した。その結果、200℃で0.8%、
300℃で5%、400℃で13%、500℃で22%
の炭酸ガスが一酸化炭素に変換されていた。
Example 10 Cobalt nitrate hexahydrate (60 mol% with respect to ammonium tetrathiomolybdate) in an aqueous solution of ammonium tetrathiomolybdate and neodymia fine powder as a carrier (750 with respect to ammonium tetrathiomolybdate)
(% By weight) was added with stirring, dried and then heated at 500 ° C. in a hydrogen-hydrogen sulfide stream. The obtained catalyst 500
In the same manner as in Example 1, using mg, a mixed gas of carbon dioxide gas, hydrogen and argon 2: 2: 1 was circulated at a flow rate of 30 ml / min to cause a reaction, and the reaction product was analyzed by gas chromatography. As a result, at 200 ℃ 0.8%,
5% at 300 ° C, 13% at 400 ° C, 22% at 500 ° C
Carbon dioxide gas of was converted into carbon monoxide.

【0026】実施例11 テトラチオモリブデン酸アンモニウムの水溶液に硝酸ニ
ッケル・6水塩(テトラチオモリブデン酸アンモニウム
に対して110モル%)と担体としてフェライトの微粉
末(テトラチオモリブデン酸アンモニウムに対して80
0重量%)を攪拌しながら加え、室温で真空乾燥した
後、窒素気流中、550℃で45分間加熱した。得られ
た触媒500mgを用いて、実施例1と同様にして炭酸
ガスと水素と窒素2:2:1の混合ガスを30ml/m
inの流量で流通させて反応させ、反応生成物をガスク
ロマトグラフを用いて分析した。その結果、200℃で
1.7%、300℃で6.5%、400℃で17%、5
00℃で26.5%の炭酸ガスが一酸化炭素に変換され
ていた。
Example 11 Nickel nitrate hexahydrate (110 mol% relative to ammonium tetrathiomolybdate) in an aqueous solution of ammonium tetrathiomolybdate and ferrite fine powder (80 relative to ammonium tetrathiomolybdate) as a carrier.
(0% by weight) was added with stirring, vacuum-dried at room temperature, and then heated at 550 ° C. for 45 minutes in a nitrogen stream. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and nitrogen 2: 2: 1 was added in an amount of 30 ml / m in the same manner as in Example 1.
The reaction product was analyzed by using a gas chromatograph by circulating the reaction product at a flow rate of in. As a result, 1.7% at 200 ° C, 6.5% at 300 ° C, 17% at 400 ° C, 5%
At 00 ° C., 26.5% of carbon dioxide was converted into carbon monoxide.

【0027】実施例12 90重量%のトリアに担持された三硫化モリブデンを水
素気流中、430℃で1時間20分間加熱した。その1
gを硝酸ニッケル・6水塩の10%水溶液、8mlに添
加し、窒素気流中で1晩攪拌しながら乾燥した。得られ
た触媒500mgを用いて、実施例1と同様にして炭酸
ガスと水素と窒素3:3:1の混合ガスを30ml/m
inの流量で流通させて反応させ、反応生成物をガスク
ロマトグラフを用いて分析した。その結果、200℃で
1.1%、300℃で6.5%、400℃で17.5
%、500℃で28%の炭酸ガスが一酸化炭素に変換さ
れていた。
Example 12 90% by weight of thoria-supported molybdenum trisulfide was heated in a stream of hydrogen at 430 ° C. for 1 hour and 20 minutes. Part 1
g was added to 8 ml of a 10% aqueous solution of nickel nitrate hexahydrate, and the mixture was dried with stirring in a nitrogen stream overnight. Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and nitrogen 3: 3: 1 was added in the same manner as in Example 1 at 30 ml / m.
The reaction product was analyzed by using a gas chromatograph by circulating the reaction product at a flow rate of in. As a result, 1.1% at 200 ° C., 6.5% at 300 ° C., 17.5 at 400 ° C.
%, 28% of carbon dioxide at 500 ° C. had been converted to carbon monoxide.

【0028】実施例13 テトラチオモリブデン酸アンモニウムのアンモニア水溶
液に硝酸コバルト・6水塩(テトラチオモリブデン酸ア
ンモニウムに対して100モル%)と担体として活性白
土(テトラチオモリブデン酸アンモニウムに対して70
0重量%)を攪拌しながら加え、室温で真空乾燥した
後、水素とアルゴンの混合気流中、470℃で50分間
加熱した。得られた触媒1gを用いて実施例1と同様に
して炭酸ガスと水素とヘリウム2:2:1の混合ガスを
20ml/minの流量で流通させて反応させ、反応生
成物をガスクロマトグラフを用いて分析した。その結
果、200℃で0.4%、300℃で3.9%、400
℃で9.5%、500℃で16.5%の炭酸ガスが一酸
化炭素に変換されていた。
Example 13 Cobalt nitrate hexahydrate (100 mol% relative to ammonium tetrathiomolybdate) in an aqueous ammonia solution of ammonium tetrathiomolybdate and activated clay (70 relative to ammonium tetrathiomolybdate) as a carrier.
(0% by weight) was added with stirring, dried in vacuum at room temperature, and then heated at 470 ° C. for 50 minutes in a mixed gas stream of hydrogen and argon. Using 1 g of the obtained catalyst, a mixed gas of carbon dioxide gas, hydrogen and helium 2: 2: 1 was circulated at a flow rate of 20 ml / min for reaction in the same manner as in Example 1, and the reaction product was subjected to gas chromatography. Analyzed. As a result, 0.4% at 200 ° C, 3.9% at 300 ° C, 400%
9.5% of carbon dioxide gas at 500 ° C. and 16.5% at 500 ° C. had been converted to carbon monoxide.

【0029】実施例14 テトラチオモリブデン酸アンモニウムのアンモニア水溶
液に硝酸ニッケル・6水塩(テトラチオモリブデン酸ア
ンモニウムに対して60モル%)と担体としてイットリ
アの微粉末(テトラチオモリブデン酸アンモニウムに対
して600重量%)を攪拌しながら加え、室温で真空乾
燥した後、水素気流中、500℃で50分間加熱した。
得られた触媒500mgを用いて、実施例1と同様にし
て炭酸ガスと水素1:1の混合ガスを30ml/min
の流量で流通させて反応させ、反応生成物をガスクロマ
トグラフを用いて分析した。その結果、200℃で1.
0%、300℃で5.2%、400℃で13.5%、5
00℃で22.5%の炭酸ガスが一酸化炭素に変換され
ていた。
Example 14 Nickel nitrate hexahydrate (60 mol% with respect to ammonium tetrathiomolybdate) was added to an aqueous ammonia solution of ammonium tetrathiomolybdate, and yttria fine powder was used as a carrier (with respect to ammonium tetrathiomolybdate). (600% by weight) was added with stirring, dried in vacuum at room temperature, and then heated in a hydrogen stream at 500 ° C. for 50 minutes.
Using 500 mg of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added in the same manner as in Example 1 at 30 ml / min.
The reaction product was analyzed by using a gas chromatograph. As a result, at 200 ° C.
0%, 5.2% at 300 ° C, 13.5% at 400 ° C, 5
At 00 ° C., 22.5% of carbon dioxide was converted into carbon monoxide.

【0030】実施例15 85重量%のランタニアに担持された三硫化モリブデン
を硫化水素と水素の1:1の混合ガス気流中で550℃
で45分間加熱した。その1gを硝酸ニッケル・6水塩
の20%水溶液、4mlに添加し、窒素気流中で1晩攪
拌しながら乾燥した。得られた触媒1.5gを用いて、
炭酸ガスと水素1:1の混合ガスを1ml/minの流
量で流通させながら、直径1.5mのフレネルレンズに
よって集光した太陽光を照射して反応させ、得られた反
応生成物をガスクロマトグラフを用いて分析した。その
結果、約6%の炭酸ガスが一酸化炭素に変換されてい
た。
Example 15 Molybdenum trisulfide supported on 85% by weight of lanthanum was heated at 550 ° C. in a 1: 1 mixed gas stream of hydrogen sulfide and hydrogen.
And heated for 45 minutes. 1 g of the solution was added to 4 ml of a 20% aqueous solution of nickel nitrate hexahydrate and dried in a nitrogen stream with stirring overnight. Using 1.5 g of the catalyst obtained,
While flowing a mixed gas of carbon dioxide gas and hydrogen at a flow rate of 1 ml / min at a flow rate of 1 ml / min, the sunlight was condensed by a Fresnel lens with a diameter of 1.5 m to irradiate and react with the obtained reaction product. Was analyzed using. As a result, about 6% of carbon dioxide was converted into carbon monoxide.

【0031】実施例16 二硫化モリブデンの微粉末に18重量%のニッケル微粉
末を加えてよく混ぜ合わせ、アルゴン気流中で、800
℃で45分間加熱した。得られた触媒1.5gを用い
て、炭酸ガスと水素1:1の混合ガスを1ml/min
の流量で流通させながら、直径1.5mのフレネルレン
ズによって集光した太陽光を照射して反応させ、得られ
た反応生成物をガスクロマトグラフを用いて分析した。
その結果、約4%の炭酸ガスが一酸化炭素に変換されて
いた。
Example 16 To a fine powder of molybdenum disulfide, 18% by weight of nickel fine powder was added and mixed well, and the mixture was mixed in an argon stream at 800
Heat at 45 ° C. for 45 minutes. Using 1.5 g of the obtained catalyst, a mixed gas of carbon dioxide gas and hydrogen 1: 1 was added at 1 ml / min.
While circulating at a flow rate of 1, the reaction product was irradiated with sunlight collected by a Fresnel lens having a diameter of 1.5 m to cause a reaction, and the obtained reaction product was analyzed using a gas chromatograph.
As a result, about 4% of carbon dioxide was converted to carbon monoxide.

【0032】[0032]

【発明の効果】本発明は以上説明したように、硫黄化合
物によって被毒されず、耐久性があり経済的で、低温か
つ常圧という温和な条件で炭酸ガスを選択的に一酸化炭
素に還元できる炭酸ガス還元用硫化モリブデン触媒を提
供したものである。硫化モリブデンは潤滑剤などとして
市販されており、安価で低毒性の物質であり、資源の供
給という点からも問題が無い。本発明の触媒により、炭
酸ガスは逆水性ガスシフト反応を起こして選択的に一酸
化炭素に還元されるが、この反応は気相反応であるため
大量の炭酸ガスの処理が可能であり、吸熱反応であるた
めエネルギーの歩留まりが良く、熱源として太陽熱や廃
熱を利用すれば、生成物である一酸化炭素はそれらの熱
を蓄えたことになるし、ヒートポンプとしての利用も可
能である。また、反応生成物である一酸化炭素はそのま
ま燃料としても利用できるし、既存のC1化学技術を用
いて自動車用燃料として脚光を浴びているメタノールや
化成品の原料に変換して利用することもできるため、地
球環境保全の面からもエネルギー対策の面からも非常に
効果が大きい。
As described above, the present invention is not poisoned by sulfur compounds, is durable and economical, and selectively reduces carbon dioxide to carbon monoxide under mild conditions of low temperature and atmospheric pressure. The present invention provides a molybdenum sulfide catalyst for reducing carbon dioxide gas. Molybdenum sulfide is commercially available as a lubricant, is an inexpensive and low-toxic substance, and has no problem in terms of resource supply. With the catalyst of the present invention, carbon dioxide gas undergoes a reverse water gas shift reaction and is selectively reduced to carbon monoxide, but since this reaction is a gas phase reaction, it is possible to treat a large amount of carbon dioxide gas and endothermic reaction. Therefore, the energy yield is good, and if solar heat or waste heat is used as a heat source, the product carbon monoxide will have stored those heats and can also be used as a heat pump. Further, carbon monoxide, which is a reaction product, can be used as a fuel as it is, or it can be used by converting it into a raw material for methanol or a chemical product, which is in the limelight as an automobile fuel, by using the existing C1 chemical technology. Therefore, it is very effective in terms of global environment conservation and energy measures.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫化モリブデンにニッケル及びコバルト
のうちの少なくともどちらか一方を添加したことを特徴
とする炭酸ガス還元用硫化モリブデン触媒。
1. A molybdenum sulfide catalyst for reducing carbon dioxide, which is obtained by adding at least one of nickel and cobalt to molybdenum sulfide.
【請求項2】 アルミナ、シリカ、活性炭、ゼオライ
ト、活性白土、酸化鉄、ジルコニア、チタニア、フェラ
イト、イットリア、トリア、ランタニア、ネオジミアの
中から選ばれた、少なくとも1種以上の担体に担持した
ことを特徴とする請求項1記載の炭酸ガス還元用硫化モ
リブデン触媒。
2. A carrier loaded on at least one carrier selected from alumina, silica, activated carbon, zeolite, activated clay, iron oxide, zirconia, titania, ferrite, yttria, thoria, lanthania and neodymia. The molybdenum sulfide catalyst according to claim 1, which is for reducing carbon dioxide.
【請求項3】 触媒中のNi/MoあるいはCo/Mo
の原子量比が0.0001〜2であることを特徴とする
請求項1または2記載の炭酸ガス還元用硫化モリブデン
触媒。
3. Ni / Mo or Co / Mo in the catalyst
3. The molybdenum sulfide catalyst for carbon dioxide gas reduction according to claim 1 or 2, wherein the atomic weight ratio is 0.0001 to 2.
JP4262820A 1992-09-04 1992-09-04 Molybdenum sulfide catalyst for carbon dioxide reduction Expired - Lifetime JPH0761449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4262820A JPH0761449B2 (en) 1992-09-04 1992-09-04 Molybdenum sulfide catalyst for carbon dioxide reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4262820A JPH0761449B2 (en) 1992-09-04 1992-09-04 Molybdenum sulfide catalyst for carbon dioxide reduction

Publications (2)

Publication Number Publication Date
JPH0679178A true JPH0679178A (en) 1994-03-22
JPH0761449B2 JPH0761449B2 (en) 1995-07-05

Family

ID=17381073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4262820A Expired - Lifetime JPH0761449B2 (en) 1992-09-04 1992-09-04 Molybdenum sulfide catalyst for carbon dioxide reduction

Country Status (1)

Country Link
JP (1) JPH0761449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393725A (en) * 2017-06-20 2017-11-24 中国科学院福建物质结构研究所 A kind of carbon material supported NiCo of porous, electrically conductive2O4Composite and its preparation method and application
CN114804716A (en) * 2022-05-20 2022-07-29 西北民族大学 Modified clay, preparation method and application thereof, and glue-free fiber board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393725A (en) * 2017-06-20 2017-11-24 中国科学院福建物质结构研究所 A kind of carbon material supported NiCo of porous, electrically conductive2O4Composite and its preparation method and application
CN107393725B (en) * 2017-06-20 2019-08-20 中国科学院福建物质结构研究所 A kind of carbon material supported NiCo of porous, electrically conductive2O4Composite material and its preparation method and application
CN114804716A (en) * 2022-05-20 2022-07-29 西北民族大学 Modified clay, preparation method and application thereof, and glue-free fiber board

Also Published As

Publication number Publication date
JPH0761449B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US6099819A (en) Catalysts for the selective oxidation of hydrogen sulfide to sulfur
KR100351625B1 (en) Catalyst for preparing hydrocarbon
Zhu et al. NH3-SCR performance and SO2 resistance comparison of CeO2 based catalysts with Fe/Mo additive surface decoration
Mousavi et al. Selective catalytic reduction of SO 2 with methane for recovery of elemental sulfur over nickel-alumina catalysts
JPH0768171A (en) Catalyst for reduction reaction of carbon dioxide
Kim et al. Supported PdCl2 CuCl2 catalysts for carbon monoxide oxidation 1. Effects of catalyst composition and reaction conditions
US5466427A (en) Catalysis and treatment of gases with the catalysts
Lee et al. Integrated sol-gel and hydrothermal synthesis of V2O5–TiO2 nanocatalysts for enhanced catalytic removal of H2S
US6297189B1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
CZ266595A3 (en) Waste gas ammonia decomposition process
JP2003510176A (en) Method for removing sulfur compounds from gas
US5665668A (en) Method of making a catalyst
JP2600091B2 (en) Molybdenum sulfide catalyst for carbon dioxide reduction and method for producing carbon monoxide
JPH0679178A (en) Molybdenum sulfide catalyst for reducing carbon dioxide gas
JP2007038155A (en) Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
EP0741607B1 (en) Method of making a catalyst
Leerat et al. Lean-burn NO x Reduction by Propene over Gold Supported on Alumina Catalysts Derived from the Sol–Gel Method
JPH0679179A (en) Tungsten sulfide catalyst for reducing carbon dioxide gas
Li et al. Hydrogenation of sulfur dioxide to hydrogen sulfide over Fe/γ-Al2O3 catalysts
JPH0685874B2 (en) Tungsten sulfide catalyst for carbon dioxide reduction and method for producing the same
JP2535752B2 (en) Carbon dioxide gas-phase reduction method
WO2007141577A1 (en) Method for removing heavy metals from gases
Baglio et al. Lanthanum oxide-based catalysts for the Claus process
Pitukmanorom et al. Selective catalytic reduction of nitric oxide by propene over In2O3–Ga2O3/Al2O3 nanocomposites
Xingyi et al. Low-temperature catalytic combustion of trichloroethylene over La, Ce, and Pt catalysts supported on MCM-41

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term