JPH0678B2 - Process for producing optically active 3-phenylglycidate compounds - Google Patents
Process for producing optically active 3-phenylglycidate compoundsInfo
- Publication number
- JPH0678B2 JPH0678B2 JP1226504A JP22650489A JPH0678B2 JP H0678 B2 JPH0678 B2 JP H0678B2 JP 1226504 A JP1226504 A JP 1226504A JP 22650489 A JP22650489 A JP 22650489A JP H0678 B2 JPH0678 B2 JP H0678B2
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- optically active
- trans
- microorganism
- methoxyphenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【発明の詳細な説明】 〔技術分野〕 本発明は、光学活性トランス−3−フェニルグリシッド
酸エステル類化合物の新規製法に関する。TECHNICAL FIELD The present invention relates to a novel method for producing an optically active trans-3-phenylglycidate compound.
3−フェニルグリシッド酸エステル類化合物には、2位
及び3位の2つの不斉炭素原子に基づき、(2R,3
S)体及び(2S,3R)体のトランス体のエナンチオ
マーが一対、(2R,3R)体及び(2S,3S)体の
シス体のエナンチオマーが一対、合計4種類の立体異性
体が存在する。このうち、光学活性トランス−3−フェ
ニルグリシッド酸エステル類化合物は、冠血管拡張剤と
して有用な塩酸ジルチアゼム及びその他各種医薬化合物
の合成中間体として重要な化合物であるが、従来、この
化合物の製法としては、トランス−3−(4−メトキシ
フェニル)グリシツド酸メチルエステルを加水分解して
対応するカルボン酸とし、このカルボン酸を光学活性ア
ミン類で光学分割した後、エステル化する方法(特開昭
60-13775、同60-13776)が知られている。3-Phenylglycidic acid ester compounds include (2R, 3
There are a total of four stereoisomers, one pair of enantiomers in the (S) form and the trans form of the (2S, 3R) form and one pair of the enantiomers in the (2R, 3R) form and the (2S, 3S) form of the cis form. Among them, the optically active trans-3-phenylglycidic acid ester compound is an important compound as a synthetic intermediate for diltiazem hydrochloride and various other pharmaceutical compounds useful as a coronary vasodilator, but conventionally, a method for producing this compound was used. For example, a method of hydrolyzing trans-3- (4-methoxyphenyl) glycidic acid methyl ester to a corresponding carboxylic acid, optically resolving this carboxylic acid with optically active amines, and then esterifying it (Japanese Patent Application Laid-Open No. 2000-242242).
60-13775 and 60-13776) are known.
しかしながら、上記方法は工程数が多く、しかも目的と
する光学活性トランス−3−(4−メトキシフェニル)
グリシツド酸メチルエステルが純度の低い油状物として
しか得られないという難点があつた。However, the above method has a large number of steps, and the desired optically active trans-3- (4-methoxyphenyl)
The problem is that glycidic acid methyl ester can only be obtained as an oily substance of low purity.
本発明者らは、かかる難点を解決すべき鋭意研究を重ね
た結果、ラセミ型トランス−3−フェニルグリシツド酸
エステル類化合物から、目的とする光学活性トランス−
3−フェニルグリシッド酸エステル類化合物を一挙にか
つ結晶として取得しうる方法を見出し、本発明を完成す
るに到つた。The present inventors have conducted extensive studies to solve such problems, and as a result, from racemic trans-3-phenylglycidic acid ester compounds, the desired optically active trans-
The inventors have found a method for obtaining 3-phenylglycidic acid ester compounds at once and as crystals, and have completed the present invention.
すなわち、本発明によれば、光学活性トランス−3−フ
ェニルグリシッド酸エステル類化合物は、一般式 (但し、環Aは置換基を有することもあるフェニル基、
Rは低級アルキル基を表す。) で示されるラセミ型トランス−3−フェニルグリシッド
酸エステル類に、エステル結合を不斉加水分解する能力
を有するコリネバクテリウム属又はセラチア属に属する
微生物の培養液、菌体もしくは菌体処理物又は当該微生
物由来の酵素を作用させて一方の光学活性体を加水分解
した後、反応液より対掌体を分離・採取することにより
製造できる。That is, according to the present invention, the optically active trans-3-phenylglycidic acid ester compound has the general formula (However, ring A is a phenyl group which may have a substituent,
R represents a lower alkyl group. ) In the racemic trans-3-phenylglycidic acid ester represented by the formula, a culture solution, a microbial cell or a treated product of a microorganism belonging to the genus Corynebacterium or Serratia having the ability to asymmetrically hydrolyze the ester bond. Alternatively, it can be produced by reacting an enzyme derived from the microorganism to hydrolyze one of the optically active substances, and then separating and collecting the antipode from the reaction solution.
本発明方法は、一般式〔I〕で示されるグリシッド酸エ
ステルが、環Aに低級アルキル基、低級アルコキシ基及
びハロゲン原子から選ばれる置換基を有している場合で
も、置換基のない場合と同様に実施できる。そのような
置換基としては、例えば4位におけるメチル基、メトキ
シ基又はクロロ原子などがある。置換基Rは、低級アル
キル基であり、例えばメチル基、エチル基、イソプロピ
ル基又はt−ブチル基である。In the method of the present invention, even when the glycidic acid ester represented by the general formula [I] has a substituent selected from a lower alkyl group, a lower alkoxy group and a halogen atom on the ring A, It can be carried out similarly. Examples of such a substituent include a methyl group, a methoxy group or a chloro atom at the 4-position. The substituent R is a lower alkyl group, for example, a methyl group, an ethyl group, an isopropyl group or a t-butyl group.
本発明において、原料化合物であるラセミ型トランス−
3−フェニルグリシッド酸エステル類化合物〔I〕とし
ては、(2S,3R)体及び(2R,3S)体を等量含
むものだけでなく、これらの光学活性体が適当な比率で
含まれているものであればいずれも用いることができ
る。In the present invention, the racemic trans-
The 3-phenylglycidic acid ester compound [I] includes not only those containing the (2S, 3R) -isomer and (2R, 3S) -isomer in equal amounts, but also these optically active substances in appropriate proportions. Any of them can be used.
グリシツド酸エステル類化合物〔I〕のエステル結合を
不斉加水分解する酵素源は、コリネバクテリウム属もし
くはセラチア属に属する微生物の培養液、菌体もしくは
菌体処理物のほか、該菌体から公知方法により得られる
精製もしくは部分精製のリパーゼ或いはエステラーゼを
用いることができる。The enzyme source for asymmetrically hydrolyzing the ester bond of the glycidic acid ester compound [I] is known as a culture solution of a microorganism belonging to the genus Corynebacterium or the genus Serratia, a microbial cell or a treated microbial cell, as well as the microbial cell. Purified or partially purified lipase or esterase obtained by the method can be used.
コリネバクテリウム属に属する微生物の具体例として
は、コリネバクテリウム アルカノリテイカム(Coryne
bacterium alkanolyticum)ATCC 21511、コリネバクテ
リウム ハイドロカーボクラスタム(Corynebacterium
hydrocarboclastum)ATCC 15592、コリネバクテリウム
プリモリオキシダンス(Corynebacterium primorioxy
dans)ATCC 31015等をあげることができる。一方、セラ
チア属に属する微生物の具体例としては、セラチア リ
クエファシエンス(Serratia liquefaciens)ATCC 2759
2、セラチア マルセッセンス(Serratia marcescens)
ATCC 13880、同ATCC 14764、同ATCC 19180、同ATCC 210
74、同ATCC 27117、同ATCC 21212等をあげることができ
る。これらは野性株、変異株であつてもよく、更にはこ
れらの微生物から、遺伝子組み換え、細胞融合などの生
物工学的手法により誘導されるものであつてもよい。Examples of microorganisms belonging to the genus Corynebacterium include Corynebacterium alkanolyticum (Corynebacterium
bacterium alkanolyticum) ATCC 21511, Corynebacterium hydrocarbocluster
hydrocarboclastum) ATCC 15592, Corynebacterium primorioxy
dans) ATCC 31015 etc. can be mentioned. On the other hand, specific examples of the microorganism belonging to the genus Serratia include Serratia liquefaciens ATCC 2759.
2. Serratia marcescens
ATCC 13880, ATCC 14764, ATCC 19180, ATCC 210
74, the same ATCC 27117, the same ATCC 21212 and the like. These may be wild strains or mutant strains, or may be derived from these microorganisms by bioengineering techniques such as gene recombination and cell fusion.
また、上記微生物の培養液及び菌体は、例えば当該微生
物を、通常この分野において用いうる培地、例えば、慣
用の炭素源、窒素源及び無機塩類含有培地中、常温ない
し加温下(好ましくは約20〜40℃)、かつ好気的条件
下、pH約5〜8で培養し、必要とあれば常法により培養
液から菌体を分離・採取して得ることができる。In addition, the culture solution and bacterial cells of the above-mentioned microorganism are, for example, a medium in which the microorganism is usually used in this field, for example, a medium containing a conventional carbon source, nitrogen source and inorganic salts, at room temperature or under heating (preferably about It can be obtained by culturing at 20 to 40 ° C.) under aerobic conditions at a pH of about 5 to 8, and if necessary, separating and collecting cells from the culture solution by a conventional method.
なお、培養に際しては、培地にラセミ型トランス−3−
フェニルグリシツド酸エステル類化合物〔I〕を約0.00
1%以上、とりわけ約0.1〜1%程度、添加して酵素活性
をあげることもできる。When culturing, racemic trans-3-
Phenylglycidic acid ester compound [I] was added to about 0.00
The enzyme activity can be increased by adding 1% or more, especially about 0.1 to 1%.
又、かかる微生物菌体の処理物としては、上記微生物の
凍結乾燥菌体、アセトン乾燥菌体、菌体自己消化物、菌
体抽出物、菌体磨砕物、菌体の超音波処理物などがあげ
られる。更に、本発明の微生物菌体或いは菌体処理物
は、例えばポリアクリルアミド法、含硫多糖ゲル法(カ
ラギーナンゲル法等)、アルギン酸ゲル法、寒天ゲル法
等の公知方法により固定化して使用することもできる。Examples of the treated product of the microbial cells include freeze-dried microbial cells of the above-mentioned microorganism, acetone-dried microbial cells, autolyzed microbial cells, microbial cell extracts, microbial cell grinds, and sonicated products of the microbial cells. can give. Furthermore, the microbial cells or treated cells of the present invention should be immobilized by known methods such as polyacrylamide method, sulfur-containing polysaccharide gel method (carrageenan gel method, etc.), alginic acid gel method, agar gel method, etc. You can also
本発明にかかる不斉加水分解反応は、適当な溶媒中、ラ
セミ型トランス−3−フェニルグリシッド酸エステル類
化合物〔I〕に酵素、微生物の培養液、該培養液から採
取した菌体又は菌体処理物を接触させることにより実施
することができる。The asymmetric hydrolysis reaction according to the present invention can be carried out by using a racemic trans-3-phenylglycidic acid ester compound [I] in an appropriate solvent, an enzyme, a culture solution of a microorganism, a bacterial cell or a microorganism collected from the culture solution. It can be carried out by contacting the body-treated product.
基質の濃度は概ね0.05〜20%、とりわけ0.5〜5%が好
ましく、反応は、常温ないし加温下、好ましくは10〜50
℃、とりわけ好ましくは25〜40℃で好適に進行する。ま
た反応に際しては、反応液のpHが5〜10、とりわけ6〜
9となるよう調整するのが好ましい。この際、基質は水
難溶姓のものが多いので、反応は水または水性溶媒と有
機溶媒との二相溶媒系で実施するのが好ましい。かかる
有機溶媒としては、例えばベンゼン、トルエン、キシレ
ン、四塩化炭素、クロロホルム、ジクロロメタン、トリ
クロロエチレン、クロロベンゼン、酢酸エチル、酢酸ブ
チル、n−プロピルアルコール、イソプロピルアルコー
ル、n−ブチルアルコール、t−ブチルアルコール、ジ
エチルエーテル、ジイソプロピルエーテル、メチルエチ
ルケトン、メチルイソブチルケトンなどがあげられ、と
りわけ酢酸エチル、四塩化炭素、トルエンが好ましい。
また、酵素源として微生物菌体またはその培養液を用い
る場合、上記反応を界面活性剤の存在下に実施すれば、
反応時間の短縮や光学活性トランス−3−フェニルグリ
シッド酸エステル類化合物〔I〕の収量増加をはかるこ
とができる。かかる界面活性剤としては、臭化セチルピ
リジウム、臭化セチルトリメチルアンモニウム、ポリエ
チレングリコール、ポリオキシエチレンオクチルフェニ
ルエーテル、ラウリル硫酸ナトリウム等を用いることが
でき、その添加量は反応液に対し、約0.0001〜0.1%程
度であるのが好ましい。The concentration of the substrate is generally 0.05 to 20%, preferably 0.5 to 5%, and the reaction is carried out at room temperature or under heating, preferably 10 to 50%.
Suitably progresses at ℃, particularly preferably 25-40 ℃. In the reaction, the pH of the reaction solution is 5-10, especially 6-
It is preferable to adjust it to be 9. In this case, since most of the substrates are poorly soluble in water, the reaction is preferably carried out in water or a two-phase solvent system of an aqueous solvent and an organic solvent. Examples of the organic solvent include benzene, toluene, xylene, carbon tetrachloride, chloroform, dichloromethane, trichloroethylene, chlorobenzene, ethyl acetate, butyl acetate, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, t-butyl alcohol, diethyl. Examples thereof include ether, diisopropyl ether, methyl ethyl ketone, and methyl isobutyl ketone, with ethyl acetate, carbon tetrachloride, and toluene being particularly preferable.
When using a microbial cell or a culture solution thereof as an enzyme source, if the above reaction is carried out in the presence of a surfactant,
The reaction time can be shortened and the yield of the optically active trans-3-phenylglycidic acid ester compound [I] can be increased. As such a surfactant, cetylpyridinium bromide, cetyltrimethylammonium bromide, polyethylene glycol, polyoxyethylene octylphenyl ether, sodium lauryl sulfate or the like can be used, and the addition amount thereof is about 0.0001 with respect to the reaction solution. It is preferably about 0.1%.
かくして得られる加水分解反応液からの光学活性トラン
ス−3−フェニルグリシッド酸エステル類化合物〔I〕
の単離は常法にしたがつて容易に実施することができ
る。例えば加水分解反応を水−有機溶媒二相系で実施し
た場合には、3−フェニルグリシッド酸エステル類化合
物〔I〕の一方の光学活性体は加水分解されて水層に移
行し、反応を受けない他方の光学活性体は有機溶媒中に
残存するので、有機溶媒層を分取し、源圧濃縮すること
により光学活性トランス−3−フェニルグリシッド酸エ
ステル類化合物を結晶として採取することができる。Optically active trans-3-phenylglycidic acid ester compound [I] from the hydrolysis reaction liquid thus obtained
Can be easily isolated by a conventional method. For example, when the hydrolysis reaction is carried out in a water-organic solvent two-phase system, one of the optically active forms of the 3-phenylglycidic acid ester compound [I] is hydrolyzed and transferred to the water layer to carry out the reaction. Since the other optically active substance which does not receive remains in the organic solvent, the optically active trans-3-phenylglycidic acid ester compound can be collected as crystals by separating the organic solvent layer and concentrating at source pressure. it can.
上記本発明方法によれば、光学活性トランス−3−フェ
ニルグリシッド酸エステル類化合物〔I〕を短工程で取
得できると共に、本発明に係る酵素の基質に対する立体
選択性がよく、しかも基質が安定なpH領域と酵素の至
適pHがほぼ一致しているため、高純度の目的物を高収
率に取得できるので、工業的有利な製法となりうるもの
である。According to the above method of the present invention, an optically active trans-3-phenylglycidate compound [I] can be obtained in a short step, and the enzyme of the present invention has good stereoselectivity for a substrate, and the substrate is stable. Since the optimum pH of the enzyme and the optimum pH of the enzyme are almost the same, a highly purified target product can be obtained in a high yield, which is an industrially advantageous production method.
実験例1 <目的> 本発明の酵素と対照の酵素につき、基質に対する立体選
択能を調べた。Experimental Example 1 <Purpose> The stereoselectivity of a substrate of the enzyme of the present invention and a control enzyme was examined.
<使用酵素> 本発明の酵素:各微生物を培地(組成;デキストリン1
%、硫安0.2%、ミーストS 2%、KH2PO4 0.1%、Mg
SO4・7H2O 0.05%、CaCl2・2H2O 0.01%、FeSO4・7H2
O 0.001%、Tween80 0.5%、カラリン102 0.1%、pH
7.0)中、30℃で18時間培養した後、培養液を遠心分
離し、その上清をそのまま用いた(以下、同)。<Enzyme used> Enzyme of the present invention: Each microorganism is used as a medium (composition; dextrin 1
%, Ammonium sulfate 0.2%, mist S 2%, KH 2 PO 4 0.1%, Mg
SO 4 / 7H 2 O 0.05%, CaCl 2 / 2H 2 O 0.01%, FeSO 4 / 7H 2
O 0.001%, Tween80 0.5%, Calarin 102 0.1%, pH
After culturing in 7.0) at 30 ° C. for 18 hours, the culture solution was centrifuged, and the supernatant was used as it was (hereinafter, the same).
対照の酵素:市販の酵素を用いた(以下、同)。Control enzyme: a commercially available enzyme was used (hereinafter the same).
<実験方法> 2mM塩化カルシウムを含む0.4Mトリス塩酸緩衝液3.75ml
とラセミ体トランス−3−(4−メトキシフェニル)グ
リシッド酸メチルエステル1.5gを含むトルエン溶液7.5m
lを混合し、30℃で10分間プレインキユベートする。こ
れに酵素液3.75mlを添加し、反応液pHを概酵素の至適
pHに調製した後、30℃、毎分1400回転で3時間攪拌し
て加水分解反応を実施した。<Experimental method> 3.75 ml of 0.4 M Tris-HCl buffer containing 2 mM calcium chloride
And toluene solution containing 1.5 g of racemic trans-3- (4-methoxyphenyl) glycidic acid methyl ester 7.5 m
Mix l and pre-incubate at 30 ° C for 10 minutes. To this, 3.75 ml of the enzyme solution was added to adjust the pH of the reaction solution to the optimum pH of the enzyme, and then the hydrolysis reaction was carried out by stirring at 30 ° C. and 1400 rpm for 3 hours.
なお、酵素量は、3時間の反応で、基質の加水分解率が
40〜50%となる量を用いた。The amount of enzyme used was such that the hydrolysis rate of the substrate was 40 to 50% in the reaction for 3 hours.
反応後、回収したトランス−3−(4−メトキシフェニ
ル)グリシッド酸メチルエステルをダイセル化学工業
(株)製のキラルセルOJΦ4.6×250mmを用いた高速液
体クロマトグラフイーにより分析して、加水分解率及び
(2R,3S)−3−(4−メトキシフェニル)グリシツド
酸メチルエステルの光学純度を求め、これらからE値
〔ジヤーナル・オブ・アメリカン・ケミカル・ソサイエ
テイー、第104巻、第7294〜7299頁(1982年)〕を式 により算出し、これを指標として各酵素の基質に対する
立体選択性を判断した。After the reaction, the recovered trans-3- (4-methoxyphenyl) glycidic acid methyl ester was analyzed by high performance liquid chromatography using Chiralcel OJΦ4.6 × 250 mm manufactured by Daicel Chemical Industries, Ltd. And the optical purity of (2R, 3S) -3- (4-methoxyphenyl) glycidic acid methyl ester was determined, and from these, the E value [Journal of American Chemical Society, Vol. 104, pp. 7294-7299 ( 1982)] And the stereoselectivity of each enzyme with respect to the substrate was judged using this as an index.
<結果> 結果は下記第1表に示す通りである。<Results> The results are shown in Table 1 below.
<考察> 上記第1表より、本発明のセラチア属及びコリネバクテ
リウム属微生物に由来する酵素を使用した場合には、対
照の各酵素を使用した場合に較べて極めて高いE値を示
すことがわかる。 <Discussion> From Table 1 above, it can be seen that when the enzyme derived from the microorganisms of the genus Serratia and Corynebacterium of the present invention is used, an extremely high E value is exhibited as compared with the case where each of the control enzymes is used. Recognize.
このことは、セラチア属及びコリネバクテリウム属微生
物に由来する酵素が、トランス−3−(4−メトキシフ
ェニル)グリシツド酸メチルエステルの加水分解反応に
おいて極めて優れた立体選択能を有していることを示す
ものである。This means that the enzymes derived from microorganisms of the genus Serratia and Corynebacterium have extremely excellent stereoselectivity in the hydrolysis reaction of trans-3- (4-methoxyphenyl) glycidic acid methyl ester. It is shown.
実験例2 <目的> 本発明の酵素および対照の酵素ならびに基質の各pH領
域における安定性(酵素は24時間後、基質は6時間
後)を調べた。Experimental Example 2 <Purpose> The stability of the enzyme of the present invention, the control enzyme, and the substrate in each pH region (24 hours after the enzyme and 6 hours after the substrate) were examined.
<使用酵素> 本発明の酵素:セラチア マルセツセンスATCC 27117由
来の酵素 対照の酵素:リパーゼ OF-360〔キヤンデイダシリンド
ラシア由来、各糖産業製〕 <実験方法> (a)酵素のpH安定性 600ユニツトの酵素溶液10mlを、第2表に記載のpHを
もつ0.2M水性緩衝液10mlに添加し、30℃で24時間静置
し、酵素液とした。一方、2mM塩化カルシウムを含む0.
4M水性緩衝液3.75mlを、ラセミ型トランス−3−(4−
メトキシフェニル)グリシッド酸メチルエステル1.5gを
含むトルエン溶液7.5mlと混合して30℃で10分間プレイ
ンキュベートし、これに上記酵素液2mlを含む水溶液3.
75mlを添加し、30℃、毎分1400回転で7.5分攪拌した。
反応液中の(2S,3R)−3−(4−メトキシフェニル)
グリシッド酸メチルエステルを高速液体クロマトグラフ
イーにて測定し、これから残存酵素活性を算出した。<Enzyme used> Enzyme of the present invention: enzyme derived from Serratia marcescens ATCC 27117 Control enzyme: lipase OF-360 [from Kyandeida Silindracia, manufactured by each sugar industry] <Experimental method> (a) pH stability of enzyme 600 10 ml of the enzyme solution of the unit was added to 10 ml of 0.2M aqueous buffer solution having the pH shown in Table 2 and left standing at 30 ° C. for 24 hours to obtain an enzyme solution. On the other hand, it contains 2 mM calcium chloride.
3.75 ml of 4M aqueous buffer was added to racemic trans-3- (4-
(Methoxyphenyl) glycidic acid methyl ester (1.5 g) was mixed with 7.5 ml of a toluene solution and preincubated at 30 ° C. for 10 minutes, and an aqueous solution containing 2 ml of the above enzyme solution was added thereto.
75 ml was added, and the mixture was stirred at 30 ° C. and 1400 rpm for 7.5 minutes.
(2S, 3R) -3- (4-methoxyphenyl) in the reaction solution
Glycidic acid methyl ester was measured by high performance liquid chromatography, and the residual enzyme activity was calculated from this.
なお、上記において1ユニットは(2S,3R)−3−(4
−メトキシフェニル)グリシッド酸メチルエステル1μ
Mを1分間に分解するのに要する酵素量を表わす(以
下、同)。In the above, one unit is (2S, 3R) -3- (4
-Methoxyphenyl) glycidic acid methyl ester 1μ
It represents the amount of enzyme required to decompose M in 1 minute (hereinafter the same).
(b)基質のpH安定性 0.2M水性緩衝液7.5mlを、0.75gのラセミ型トランス−3
−(4−メトキシフェニル)グリシッド酸メチルエステ
ルを含むトルエン溶液7.5mlと混合した。この混合液
を、30℃で毎分1400回転で6時間攪拌した。次いで、高
速液体クロマトグラフイーにより、残存するトランス−
3−(4−メトキシフェニル)グリシッド酸メチルエス
テルの割合(%)を測定した。(b) Substrate pH stability 7.5 ml of 0.2 M aqueous buffer was added to 0.75 g of racemic trans-3.
Mixed with 7.5 ml of a toluene solution containing methyl (-methoxyphenyl) -glycidate. The mixture was stirred at 30 ° C. and 1400 rpm for 6 hours. Then, by high performance liquid chromatography, the remaining trans-
The ratio (%) of 3- (4-methoxyphenyl) glycidic acid methyl ester was measured.
なお、水性緩衝液として、塩酸−グリココル(glycoco
l)緩衝液(pH2)、マックイルヴェイン(Mc Ilvain
e)緩衝液(pH3〜7)、トリス塩酸緩衝液(pH8〜
9)、およびグリシン−水酸化ナトリウム緩衝液(pH10
〜11)を用いた。As an aqueous buffer solution, hydrochloric acid-glycol (glycoco
l) Buffer (pH 2), Mc Ilvain
e) Buffer solution (pH 3 to 7), Tris-HCl buffer solution (pH 8 to
9), and glycine-sodium hydroxide buffer (pH 10
~ 11) was used.
<結果> 結果は、下記第2表に示す通りである。<Results> The results are as shown in Table 2 below.
<考察> 上記の結果から、本発明の酵素は、基質の残存率が最も
高いpH(8)で酵素活性残存率が最も高く、基質の分
解を避けつつ不斉加水分解反応を実施する上で好都合で
あるが、対照の酵素は、基質がかなり分解するpH
(6)で酵素活性がかなり低下しているため、効率よく
不斉加水分解反応を実施する上では望ましくないことが
わかる。 <Discussion> From the above results, the enzyme of the present invention has the highest residual rate of enzyme activity at pH (8), which has the highest residual rate of the substrate, and is effective in carrying out the asymmetric hydrolysis reaction while avoiding the degradation of the substrate. Conveniently, the control enzyme has a pH that significantly degrades the substrate.
In (6), the enzyme activity is considerably reduced, which is not desirable for efficiently carrying out the asymmetric hydrolysis reaction.
実験例3 <目的> 本発明の酵素と対照の酵素の至適pHを調べた。Experimental Example 3 <Purpose> The optimum pHs of the enzyme of the present invention and the control enzyme were examined.
<使用酵素> 本発明の酵素:セラチア マルセッセンスATCC 27117由
来の酵素 対照の酵素:リパーゼOF-360〔キャンディダシリンドラ
シア由来、名糖産業製〕 <実験方法> 2mM塩化カルシウムを含む0.4M水性緩衝液3.75mlを、ラ
セミ型トランス−3−(4−メトキシフェニル)グリシ
ッド酸メチルエステル1.5gを含むトルエン溶液7.5mlと
混合し、30℃で10分間プレインキュベートした。これに
50〜70ユニットの酵素を含む水溶液3.75mlを添加し、30
℃で毎分1400回転で7.5分攪拌した後、高速液体クロマ
トグラフイーによりトランス−3−(4−メトキシフェ
ニル)グリシッド酸メチルエステルを測定し、これに基
づき酵素活性を求めた。<Enzyme used> Enzyme of the present invention: enzyme derived from Serratia marcescens ATCC 27117 Control enzyme: lipase OF-360 [from Candida Silindracia, manufactured by Meito Sangyo] <Experimental method> 0.4 M aqueous buffer solution containing 2 mM calcium chloride 3.75 ml was mixed with 7.5 ml of a toluene solution containing 1.5 g of racemic trans-3- (4-methoxyphenyl) glycidic acid methyl ester and preincubated at 30 ° C. for 10 minutes. to this
Add 3.75 ml of an aqueous solution containing 50-70 units of enzyme,
After stirring at 1400 rpm for 7.5 minutes at ℃, trans-3- (4-methoxyphenyl) glycidic acid methyl ester was measured by high performance liquid chromatography, and the enzyme activity was determined based on this.
なお、水性緩衝液として実験例2で使用した各緩衝液を
使用した。In addition, each buffer used in Experimental Example 2 was used as the aqueous buffer.
<結果> 結果は下記第3表に示す通りである。<Results> The results are shown in Table 3 below.
(注):表中の各酵素活性は、測定した最高値を100
とした場合の%として表した。 (Note): For each enzyme activity in the table, the highest value measured is 100
And expressed as a percentage.
<考察> 上記第3表から本発明の酵素は基質が最も安定なpH9
付近に活性発現の至適pHが存在し、効率的に不斉加水
分解を実施し得ることがわかる。<Discussion> From Table 3 above, the enzyme of the present invention has the most stable substrate at pH 9
It can be seen that the optimum pH for activity expression exists in the vicinity, and asymmetric hydrolysis can be efficiently carried out.
実験例4〔酵素活性の半減期〕 <目的> 本発明の酵素と対照の酵素について、酵素活性の半減期
を調べた。Experimental Example 4 [Half-life of enzyme activity] <Purpose> The half-life of enzyme activity was examined for the enzyme of the present invention and the control enzyme.
<使用酵素> 本発明の酵素:セラチア マルセツセンスATCC 27117由
来の酵素 対照の酵素:リパーゼOF-360〔キヤンデイダシリンドラ
シア由来、名糖産業製〕 <実験方法> 1700ユニツトの酵素を含む0.2M水性緩衝液50mlとトルエ
ン溶液50mlを混合した。この混合物を30℃で毎分1400回
転で攪拌し、3日毎に酵素活性を実験例3と同様にして
測定することにより、酵素活性の半減期を算出した。<Enzyme used> Enzyme of the present invention: Serratia marcescens ATCC 27117-derived enzyme Control enzyme: Lipase OF-360 [from Kyandeida Silindracia, manufactured by Meito Sangyo] <Experimental method> 0.2M aqueous solution containing 1700 unit enzyme 50 ml of buffer solution and 50 ml of toluene solution were mixed. The half-life of the enzyme activity was calculated by stirring the mixture at 30 ° C. at 1400 rpm and measuring the enzyme activity every 3 days in the same manner as in Experimental Example 3.
<結果> 結果は下記第4表に示す通りである。<Results> The results are as shown in Table 4 below.
<考察> 上記第4表から本発明の酵素は、対照の酵素に較べて半
減期が約3倍も長く、安定性が極めて良好であることが
わかる。 <Discussion> It can be seen from Table 4 above that the enzyme of the present invention has a half-life that is about 3 times longer than that of the control enzyme and that the stability is extremely good.
実施例1 グルコース0.5%、ペプトン1%、肉エキス1%、酵母エキス
1.25%、塩化ナトリウム0.5%、からなる培地50ml(pH7.
0)を500ml容振盪フラスコに入れ、120℃で10分間減菌
した。この培地に、セラチア マルセッセンスATCC 271
17を1白金耳接種し、30℃で20時間振盪培養した。上記
培養液5.4から遠心分離により集めた菌体を、生理食
塩水に懸濁後さらに遠心分離により集菌した。菌体を臭
化セチルトリメチルアンモニウム0.01%を含む10mMリン
酸緩衝液1.8(pH7.5)に懸濁し、ラセミ型3−(4−
メトキシフエニル)グリシッド酸メチルエステル7.2gを
含む四塩化炭素1.8に添加した後、30℃で3日間不斉
加水分解反応させることにより、(2S,3R)−3−
(4−メトキシフェニル)グリシッド酸メチルエステル
が完全に分解した。四塩化炭素層を分取したのち、減圧
濃縮し、(2R,3S)−3−(4−メトキシフェニ
ル)グリシッド酸メチルエステル3.0gを粗結晶として得
た。この粗結晶3.0gにイソプロピルアルコール10mlを添
加した後、80℃にて攪拌しながら20分間加熱溶解した。
3時間かけて80℃から20℃へ徐冷した後、1時間氷冷
し、析出した結晶をろ取することにより、(2R,3
S)−3−(4−メトキシフエニル)グリシッド酸メチ
ルエステルのプリズム状結晶2.9gを得た。Example 1 Glucose 0.5%, peptone 1%, meat extract 1%, yeast extract
50 ml of a medium consisting of 1.25% and sodium chloride 0.5% (pH 7.
0) was placed in a 500 ml shake flask and sterilized at 120 ° C for 10 minutes. Serratia marcescens ATCC 271
One platinum loop was inoculated with 17 and cultured with shaking at 30 ° C. for 20 hours. The cells collected from the above culture solution 5.4 by centrifugation were suspended in physiological saline and then collected by centrifugation. The cells were suspended in 10 mM phosphate buffer solution 1.8 (pH 7.5) containing 0.01% cetyltrimethylammonium bromide, and racemic 3- (4-
(2S, 3R) -3-was added to carbon tetrachloride (1.8 g) containing 7.2 g of methoxyphenyl) glycidic acid methyl ester, followed by asymmetric hydrolysis reaction at 30 ° C. for 3 days.
(4-Methoxyphenyl) glycidic acid methyl ester was completely decomposed. The carbon tetrachloride layer was separated and then concentrated under reduced pressure to obtain 3.0 g of (2R, 3S) -3- (4-methoxyphenyl) glycidic acid methyl ester as crude crystals. After adding 10 ml of isopropyl alcohol to 3.0 g of the crude crystals, the mixture was heated and dissolved at 80 ° C. for 20 minutes while stirring.
The mixture was gradually cooled from 80 ° C to 20 ° C over 3 hours, then ice-cooled for 1 hour, and the precipitated crystals were collected by filtration (2R, 3
2.9 g of prismatic crystals of S) -3- (4-methoxyphenyl) glycidic acid methyl ester were obtained.
M.P. :87-88℃ ▲〔α〕20 D▼:−207.08゜(C=1,メタノール) 純度 :100% 元素分析値:理論値 C:63.45,H:5.81,O:30.74 測定値 C:63.44,H:5.80,O:30.76 赤外吸収スペクトル :第1図 核磁気共鳴スペクトル:第2図 質量分析スペクトル :第3図 実施例2 実施例1に示した培地に下記第5表に示す細菌を接種
し、30℃で20時間培養した。上記培養液45mlより遠心分
離により集めた菌体を、生理食塩水に懸濁後さらに遠心
分離により集菌した。該菌体を臭化セチルトリメチルア
ンモニウム0.01%を含む10mMリン酸緩衝液15ml(pH7.5)
に懸濁し、ラセミ型3−(4−メトキシフエニル)グリ
シッド酸メチルエステル60mgを含む四塩化炭素15mlに添
加し、30℃にて3日間不斉加水分解反応させた。反応
後、四塩化炭素層を分取して、(2R、3S)−3−
(4−メトキシフェニル)グリシッド酸メチルエステル
含有反応液を得た。この反応液の(2R、3S)体の含
量は下記第5表の通りであり、また、その対掌体である
(2S、3R)体は反応液中から殆ど検出されなかつ
た。MP: 87-88 ° C ▲ [α] 20 D ▼: −207.08 ° (C = 1, methanol) Purity: 100% Elemental analysis value: Theoretical value C: 63.45, H: 5.81, O: 30.74 Measurement value C: 63.44 , H: 5.80, O: 30.76 Infrared absorption spectrum: Fig. 1 Nuclear magnetic resonance spectrum: Fig. 2 Mass spectrum: Fig. 3 Example 2 Bacteria shown in Table 5 below were added to the medium shown in Example 1. The cells were inoculated and cultured at 30 ° C for 20 hours. The bacterial cells collected from 45 ml of the above culture solution by centrifugation were suspended in physiological saline and further collected by centrifugation. 15 ml of 10 mM phosphate buffer containing 0.01% cetyltrimethylammonium bromide (pH 7.5)
The mixture was suspended in 15 ml of carbon tetrachloride containing 60 mg of racemic 3- (4-methoxyphenyl) glycidic acid methyl ester, and subjected to asymmetric hydrolysis reaction at 30 ° C. for 3 days. After the reaction, the carbon tetrachloride layer was separated to obtain (2R, 3S) -3-
A (4-methoxyphenyl) glycidic acid methyl ester-containing reaction solution was obtained. The content of the (2R, 3S) isomer in this reaction solution is as shown in Table 5 below, and the antipode (2S, 3R) isomer was hardly detected in the reaction solution.
尚、上記光学活性体の定量はダイセル化学工業(株)製
のキラルセルOIΦ4.6×250mmを用い、高速液体クロマ
トグラフイーにより行つた。The amount of the optically active substance was determined by high performance liquid chromatography using Chiralcel OIΦ 4.6 × 250 mm manufactured by Daicel Chemical Industries, Ltd.
第1図は、(2R、3S)-3-(4-メトキシフェニル)グリシッ
ド酸メチルエステルの赤外吸収スペクトル、第2図は同
化合物の核磁気共鳴スペクトル、第3図は同化合物の質
量分析スペクトルである。Figure 1 is the infrared absorption spectrum of (2R, 3S) -3- (4-methoxyphenyl) glycidic acid methyl ester, Figure 2 is the nuclear magnetic resonance spectrum of the same compound, and Figure 3 is the mass spectrometry of the same compound. It is a spectrum.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 41/00 C12R 1:425) Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location (C12P 41/00 C12R 1: 425)
Claims (4)
Rは低級アルキル基を表わす。) で示されるラセミ型トランス−3−フェニルグリシッド
酸エステルに、エステル結合を不斉加水分解する能力を
有するコリネバクテリウム属もしくはセラチア属に属す
る微生物の培養液、菌体もしくは菌体処理物または当該
微生物由来の酵素を作用させて一方の光学活性体を加水
分解した後、反応液より対掌体を分離・採取することを
特徴とする光学活性トランス−3−フェニルグリシッド
酸エステル類化合物の製法。1. A general formula [I] (However, ring A is a phenyl group which may have a substituent,
R represents a lower alkyl group. ) To racemic trans-3-phenylglycidic acid ester represented by the following, a culture solution of a microorganism belonging to the genus Corynebacterium or the genus Serratia having the ability to asymmetrically hydrolyze an ester bond, a microbial cell or a treated product of the microbial cell, or Of an optically active trans-3-phenylglycidic acid ester compound, characterized in that an enantiomer is separated and collected from the reaction solution after hydrolyzing one of the optically active substances by causing an enzyme derived from the microorganism to act. Manufacturing method.
3S)である請求項1記載の製法。2. The configuration of the antipodes to be separated and collected is (2R,
The method according to claim 1, which is 3S).
求項1記載の製法。3. The production method according to claim 1, wherein the enzyme is esterase or ribase.
請求項1記載の製法。4. The method according to claim 1, wherein the microorganism is a microorganism belonging to the genus Serratia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1226504A JPH0678B2 (en) | 1988-09-02 | 1989-08-31 | Process for producing optically active 3-phenylglycidate compounds |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-221016 | 1988-09-02 | ||
JP22101688 | 1988-09-02 | ||
JP1226504A JPH0678B2 (en) | 1988-09-02 | 1989-08-31 | Process for producing optically active 3-phenylglycidate compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0315398A JPH0315398A (en) | 1991-01-23 |
JPH0678B2 true JPH0678B2 (en) | 1994-01-05 |
Family
ID=26524038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1226504A Expired - Lifetime JPH0678B2 (en) | 1988-09-02 | 1989-08-31 | Process for producing optically active 3-phenylglycidate compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0678B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998056762A3 (en) * | 1997-06-11 | 1999-03-25 | Tanabe Seiyaku Co | Process for preparing optically active phenyloxirane compounds |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8801311A (en) * | 1988-05-20 | 1989-12-18 | Stamicarbon | PHENYL GLYCIDATE STEREOISOMERS, CONTAINING PRODUCTS THEREOF WITH 2-NITROTHIOPHENOL AND THE PREPARATION OF DILTIAZEM. |
US5677470A (en) * | 1994-06-28 | 1997-10-14 | Tanabe Seiyaku Co., Ltd. | Baccatin derivatives and processes for preparing the same |
CA2162759A1 (en) * | 1994-11-17 | 1996-05-18 | Kenji Tsujihara | Baccatin derivatives and processes for preparing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013775A (en) * | 1983-07-05 | 1985-01-24 | Sawai Seiyaku Kk | Production of optically active 3-(p-alkoxyphenyl)-glycidic acid alkali metal salt |
JPS6013776A (en) * | 1983-07-05 | 1985-01-24 | Sawai Seiyaku Kk | Production of optically active 3-(p-alkoxyphenyl)-glycidic acid derivative |
-
1989
- 1989-08-31 JP JP1226504A patent/JPH0678B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013775A (en) * | 1983-07-05 | 1985-01-24 | Sawai Seiyaku Kk | Production of optically active 3-(p-alkoxyphenyl)-glycidic acid alkali metal salt |
JPS6013776A (en) * | 1983-07-05 | 1985-01-24 | Sawai Seiyaku Kk | Production of optically active 3-(p-alkoxyphenyl)-glycidic acid derivative |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998056762A3 (en) * | 1997-06-11 | 1999-03-25 | Tanabe Seiyaku Co | Process for preparing optically active phenyloxirane compounds |
Also Published As
Publication number | Publication date |
---|---|
JPH0315398A (en) | 1991-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0362556B1 (en) | Method for preparing optically active 3-phenylglycidic acid esters | |
EP0417785B1 (en) | Process for preparing optically active 3-phenylglycidic acid esters | |
EP0537259A1 (en) | Process for producing enantiomers of 2-aryl-alkanoic acids | |
US4588694A (en) | Process for production of optically active oxazolidinone derivative | |
JPH0678B2 (en) | Process for producing optically active 3-phenylglycidate compounds | |
EP0529085B1 (en) | Process for producing optically active 3-chloro-1-phenyl-1-propanol and derivative thereof | |
JP3140549B2 (en) | Method for separating optical isomers of α-substituted carboxylic acids | |
EP0101076B1 (en) | Process for production of optically active oxazolidinone derivative | |
JP2698627B2 (en) | Method for producing optically active amines and derivatives thereof | |
EP0148272B1 (en) | Process for producing optically active benzyl alcohol compounds | |
JP3732535B2 (en) | Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester | |
JPH08507683A (en) | Methods of using it for esterase and biotransformation | |
EP0952227B1 (en) | A bio-resolution process | |
JP2639651B2 (en) | Process for producing optically active carboxylic acid and its enantiomer ester | |
JP4565672B2 (en) | Optically active β-cyanoisobutyric acid and process for producing the same | |
JPH0569518B2 (en) | ||
JP2006050990A (en) | Method for producing optically active 2-substituted-3-(4-substituted oxyphenyl)propionic acid and its antipodal ester | |
JPH04341195A (en) | Production of optically active mandelic acid | |
JP3007461B2 (en) | Method for producing optically active 2-cyclohexenylacetic acid and its ester | |
JP4270910B2 (en) | Process for producing optically active 2-hydroxy-2-trifluoroacetic acids | |
PL177324B1 (en) | Separation of aromatic/aliphatic acids | |
JP4746019B2 (en) | Optically active β-cyanoisobutyric acid and process for producing the same | |
JP2946055B2 (en) | Method for producing optically active (S)-(+)-3-halo-1,2-propanediol | |
JPH0576390A (en) | Production of optically active carboxylic acid | |
JPS6363396A (en) | Production of d-2-(6-methoxy-2-naphthyl)propionic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080105 Year of fee payment: 14 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 15 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 15 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 16 |