JPH067882A - Manufacture of imvestment shell mold with high emissivity for molding uni-directional solidified super alloy - Google Patents

Manufacture of imvestment shell mold with high emissivity for molding uni-directional solidified super alloy

Info

Publication number
JPH067882A
JPH067882A JP19919192A JP19919192A JPH067882A JP H067882 A JPH067882 A JP H067882A JP 19919192 A JP19919192 A JP 19919192A JP 19919192 A JP19919192 A JP 19919192A JP H067882 A JPH067882 A JP H067882A
Authority
JP
Japan
Prior art keywords
mold
oxide
manufacture
shell mold
super alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19919192A
Other languages
Japanese (ja)
Other versions
JPH0811270B2 (en
Inventor
Takeshi Takayanagi
猛 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19919192A priority Critical patent/JPH0811270B2/en
Publication of JPH067882A publication Critical patent/JPH067882A/en
Publication of JPH0811270B2 publication Critical patent/JPH0811270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Casting Devices For Molds (AREA)

Abstract

PURPOSE:To obtain a mold with excellent thermal emissivity and to manufacture Ni-base super alloy by coating the external layer part of a mold with the particulate of specific composition and executing the firing of the mold at high temperature, and thereby improving the cooling effect of the mold. CONSTITUTION:After either the particulate where 1-10mol% antimony oxide is added to titania, or the particulate where 0.1-5mol% lithium oxide is added to nickel oxide or cobalt oxide is coated on the external layer part of a shell mold, the firing of this mold is executed at the temperature of 1000 deg.C or higher, the thermal emissivity of this coated layer is increased, and the cooling effect of the mold is improved. This arrangement allows manufacture of an investment shell mold with high thermal emissivity to obtain uni-directional castings of Ni-base super alloy with high quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0 0 0 1】[0 0 0 1]

【産業上の利用分野】本発明は、高温で耐食性並びに耐
クリープ特性に優れる超合金の一方向凝固鋳造品を得る
目的に用いる。
BACKGROUND OF THE INVENTION The present invention is used for obtaining a directionally solidified cast product of a superalloy which is excellent in corrosion resistance and creep resistance at high temperatures.

【0 0 0 2】[0 0 0 2]

【従来の技術】従来、超合金の一方向凝固鋳造時の鋳型
にはアルミナ、ジルコン、ムライト等の耐火物が用いら
れていた。これらの耐火物で作られた鋳型は熱放射率が
低いため、超合金の溶湯を真空下で一方向凝固鋳造を行
う場合、鋳型の冷却効果が悪い。したがって、溶湯の凝
固方向に対しての温度勾配を高くすることができず超合
金の高強度化を目的とした特定方位の結晶を優先的に成
長させることが困難であった。
2. Description of the Related Art Conventionally, refractory materials such as alumina, zircon, and mullite have been used as molds for unidirectional solidification casting of superalloys. Since the molds made of these refractories have a low thermal emissivity, the cooling effect of the molds is poor when the superalloy melt is subjected to unidirectional solidification casting under vacuum. Therefore, it was difficult to increase the temperature gradient with respect to the solidification direction of the molten metal, and it was difficult to preferentially grow crystals in a specific orientation for the purpose of increasing the strength of the superalloy.

【0 0 0 3】[0 0 0 3]

【発明が解決しようとする課題】従来用いられてきた鋳
型用耐火物に代え、新たに開発した熱放射率の高い耐火
物を鋳型材として用いることによって鋳型の熱放射率の
向上を図り、鋳型内にある溶湯の凝固時に高い温度勾配
を付与して特定方位の結晶成長を促進し、高品質の一方
向凝固鋳造品を得る技術である。
In order to improve the thermal emissivity of a mold by using a newly developed refractory having a high thermal emissivity as a mold material instead of the conventional refractory for a mold, This is a technique for obtaining a high quality unidirectionally solidified cast product by giving a high temperature gradient during solidification of the molten metal inside to promote crystal growth in a specific orientation.

【0 0 0 4】[0 0 0 4]

【課題を解決するための手段】従来用いられてきたアル
ミナ、ジルコン、ムライト等の耐火物の代わりに酸化ア
ンチモンを含有したチタニア、酸化リチウムを含有した
酸化ニッケルあるいは酸化コバルトは一旦、1000℃
以上に加熱すると熱放射率が高くなる。例えば、酸化ア
ンチモン(Sb25)を1モル%添加したチタニア粉
(TiO2)、酸化リチウム(Li2O)を1モル%添加
した酸化ニッケル(NiO)および酸化コバルト(Co
O)の各粉粒体を100kgf/cm2でタブレット状
に成形し、これらの試料を1100℃で1時間焼成した
ものの熱放射率を800℃で測定した結果を表1に示し
た。表1に示したように高温焼成によってTiO2にS
25が、NiOにLi2OがさらにCoOにLi2Oが
それぞれ1モル%づつ固溶したNiOおよびCoOの各
耐火物は熱放射率が高くなることが明らかである。した
がって、これら耐火物を従来の耐火物に代えて用い鋳型
を形成し、超合金溶湯の注湯時に1000℃に予熱すれ
ば鋳型の熱放射率が著しく向上するため、合金の特定方
位の結晶成長が促進され良質の一方向凝固鋳造品が得ら
れる。
The titania containing antimony oxide, nickel oxide or cobalt oxide containing lithium oxide in place of the refractory materials such as alumina, zircon, and mullite which have been used conventionally are once heated to 1000 ° C.
When heated above, the thermal emissivity increases. For example, titania powder (TiO 2 ) containing 1 mol% of antimony oxide (Sb 2 O 5 ), nickel oxide (NiO) containing 1 mol% of lithium oxide (Li 2 O), and cobalt oxide (Co).
Table 1 shows the results of measuring the thermal emissivity at 800 ° C. of each powder of (O) that was formed into a tablet at 100 kgf / cm 2 and fired at 1100 ° C. for 1 hour. As shown in Table 1, TiO 2 was converted into S by high temperature firing.
It is clear that the refractory materials of NiO and CoO in which b 2 O 5 and Li 2 O in NiO and 1 mole% of Li 2 O in CoO are solid-dissolved have high thermal emissivity. Therefore, if these refractory materials are used in place of conventional refractory materials to form a mold and preheat to 1000 ° C. when pouring the superalloy molten metal, the thermal emissivity of the mold is remarkably improved. Is promoted and a good quality unidirectionally solidified cast product is obtained.

【0 0 0 5】 [0 0 0 5]

【0 0 0 6】[0 0 0 6]

【実施例】【Example】

実施例1 本実施例では表2に示す耐火物を用いた。インベストメ
ントシェル鋳型の製作は次のようにして行った。原型と
なるワックス模型の周囲に第1層から第3層までは結合
材であるコロイダルアルミナにAl23粉を配合して調
製したスラリーの被覆とAl23粒スタッコ(スラリー
被覆面へのAl23粒のふりかけ)を行う。引続き、第
4層から第6層まではコロイダルシリカの結合材にSb
25粉を添加したTiO2粉を配合したスラリーの被覆
とAl23粒のスタッコを行う。最後に、第6層と同様
のスラリーを被覆してから乾燥後、被覆層内に包み込ま
れたワックス模型を加熱により除去してシェル(殻)状
の鋳型とする。上記により製作したシェル鋳型は、合金
溶湯の注湯前1500℃付近で予熱する。このとき、鋳
型の外層部(第4〜第7層)はSb25が固溶したTi
2とAl23粒で構成され、同層はSb25 を含有し
た TiO2の効果によって優れた熱放射を有することに
なる。次いで、10ー4Torrの真空下において、15
60℃で溶解したNi基 超合金の溶湯をこの鋳型へ注
ぎ込んで60℃/cmの温度勾配、20cm/hの引き
出し速度で一方向凝固鋳造をったところ〈001〉方位
の結晶が凝固の進行方向へ優先的に成長した良好な品質
の鋳造品が得られた。
Example 1 In this example, the refractory materials shown in Table 2 were used. The investment shell mold was manufactured as follows. The coating of the slurry prepared by mixing Al 2 O 3 powder with colloidal alumina as the binder for the 1st to 3rd layers around the prototype wax model and the Al 2 O 3 grain stucco (to the slurry coated surface) Sprinkle Al 2 O 3 grains). Succeedingly, from the 4th layer to the 6th layer, Sb was added to the colloidal silica binder
The coating of the slurry containing the TiO 2 powder added with the 2 O 5 powder and the stucco of Al 2 O 3 grains are performed. Finally, after coating the same slurry as the sixth layer and drying, the wax model wrapped in the coating layer is removed by heating to form a shell-shaped mold. The shell mold manufactured as described above is preheated at around 1500 ° C. before pouring the molten alloy. At this time, in the outer layer portion (fourth to seventh layers) of the mold, Ti containing Sb 2 O 5 as a solid solution was used.
It is composed of O 2 and Al 2 O 3 grains, and the layer has excellent heat radiation due to the effect of TiO 2 containing Sb 2 O 5 . Then, under a vacuum of 10 −4 Torr, 15
When a molten Ni-base superalloy melted at 60 ° C was poured into this mold and unidirectional solidification casting was performed at a temperature gradient of 60 ° C / cm and a drawing speed of 20 cm / h, crystals in the <001> orientation proceeded to solidify. Good quality castings were obtained which grew preferentially in the direction.

【0 0 0 7】 [0 0 0 7]

【0 0 0 8】実施例2 本実施例においては表3に示す耐火物を用いた。本例で
は実施例1の第4層から第7層で用いたTiO2粉の代
わりにL2iOを添加したNiO粉を用いた。シェル鋳
型の製作方法は実施例1と同様である。実施例2の鋳型
も1500℃での予熱時に鋳型外層部のLi2Oを含有
したNiOの効果によって熱放射の優れた鋳型となり、
鋳型の冷却能が向上する。次いで、10-4Torrの真
空下において、この鋳型へ1600℃で溶解したNi基
超合金溶湯を注湯して、一方向凝固鋳造を行ったところ
品質の良好な鋳造品が得られた。
Example 2 In this example, the refractories shown in Table 3 were used. In this example, NiO powder added with L 2 iO was used in place of the TiO 2 powder used in the fourth to seventh layers of Example 1. The manufacturing method of the shell mold is the same as that of the first embodiment. The mold of Example 2 also becomes a mold excellent in heat radiation due to the effect of NiO containing Li 2 O in the outer layer of the mold during preheating at 1500 ° C.,
The cooling capacity of the mold is improved. Next, under a vacuum of 10 −4 Torr, the molten Ni-base superalloy melted at 1600 ° C. was poured into this mold, and unidirectional solidification casting was performed. As a result, a good quality cast product was obtained.

【0 0 0 9】 [0 0 0 9]

【0 0 1 0 】実施例3 本実施例では表4に示す耐火物を用いた。本例では、実
施例2で用いたLi2O含有NiO粉の代わりにLi2
粉を添加したCoO粉を用いた。シェル鋳型の製作法は
実施例1と同様である。実施例3により製作された鋳型
も1500℃での予熱時にLi2Oを含有したCoOを
含む鋳型外層部の熱放射が良好となり、冷却能の優れた
鋳型となる。この鋳型に1600℃で溶解したNi基超合金
溶湯を注湯して、一方向凝固鋳造を行ったところ品質の
優れた鋳造品が得られた。
Example 3 In this example, the refractories shown in Table 4 were used. In this example, Li 2 O was used instead of the Li 2 O-containing NiO powder used in Example 2.
The CoO powder which added the powder was used. The manufacturing method of the shell mold is the same as that of the first embodiment. The mold manufactured according to Example 3 also has good heat radiation from the outer layer of the mold containing CoO containing Li 2 O during preheating at 1500 ° C., and thus has excellent cooling ability. When a molten Ni-base superalloy melted at 1600 ° C. was poured into this mold and unidirectional solidification casting was performed, a cast product with excellent quality was obtained.

【0 0 1 1 】[0 0 1 1]

【表4】 [Table 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(1)チタニア(TiO2)に酸化アンチモン
(Sb25)を0.1〜10モル%添加した粉粒体、酸
化ニッケル(NiO)もしくは酸化コバルト(CoO)
に酸化リチウム(Li2O)を0.1〜5モル%添加し
た粉粒体のいずれかをシェル鋳型の外層部に被覆した
後、この鋳型を1000℃以上の高温で焼成して、この
部分の被覆層の熱放射率を高めて鋳型の冷却効果の向上
を図った高放射率インベストメントシェル鋳型の製造方
法。
1. A powder or granular material comprising 0.1 to 10 mol% of antimony oxide (Sb 2 O 5 ) added to titania (TiO 2 ), nickel oxide (NiO) or cobalt oxide (CoO).
After coating the outer layer part of the shell mold with one of the powdery particles added with 0.1 to 5 mol% of lithium oxide (Li 2 O), the mold is baked at a high temperature of 1000 ° C. or higher to A method for producing a high emissivity investment shell mold, in which the thermal emissivity of the coating layer of the above is increased to improve the cooling effect of the mold.
JP19919192A 1992-07-01 1992-07-01 Method for producing high emissivity investment shell mold for unidirectionally solidified superalloy casting Expired - Lifetime JPH0811270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19919192A JPH0811270B2 (en) 1992-07-01 1992-07-01 Method for producing high emissivity investment shell mold for unidirectionally solidified superalloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19919192A JPH0811270B2 (en) 1992-07-01 1992-07-01 Method for producing high emissivity investment shell mold for unidirectionally solidified superalloy casting

Publications (2)

Publication Number Publication Date
JPH067882A true JPH067882A (en) 1994-01-18
JPH0811270B2 JPH0811270B2 (en) 1996-02-07

Family

ID=16403661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19919192A Expired - Lifetime JPH0811270B2 (en) 1992-07-01 1992-07-01 Method for producing high emissivity investment shell mold for unidirectionally solidified superalloy casting

Country Status (1)

Country Link
JP (1) JPH0811270B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029940A (en) * 2008-07-25 2010-02-12 General Electric Co <Ge> High emittance shell mold for directional casting
JP2011115824A (en) * 2009-12-04 2011-06-16 Ihi Corp Casting method
EP3223073A2 (en) 2016-03-25 2017-09-27 Canon Kabushiki Kaisha Holding device, holding method, lithography apparatus, and article manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907152B (en) * 2018-07-12 2020-08-18 刘少标 Method for reducing wear rate of 304 stainless steel parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029940A (en) * 2008-07-25 2010-02-12 General Electric Co <Ge> High emittance shell mold for directional casting
JP2011115824A (en) * 2009-12-04 2011-06-16 Ihi Corp Casting method
EP3223073A2 (en) 2016-03-25 2017-09-27 Canon Kabushiki Kaisha Holding device, holding method, lithography apparatus, and article manufacturing method

Also Published As

Publication number Publication date
JPH0811270B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US5297615A (en) Complaint investment casting mold and method
US4196769A (en) Ceramic shell mold
JP5410184B2 (en) High emittance shell mold for directional casting
JPS6234449B2 (en)
JPS6045973B2 (en) Normal solidification casting method for superalloys
US4287932A (en) Process for the precision molding of castings
US5335717A (en) Oxidation resistant superalloy castings
JP2001509083A (en) Integrated crucible and mold for low cost γ-TiAl casting
US3266106A (en) Graphite mold and fabrication method
JP4568410B2 (en) Method for manufacturing preform for magnesium metal matrix composite, method for manufacturing metal matrix composite, and composite
JPS6230858B2 (en)
US3981352A (en) Metal casting mold with bonded particle filter
US4436485A (en) Turbine wheel with integral DS blades and equiaxed hub
US8307881B2 (en) Casting molds for use in directional solidification processes and methods of making
JPH0460737B2 (en)
US3754592A (en) Method for producing directionally solidified cast alloy articles
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
JPH03282187A (en) Crucible and manufacture thereof
JPH067882A (en) Manufacture of imvestment shell mold with high emissivity for molding uni-directional solidified super alloy
JPH1034280A (en) Mold for precision molding of single crystal
EP0016127B1 (en) Ceramic shell mold
JPS61101430A (en) Fused silica and composition containing same
US4108676A (en) Mixed oxide compounds for casting advanced superalloy materials
JPS6083738A (en) High emissivity investment casting mold for casting unidirectionally solidified sintered alloy
JPH04224044A (en) Production of high strength mold for precision casting