JPH0678648A - Alive fish transportation system - Google Patents

Alive fish transportation system

Info

Publication number
JPH0678648A
JPH0678648A JP4045957A JP4595792A JPH0678648A JP H0678648 A JPH0678648 A JP H0678648A JP 4045957 A JP4045957 A JP 4045957A JP 4595792 A JP4595792 A JP 4595792A JP H0678648 A JPH0678648 A JP H0678648A
Authority
JP
Japan
Prior art keywords
ammonia
dissolved oxygen
concentration
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4045957A
Other languages
Japanese (ja)
Inventor
Seiichi Tagami
誠一 田上
Katsuhiro Kondo
勝広 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMAZON MARINE KK
Yamaha Motor Co Ltd
Original Assignee
AMAZON MARINE KK
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMAZON MARINE KK, Yamaha Motor Co Ltd filed Critical AMAZON MARINE KK
Priority to JP4045957A priority Critical patent/JPH0678648A/en
Publication of JPH0678648A publication Critical patent/JPH0678648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Packages (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To maintain the quality of water in a water tank in a good state for the survival of alive fishes or shellfish during the transportation of the alive fishes or shellfish by controlling the temperature of water, the amount of dissolved oxygen, and the concentration of ammonia. CONSTITUTION:A water temperature-measuring means 2, a dissolved oxygen amount-measuring means 3, and an ammonia concentration-measuring means 4 are connected to a controller 5 to control an aeration device 6, a heater 7, a cooler 8, and a pump 10. An ammonia-removing device 11 is set in the water circulation route of the water tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活魚輸送中の水槽内の
水質を、魚介類の生存に適当な状態に維持するための活
魚輸送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a live fish transportation system for maintaining the water quality in an aquarium during transportation of live fish in a state suitable for survival of seafood.

【0002】[0002]

【従来の技術】近年、魚介類をトラック等を用いて生き
たまま輸送を行ういわゆる活魚輸送を行う機会が増加し
てきている。一般に、魚介類を水槽中や養殖池で生存さ
せていくためには、水温、溶存酸素量、二酸化炭素分
圧、及びアンモニア濃度を適当な値に管理維持していか
なければならず、タコ、イカ等の頭足類についてはこれ
に加え、さらに硝酸塩及び亜硝酸塩濃度を管理していか
なくてはならない。しかしながら、活魚輸送において
は、輸送効率をよくするため、できる限り少ない水で輸
送しようとするので、水槽内の個体密度が高くなり、上
記の溶存酸素量、アンモニア濃度等の環境要因を適当な
値に維持していくことは、困難なことである。
2. Description of the Related Art In recent years, there has been an increasing number of opportunities for so-called live fish transportation, in which fish and shellfish are transported alive using a truck or the like. Generally, in order to survive seafood in an aquarium or aquaculture pond, it is necessary to manage and maintain water temperature, dissolved oxygen content, carbon dioxide partial pressure, and ammonia concentration at appropriate values. For squid and other cephalopods, in addition to this, nitrate and nitrite concentrations must be controlled. However, in transporting live fish, in order to improve transport efficiency, we try to transport with as little water as possible, so the density of individuals in the aquarium becomes high, and the environmental factors such as the amount of dissolved oxygen and the concentration of ammonia described above are set to appropriate values. It's difficult to maintain.

【0003】さらに、活魚輸送のような、魚介類に多大
のストレスを与えるような状態では、上記の環境要因の
悪化に対する耐性が弱まり、例えばアンモニア濃度は通
常の状態であれば、1mg/l 以下であればよいが、活魚輸
送に際しては、0.3mg/l 以下の低濃度に維持していかな
ければならない。このため、通常の状態以上に厳密な水
質管理が必要である。
Further, in a state where a great deal of stress is exerted on seafood such as transportation of live fish, resistance to deterioration of the above environmental factors is weakened, and for example, the ammonia concentration is 1 mg / l or less in a normal state. However, it is necessary to maintain a low concentration of 0.3 mg / l or less when transporting live fish. For this reason, stricter water quality control than in normal conditions is required.

【0004】従来より、活魚輸送に際し、水温はヒータ
ーやクーラーにより、溶存酸素量や二酸化炭素分圧は、
エアレーションを行うことにより調節されてきており、
またアンモニアは、硝化細菌が付着している濾材を使用
した濾過装置を用いて、害の少ない硝酸塩等に変換する
ことにより、調節されてきた。
Conventionally, when transporting live fish, the water temperature is controlled by a heater or cooler, and the dissolved oxygen amount and carbon dioxide partial pressure are
It has been adjusted by performing aeration,
Ammonia has been regulated by converting it into nitrates and the like, which are less harmful, using a filter device that uses a filter medium to which nitrifying bacteria are attached.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
硝化細菌を用いたアンモニアの調節方法は、微生物を用
いた酸化反応を利用しているため、水温および溶存酸素
量を適当な状態に維持していかなければならない。この
ため、アンモニアを効果的に除去していくためには、水
温、溶存酸素量およびアンモニア濃度の総合的な管理が
必要であるが、活魚輸送中にトラック等の中でこのよう
なことを行うことは、極めて困難なことである。
However, since the above-mentioned method for controlling ammonia using nitrifying bacteria utilizes an oxidation reaction using microorganisms, the water temperature and the amount of dissolved oxygen are maintained in appropriate states. I have to do it. Therefore, in order to effectively remove ammonia, it is necessary to comprehensively control the water temperature, the amount of dissolved oxygen, and the concentration of ammonia, but this is done in trucks, etc. during transportation of live fish. That is extremely difficult.

【0006】また、硝酸塩および亜硝酸塩に関しては、
嫌気性のバクテリアを用いてその濃度を調節する方法が
知られているが、嫌気性バクテリアを培養するためには
広大なスペースが必要であるため、活魚輸送に用いるこ
とは困難であった。本発明の目的は、魚介類の生存に重
要な要因である水温、溶存酸素量及びアンモニア濃度を
総合的に管理調節することにより、活魚輸送過程におい
ても効果的にアンモニアを除去するシステムを提供し、
更に、これに加え頭足類に有害な硝酸塩等も除去する手
段を有するシステムを提供することにある。
Regarding nitrate and nitrite,
A method for controlling the concentration of anaerobic bacteria is known, but it is difficult to use for transporting live fish because a large space is required for culturing the anaerobic bacteria. An object of the present invention is to provide a system for effectively removing ammonia even in the process of transporting live fish by comprehensively controlling and adjusting water temperature, dissolved oxygen amount and ammonia concentration, which are important factors for survival of fish and shellfish. ,
Another object of the present invention is to provide a system having means for removing nitrates and the like which are harmful to cephalopods.

【0007】[0007]

【課題を解決するための手段】本発明は (1) 水温を測定する手段、(2) 溶存酸素量を測定する
手段、(3) アンモニア濃度を測定する手段、(4) 水温
を調節する手段、(5) 溶存酸素量を調節する手段、(6)
アンモニアを除去する手段、(7) (1)〜(3)記載の手
段で得られた情報に基づき(4)〜(6)記載の手段を制御す
る手段、以上の手段を具備することを特徴とする活魚輸
送システムである。
Means for Solving the Problems The present invention provides (1) means for measuring water temperature, (2) means for measuring dissolved oxygen content, (3) means for measuring ammonia concentration, (4) means for adjusting water temperature , (5) Means for controlling the amount of dissolved oxygen, (6)
A means for removing ammonia, (7) a means for controlling the means described in (4) to (6) based on the information obtained by the means described in (1) to (3), and the above means. It is a live fish transportation system.

【0008】また、本発明は、上記システムにさらに硝
酸塩および亜硝酸塩を除去する手段を加えることを特徴
とする活魚輸送システムである。さらにまた、本発明
は、上記のアンモニアを除去する手段として、小孔の孔
径が0.1 〜1 μm 及び10〜100 μm に分布する多孔質セ
ラッミクス製濾材を用いることを特徴とする活魚輸送シ
ステムである。
The present invention is also a live fish transport system characterized in that means for removing nitrates and nitrites is added to the above system. Furthermore, the present invention is a live fish transportation system characterized by using, as a means for removing the above-mentioned ammonia, a porous ceramics filter medium having a pore size of 0.1 to 1 μm and 10 to 100 μm. .

【0009】[0009]

【作用】本発明における温度、溶存酸素量、アンモニア
濃度、及び硝酸塩等の調節は以下の通り行われる。水槽
内の温度、溶存酸素量及びアンモニア濃度が各測定装置
により測定され、その情報が制御装置へと送られる。制
御装置には、予め魚介類の種類に応じて温度範囲、溶存
酸素量範囲および基準アンモニア濃度が設定できるよう
になっており、水槽中の温度、溶存酸素量または、アン
モニア濃度が、この設定範囲外や基準値以上にある場合
は、制御装置はエアレーション装置、ヒーター、クーラ
ーまたはアンモニア除去装置に付随するポンプに指令を
与え、水槽内の温度、溶存酸素量およびアンモニア濃度
が適当な値になるように調節する。また、硝酸塩等は、
水草や海藻等の植物体を培養し、これらに光合成を行わ
せることにより除去し、その濃度を調節する。
In the present invention, the temperature, dissolved oxygen amount, ammonia concentration, nitrate and the like are adjusted as follows. The temperature in the water tank, the amount of dissolved oxygen and the concentration of ammonia are measured by each measuring device, and the information is sent to the control device. The temperature range, the dissolved oxygen amount range and the standard ammonia concentration can be set in advance in the control device according to the type of fish and shellfish.The temperature in the aquarium, the dissolved oxygen amount or the ammonia concentration can be set in this setting range. If it is outside or above the reference value, the control device gives a command to the pump attached to the aeration device, heater, cooler or ammonia removal device so that the temperature in the water tank, the amount of dissolved oxygen and the ammonia concentration become appropriate values. Adjust to. Also, nitrates, etc.
Plants such as aquatic plants and seaweeds are cultivated and photosynthesized to remove them, and the concentration thereof is adjusted.

【0010】[0010]

【実施例】以下、本発明を図示する一実施例により詳細
に説明する。図1は活魚輸送中の水槽内の水質を維持す
るための装置を一つのシステムに連携させた場合の構成
図であり、図1において1は水槽、2は温度測定装置、
3は溶存酸素量測定装置、4はアンモニア濃度測定装
置、5は制御装置、6はエアレーション装置、7はヒー
ター、8はクーラー、9は一次濾過槽、10はポンプ、
11はアンモニア除去装置、12は殺菌装置、13は光
合成槽をそれぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to one embodiment shown in the drawings. FIG. 1 is a configuration diagram in the case where a device for maintaining the water quality in a water tank during transportation of live fish is linked to one system. In FIG. 1, 1 is a water tank, 2 is a temperature measuring device,
3 is a dissolved oxygen amount measuring device, 4 is an ammonia concentration measuring device, 5 is a control device, 6 is an aeration device, 7 is a heater, 8 is a cooler, 9 is a primary filtration tank, 10 is a pump,
Reference numeral 11 is an ammonia removing device, 12 is a sterilizing device, and 13 is a photosynthesis tank.

【0011】まず、温度と溶存酸素量の調節機構を説明
する。水槽中の温度は温度測定装置2により測定され、
その情報は、制御装置5へと送られる。水槽中の溶存酸
素量は溶存酸素量測定装置3により測定される。溶存酸
素量測定装置3としては、磁気式の装置、酸化還元式の
装置いずれも使用することが可能であるが、ここでは小
型軽量である酸化還元式のガルバニ電池式の酸素センサ
ーを用いる。ガルバニ電池式の酸素センサーは図2に示
すように外筒301、隔膜302、電解液303、アノ
ード304、カソード305からなる。水槽中の溶存酸
素は隔膜302を透過し、隔膜302とカソード305
との間の電解液303に溶解し、カソード305表面に
おいて還元される。一方、アノード304では鉛が酸化
されるため、アノード304とカソード305間に電流
が流れる。この電流は酸素濃度に比例するので、これに
より酸素濃度が測定できる。こうして測定された溶存酸
素量に関する情報は、温度と同様に制御装置5に送られ
る。
First, the mechanism for adjusting the temperature and the amount of dissolved oxygen will be described. The temperature in the water tank is measured by the temperature measuring device 2,
The information is sent to the control device 5. The dissolved oxygen amount in the water tank is measured by the dissolved oxygen amount measuring device 3. As the dissolved oxygen amount measuring device 3, either a magnetic type device or a redox type device can be used, but here a small and lightweight redox type galvanic cell type oxygen sensor is used. As shown in FIG. 2, the galvanic cell type oxygen sensor includes an outer cylinder 301, a diaphragm 302, an electrolytic solution 303, an anode 304, and a cathode 305. Dissolved oxygen in the water tank permeates the diaphragm 302, and the diaphragm 302 and the cathode 305.
It is dissolved in the electrolytic solution 303 between and and is reduced on the surface of the cathode 305. On the other hand, since lead is oxidized at the anode 304, a current flows between the anode 304 and the cathode 305. This current is proportional to the oxygen concentration, so that the oxygen concentration can be measured. Information about the amount of dissolved oxygen thus measured is sent to the controller 5 as well as the temperature.

【0012】制御装置5は輸送する魚介類の種類に応じ
て、適当な温度範囲及び溶存酸素量範囲が設定できるよ
うになっており、制御装置5は、温度測定装置2より測
定された温度が、設定された温度範囲より低い場合は、
ヒーター7を作動させて温度を上昇させ、設定された温
度範囲より高い場合は、クーラー8を作動させて温度を
低下させる。また、溶存酸素量測定装置3により測定さ
れた値が、設定された範囲より低い場合は、エアレーシ
ョン装置6の出力を上げて溶存酸素量を増大させ、設定
された範囲より高い場合は、エアレーション装置6の出
力を下げて溶存酸素量を減少させる。なお活魚輸送を行
う魚介類の種類別の生存に適当な温度、溶存酸素量、及
びアンモニア濃度範囲を表1に示す。
The control device 5 can set an appropriate temperature range and dissolved oxygen amount range according to the type of seafood to be transported, and the control device 5 controls the temperature measured by the temperature measuring device 2 to be If the temperature is lower than the set temperature range,
When the temperature is higher than the set temperature range by operating the heater 7, the cooler 8 is operated to lower the temperature. Further, when the value measured by the dissolved oxygen amount measuring device 3 is lower than the set range, the output of the aeration device 6 is increased to increase the dissolved oxygen amount, and when it is higher than the set range, the aeration device. The output of 6 is reduced to reduce the amount of dissolved oxygen. Table 1 shows the appropriate temperature, dissolved oxygen amount, and ammonia concentration range for survival of each type of seafood transported by live fish.

【0013】[0013]

【表1】 [Table 1]

【0014】次にアンモニア濃度及び硝酸塩等の濃度調
節について説明する。水槽中の水は、ポンプ10により
一時濾過槽9、アンモニア除去装置11、殺菌装置1
2、光合成槽13の順に循環していく。一次濾過層9は
図3に示すように、マット層901、ウール層902、
活性炭層903の三層構造になっており、マット層90
1及びウール層902は水槽中のゴミや活魚の吐出物、
排出物を物理的に濾過し、活性炭層903は水槽中の難
分解性有機物等を吸着濾過する作用をもつ。このため、
有機物等の不溶性成分がアンモニア除去装置内に流入し
て、嫌気性の微生物が有害成分を産生することを防ぐこ
とができる。
Next, the adjustment of the concentration of ammonia and the concentration of nitrate will be described. The water in the water tank is temporarily filtered by the pump 10, the ammonia removing device 11, the sterilizing device 1
2. The photosynthesis tank 13 is circulated in this order. As shown in FIG. 3, the primary filtration layer 9 includes a mat layer 901, a wool layer 902,
It has a three-layer structure of activated carbon layer 903, and mat layer 90
1 and the wool layer 902 are the discharges of dust and live fish in the aquarium,
The discharged matter is physically filtered, and the activated carbon layer 903 has a function of adsorbing and filtering the hardly decomposable organic matter and the like in the water tank. For this reason,
It is possible to prevent insoluble components such as organic substances from flowing into the ammonia removing device and causing anaerobic microorganisms to produce harmful components.

【0015】殺菌装置12は、図4に示すように紫外線
ランプ121と石英ガラス管122を有し、紫外線ラン
プ121より発せられる波長253.7nm の紫外線が石英ガ
ラス管122を透過して殺菌装置12内を通過する水に
照射され、殺菌を行う。これにより一次濾過槽やアンモ
ニア除去装置内で増殖した微生物等が水槽内に流入する
ことを防ぐ。
As shown in FIG. 4, the sterilization device 12 has an ultraviolet lamp 121 and a quartz glass tube 122, and ultraviolet rays having a wavelength of 253.7 nm emitted from the ultraviolet lamp 121 pass through the quartz glass tube 122 and inside the sterilization device 12. The water passing through is irradiated and sterilized. This prevents the microorganisms grown in the primary filtration tank and the ammonia removing device from flowing into the water tank.

【0016】光合成槽は、図5に示されるように、光源
部分131と培養水槽132からなっており、培養水槽
132中には水草や海藻等の植物133が培養されてい
る。これらの植物133は、光源部分131が発生する
光を利用して盛んに光合成を行い、酸素を発生すると共
に、アンモニア除去装置内11で発生した硝酸塩および
亜硝酸塩を根や体表面全体から吸収し、硝酸塩等の濃度
を低下させる。培養水槽132の容積は、全水量の1/5
程度を収容できるようになっており、さらに光源部分1
31は、光合成量を操作できるように光度を調節できる
ようになっている。
As shown in FIG. 5, the photosynthesis tank comprises a light source portion 131 and a culture water tank 132, and plants 133 such as aquatic plants and seaweeds are cultured in the culture water tank 132. These plants 133 actively perform photosynthesis using the light generated by the light source portion 131 to generate oxygen, and at the same time, absorb nitrates and nitrites generated in the ammonia removing device 11 from roots and whole body surface. , Reduce the concentration of nitrates, etc. The volume of the culture water tank 132 is 1/5 of the total amount of water.
The light source part 1
The light intensity of the device 31 can be adjusted so that the photosynthesis amount can be manipulated.

【0017】水槽中のアンモニア濃度は、アンモニア濃
度測定装置4により測定される。アンモニア濃度測定装
置4については、公知のいずれの装置を用いてもよい
が、ここでは、操作が簡易であることから、本願発明者
等により先に出願(特願平3-142503)されたアンモニウ
ムイオン濃度検出器を用いる。これは、図6に示すよう
に外筒41、ガス透過性隔膜42、測定極43、比較極
44、電解液45、電源46、陰極47、陽極48から
なる。電源46により陰極47と陽極48に間に電流を
流すと、陰極47近傍のpHが上昇し、アンモニウムイオ
ンがアンモニアガスとなる。ガス化したアンモニアは、
ガス透過性隔膜42を透過した後、電解液45中に溶解
し、再びアンモニウムイオンになる。これにより比較極
44と測定極間43に電位差が生じ、この電位差より水
槽中のアンモニウムイオン濃度が測定でき、さらにアン
モニア濃度についてもわかる。このようにして測定され
たアンモニア濃度に関する情報は、制御装置5に送られ
る。制御装置5では、基準アンモニア濃度が設定できる
ようになっており、アンモニア濃度の測定値が基準値以
上の場合は、制御装置5が、ポンプ10の出力を増大さ
せ、アンモニア除去装置等に循環する水量を増大させ
る。さらに、硝化細菌等のアンモニア浄化能力を高める
ためエアレーション装置6の出力を増大させて溶存酸素
量を増大させ、またヒータ7を作動させて設定された範
囲内で温度を上昇させる。アンモニア除去装置11に
は、濾材に硝化細菌を付着増殖させた公知の濾過装置を
用いてもよいが、ここでは濾材としては図7に示すよう
に、小孔の孔径が0.1 〜1 μm 及び10〜100 μm に分布
する多孔質セラッミクス製濾材を用いる。こような濾材
の製造するには以下のような方法で行えばよい。
The ammonia concentration in the water tank is measured by the ammonia concentration measuring device 4. As the ammonia concentration measuring device 4, any known device may be used, but here, since the operation is simple, ammonium applied previously by the inventors of the present application (Japanese Patent Application No. 3-142503) Use an ion concentration detector. As shown in FIG. 6, this is composed of an outer cylinder 41, a gas permeable diaphragm 42, a measurement electrode 43, a comparison electrode 44, an electrolytic solution 45, a power supply 46, a cathode 47, and an anode 48. When a current is applied between the cathode 47 and the anode 48 by the power supply 46, the pH in the vicinity of the cathode 47 rises and ammonium ions become ammonia gas. The gasified ammonia is
After passing through the gas permeable diaphragm 42, it dissolves in the electrolytic solution 45 and becomes ammonium ions again. As a result, a potential difference is generated between the comparison electrode 44 and the measurement electrode 43, and the ammonium ion concentration in the water tank can be measured from this potential difference, and the ammonia concentration can be known. The information on the ammonia concentration measured in this way is sent to the control device 5. In the control device 5, the reference ammonia concentration can be set. When the measured value of the ammonia concentration is equal to or higher than the reference value, the control device 5 increases the output of the pump 10 and circulates it to the ammonia removing device or the like. Increase the amount of water. Further, in order to enhance the ability to purify ammonia such as nitrifying bacteria, the output of the aeration device 6 is increased to increase the amount of dissolved oxygen, and the heater 7 is operated to raise the temperature within the set range. The ammonia removing device 11 may be a known filter device in which nitrifying bacteria are attached to and proliferate on the filter medium, but here, as the filter medium, as shown in FIG. 7, the small pores have diameters of 0.1 to 1 μm and 10 μm. Use a filter material made of porous ceramics distributed in ~ 100 μm. The following method may be used to manufacture such a filter medium.

【0018】まず、表2記載の組成の陶土と水を混合し
てスラリーを作製する。次いで表4記載の特性を有する
ウレタンフォームをB5大の大きさに切り、これに前記の
スラリーを練り込み、乾燥室で78時間乾燥させた後、窯
に入れ温度1297℃で焼成する。これにより、陶土が焼結
し、表3記載の組成を持つ多孔質セラミックスを得るこ
とができ、これを粒径5 〜20mmの塊に粒砕しアンモニア
除去装置用濾材とする。
First, the clay of the composition shown in Table 2 and water are mixed to prepare a slurry. Next, a urethane foam having the properties shown in Table 4 is cut into a size of B5 size, the slurry is kneaded into the foam, dried in a drying chamber for 78 hours, put in a kiln, and fired at a temperature of 1297 ° C. As a result, the clay is sintered and porous ceramics having the composition shown in Table 3 can be obtained, which is crushed into lumps having a particle size of 5 to 20 mm to obtain a filter medium for an ammonia removing device.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【発明の効果】上述したような方法により、本発明の活
魚輸送システムは、制御装置に設定された範囲の温度、
溶存酸素量およびアンモニア濃度を自動的に調節維持す
ることができる。従って本発明は、きわめて厳密な水質
管理を必要とし、かつ煩雑な操作を行うことが困難であ
る活魚輸送において、魚介類の生存維持について画期的
な手段を提供するものである。
According to the method as described above, the live fish transportation system of the present invention has the temperature within the range set in the controller,
The amount of dissolved oxygen and the concentration of ammonia can be automatically adjusted and maintained. Therefore, the present invention provides an epoch-making means for maintaining the survival of seafood in the transportation of live fish, which requires extremely strict water quality control and is difficult to perform complicated operations.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】 溶存酸素量測定装置の構成を示す図。FIG. 2 is a diagram showing the configuration of a dissolved oxygen content measuring device.

【図3】 一次濾過槽の構成を示す図。FIG. 3 is a diagram showing a configuration of a primary filtration tank.

【図4】 殺菌装置の構成を示す図。FIG. 4 is a diagram showing a configuration of a sterilizer.

【図5】 光合成槽の構成を示す図。FIG. 5 is a diagram showing a configuration of a photosynthesis tank.

【図6】 アンモニア測定装置の構成を示す図。FIG. 6 is a diagram showing a configuration of an ammonia measuring device.

【図7】 アンモニア除去装置に用いる濾材の孔径分布
を示す図。
FIG. 7 is a diagram showing a pore size distribution of a filter medium used in an ammonia removing device.

【符号の説明】[Explanation of symbols]

図中の矢印は水の流れを表す。 The arrows in the figure represent the flow of water.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 A01K 63/06 A 8602−2B B01D 35/027 B65D 81/18 9028−3E 81/22 9028−3E 85/50 S 7445−3E C02F 9/00 7446−4D G01N 27/27 27/416 // C02F 1/32 7235−2J G01N 27/46 376 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display area A01K 63/06 A 8602-2B B01D 35/027 B65D 81/18 9028-3E 81/22 9028-3E 85/50 S 7445-3E C02F 9/00 7446-4D G01N 27/27 27/416 // C02F 1/32 7235-2J G01N 27/46 376

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(1) 水温を測定する手段、 (2) 溶存酸素量を測定する手段、 (3) アンモニア濃度を測定する手段、 (4) 水温を調節する手段、 (5) 溶存酸素量を調節する手段、 (6) アンモニアを除去する手段、 (7) (1)〜(3)記載の手段で得られた情報に基づき(4)〜
(6)記載の手段を制御する手段、 以上の手段を具備することを特徴とする活魚輸送システ
ム。
1. A means for measuring a water temperature, a means for measuring a dissolved oxygen amount, a means for measuring an ammonia concentration, a means for adjusting a water temperature, and a means for adjusting a dissolved oxygen amount. (6) means for removing ammonia, (7) based on the information obtained by means of (1) ~ (3) (4) ~
(6) Means for controlling the means described above, and a live fish transportation system comprising the above means.
【請求項2】(1) 水温を測定する手段、 (2) 溶存酸素量を測定する手段、 (3) アンモニア濃度を測定する手段、 (4) 水温を調節する手段、 (5) 溶存酸素量を調節する手段、 (6) アンモニアを除去する手段、 (7) 硝酸塩および亜硝酸塩を除去する手段、 (8) (1)〜(3)記載の手段で得られた情報に基づき(4)〜
(6)記載の手段を制御する手段、 以上の手段を具備することを特徴とする活魚輸送システ
ム。
2. A means for measuring a water temperature, a means for measuring a dissolved oxygen amount, a means for measuring an ammonia concentration, a means for controlling a water temperature, and a means for measuring a dissolved oxygen amount. (6) means for removing ammonia, (7) means for removing nitrate and nitrite, (8) based on the information obtained by the means described in (1) ~ (3) (4) ~
(6) Means for controlling the means described above, and a live fish transportation system comprising the above means.
【請求項3】小孔の孔径が0.1 〜1 μm 及び10〜100 μ
m に分布する多孔質セラッミクス製濾材を用いてアンモ
ニアを除去することを特徴とする請求項1または請求項
2記載の活魚輸送システム。
3. Small holes having diameters of 0.1 to 1 μm and 10 to 100 μm
3. The live fish transportation system according to claim 1 or 2, wherein ammonia is removed by using a porous ceramics filter medium distributed in m 2.
JP4045957A 1992-01-31 1992-01-31 Alive fish transportation system Pending JPH0678648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045957A JPH0678648A (en) 1992-01-31 1992-01-31 Alive fish transportation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045957A JPH0678648A (en) 1992-01-31 1992-01-31 Alive fish transportation system

Publications (1)

Publication Number Publication Date
JPH0678648A true JPH0678648A (en) 1994-03-22

Family

ID=12733751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045957A Pending JPH0678648A (en) 1992-01-31 1992-01-31 Alive fish transportation system

Country Status (1)

Country Link
JP (1) JPH0678648A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434197B1 (en) * 2002-04-11 2004-06-09 주식회사 티이솔루션 A live fish a water tube of water temperature a maintenance a device
JP2009085932A (en) * 2007-10-03 2009-04-23 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Photosynthesis activity evaluating system for coral
CN110250082A (en) * 2019-07-16 2019-09-20 重庆两江生态渔业发展有限公司 A kind of fresh-keeping transport device of fresh water adult fish
CN110301396A (en) * 2019-07-26 2019-10-08 佛山科学技术学院 A kind of aquatic products long-distance transport device
WO2020095800A1 (en) * 2018-11-06 2020-05-14 ダイセン・メンブレン・システムズ株式会社 System for managing quality of rearing water for land-based recirculating aquaculture and method for operating same
WO2021010400A1 (en) * 2019-07-16 2021-01-21 日本特殊陶業株式会社 Water quality measuring system
KR20210050654A (en) * 2019-10-29 2021-05-10 엔티큐 주식회사 high temperature and red tide prevention system for fish farm
KR20210059175A (en) * 2019-11-15 2021-05-25 에프엔에스 주식회사 Grid tank module and Live fish transport vehicle with grid tank module
CN113331128A (en) * 2021-07-26 2021-09-03 烟台市海洋经济研究院(烟台市渔业技术推广站、烟台市海洋捕捞增殖管理站) Multifunctional high-density fry long-distance transportation device and transportation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430959A (en) * 1977-08-04 1979-03-07 Toray Industries Bulkiness crimping and processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430959A (en) * 1977-08-04 1979-03-07 Toray Industries Bulkiness crimping and processing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434197B1 (en) * 2002-04-11 2004-06-09 주식회사 티이솔루션 A live fish a water tube of water temperature a maintenance a device
JP2009085932A (en) * 2007-10-03 2009-04-23 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Photosynthesis activity evaluating system for coral
WO2020095800A1 (en) * 2018-11-06 2020-05-14 ダイセン・メンブレン・システムズ株式会社 System for managing quality of rearing water for land-based recirculating aquaculture and method for operating same
CN110250082A (en) * 2019-07-16 2019-09-20 重庆两江生态渔业发展有限公司 A kind of fresh-keeping transport device of fresh water adult fish
WO2021010400A1 (en) * 2019-07-16 2021-01-21 日本特殊陶業株式会社 Water quality measuring system
JP2021013908A (en) * 2019-07-16 2021-02-12 日本特殊陶業株式会社 Water quality measurement system
CN110250082B (en) * 2019-07-16 2021-07-27 重庆两江生态渔业发展有限公司 Fresh-keeping conveyer of freshwater adult fish
CN110301396A (en) * 2019-07-26 2019-10-08 佛山科学技术学院 A kind of aquatic products long-distance transport device
KR20210050654A (en) * 2019-10-29 2021-05-10 엔티큐 주식회사 high temperature and red tide prevention system for fish farm
KR20210059175A (en) * 2019-11-15 2021-05-25 에프엔에스 주식회사 Grid tank module and Live fish transport vehicle with grid tank module
CN113331128A (en) * 2021-07-26 2021-09-03 烟台市海洋经济研究院(烟台市渔业技术推广站、烟台市海洋捕捞增殖管理站) Multifunctional high-density fry long-distance transportation device and transportation method

Similar Documents

Publication Publication Date Title
JP3665838B2 (en) Fish farming equipment
Malone et al. Use of floating bead filters to recondition recirculating waters in warmwater aquaculture production systems
CN104768876B (en) Method and apparatus for monitoring and controlling ozonation and aerated filtration using uv and visible spectral measurement and oxidation reduction potential
Holan et al. Intensive rearing of cod larvae (Gadus morhua) in recirculating aquaculture systems (RAS) implementing a membrane bioreactor (MBR) for enhanced colloidal particle and fine suspended solids removal
CN104071951B (en) A kind of fishpond cultivating wastewater purification technique and device thereof
JPH0678648A (en) Alive fish transportation system
Peirong et al. Use of fluidized bed biofilter and immobilized Rhodopseudomonas palustris for ammonia removal and fish health maintenance in a recirculation aquaculture system
JP2022061956A (en) Water treatment method and water treatment system
JP4966905B2 (en) Breeding water purification method
CN110282831B (en) Device and method for treating sewage by coupling bacterial and algal symbiotic photo-bioreactor with artificial wetland
JP2613179B2 (en) Photocatalyst and water purification method using the same
JP2003333954A (en) Method and apparatus for raising fry
JP3794838B2 (en) Minamata creature breeding equipment and breeding water purification method
JP5935076B2 (en) Water treatment equipment
CN110433789A (en) A method of photocatalysis biology carbon composite is prepared using Eichhornia crassipes accumulation nano zine oxide
CN210419641U (en) Sewage treatment device for artificial wetland with coupling of bacteria and algae co-photobioreactor
JP3316487B2 (en) Aquatic breeding water purification system
JPH0576257A (en) System for circulating, filtering and culturing
JP2002112761A (en) Microorganism assay sensor
CN113493273B (en) Breeding wastewater treatment process
CN110002666A (en) Nitration denitrification circulating water treatment method
JPH09163981A (en) Entrapped immobilized bacterium carrier and its production
JPS63185328A (en) Recirculation type purifying apparatus of water tank for breeding fishes and shellfishes
JPH10493A (en) Sewage treatment device
JPH0778A (en) Cleaning device for feeding water