JPH0678351B2 - Method for desalting solution containing 5'-nucleotide - Google Patents

Method for desalting solution containing 5'-nucleotide

Info

Publication number
JPH0678351B2
JPH0678351B2 JP61030469A JP3046986A JPH0678351B2 JP H0678351 B2 JPH0678351 B2 JP H0678351B2 JP 61030469 A JP61030469 A JP 61030469A JP 3046986 A JP3046986 A JP 3046986A JP H0678351 B2 JPH0678351 B2 JP H0678351B2
Authority
JP
Japan
Prior art keywords
nucleotide
concentration
reverse osmosis
nacl
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61030469A
Other languages
Japanese (ja)
Other versions
JPS62190194A (en
Inventor
駒男 池田
山下  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP61030469A priority Critical patent/JPH0678351B2/en
Publication of JPS62190194A publication Critical patent/JPS62190194A/en
Publication of JPH0678351B2 publication Critical patent/JPH0678351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Saccharide Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は、5′−ヌクレオタイドと無機塩を含む水性溶
液からルーズな逆浸透膜を使用して5′−ヌクレオタイ
ドを濃縮し無機塩を効率的に除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for efficiently removing inorganic salts by concentrating 5'-nucleotides from an aqueous solution containing 5'-nucleosides and inorganic salts using a loose reverse osmosis membrane. Regarding

5′−ヌクレオタイド、特に5′−イノシン酸及び5′
−グアニル酸は極めて強い呈味性を有している事から、
調味料としてその有用性が知られている物質である。
5'-nucleotide, especially 5'-inosinic acid and 5 '
-Since guanylic acid has an extremely strong taste,
It is a substance known to be useful as a seasoning.

5′−ヌクレオタイドを製造する方法は、ヌクレオサイ
ドをトリアルキルリン酸エステル、ニトリル、有機アミ
ンなどの極性有機溶媒中でオキシハロゲン化リンと反応
させる方法(特公昭36−13579等)、酵母中に含まれる
核酸を加水分解する方法(特公昭41−12672)、糖を原
料として発酵により直接製造する方法(特公昭58−4631
9)などがある。工業的にこれらの方法によって5′−
ヌクレオタイドを安価に製造しようとする場合に、一旦
5′−ヌクレオタイドを分離した母液から蒸発等により
5′−ヌクレオタイドの濃度を高め母液中に残存する
5′−ヌクレオタイドを回収し工程内に循環して5′−
ヌクレオタイドの収率を向上させる方法を、多い場合に
は2回以上繰返す事が常套の手段として用いられる。し
かし乍ら、いずれの製造法でも反応液から5′−ヌクレ
オタイドを単離精製する過程で酸、アルカリを消費する
ために多量の無機塩を副生し、母液中に残存する5′−
ヌクレオタイドを回収する際に無機塩の析出が起り、高
収率で5′−ヌクレオタイドを回収することが困難とな
る。従って、反応液から高収率で5′−ヌクレオタイド
を取得するためには、副生した無機塩を何らかの方法に
より効率的に除去することが必要となる。
The 5'-nucleotide can be produced by reacting nucleoside with phosphorus oxyhalogenide in a polar organic solvent such as trialkyl phosphate ester, nitrile or organic amine (Japanese Patent Publication No. 36-13579), yeast. Of hydrolyzing nucleic acid contained in (Japanese Patent Publication No. 12672/41) and a method of directly producing by fermentation from sugar as a raw material (Japanese Patent Publication No. 58-4631).
9) etc. Industrially, by these methods, 5'-
When nucleotide is to be produced at a low cost, the concentration of 5'-nucleotide is increased from the mother liquor from which 5'-nucleotide was separated by evaporation or the like, and the 5'-nucleotide remaining in the mother liquor is recovered in the process. Cycle to 5'-
A common method is to repeat the method of improving the yield of nucleotide twice or more in many cases. However, in any of the production methods, in the process of isolating and purifying 5'-nucleotide from the reaction solution, a large amount of an inorganic salt is by-produced in order to consume acid and alkali, and 5'-remains in the mother liquor.
Precipitation of an inorganic salt occurs during recovery of nucleotide, making it difficult to recover 5'-nucleotide in high yield. Therefore, in order to obtain 5'-nucleotide from the reaction solution in high yield, it is necessary to efficiently remove the inorganic salt by-produced by some method.

従来、脱塩方法としては(1)イオン交換樹脂を用いる
方法、(2)合成吸着剤や活性炭などの吸着剤に5′−
ヌクレオタイドを吸着させ共存する塩を非吸着物として
貫流した後、吸着した5′−ヌクレオタイドをアルカリ
やメタノール等の極性溶剤で溶離する方法、(3)電気
透析による方法等が知られている。
Conventionally, as a desalting method, (1) a method using an ion exchange resin, (2) 5'-
Known is a method of adsorbing nucleotide and allowing coexisting salt to flow through as a non-adsorbate, and then eluting the adsorbed 5'-nucleotide with a polar solvent such as alkali or methanol. (3) A method by electrodialysis .

これらの方法は、溶離や再生の際に多量の副原料を消費
し、更に繁雑な操作となるために、装置費が嵩む事
((1)及び(2)法)、又は5′−ヌクレオタイドの
様に有価物が電解質の場合には、脱塩と同時に有価物も
透析され、有価物の回収率が著しく低下すること
((3)法)などの欠点を有していた。更に、いずれの
方法でも得られる脱塩液が希薄になるために、脱塩の有
価物の回収に多大のエネルギーを消費して濃縮を行うこ
とが必要となり、回収コストが嵩むと言う欠点もあっ
た。
These methods consume a large amount of auxiliary raw materials during elution and regeneration, and require more complicated operations, resulting in higher equipment costs (methods (1) and (2)), or 5'-nucleotide. As described above, when the valuable material is an electrolyte, the valuable material is dialyzed at the same time as desalting, and the recovery rate of the valuable material is significantly reduced (method (3)). Further, since the desalination solution obtained by any of the methods becomes diluted, it is necessary to consume a large amount of energy for the recovery of the desalting valuable material, and the concentration is required, which causes a drawback that the recovery cost increases. It was

本発明者等は、上述の欠点を克服するために共存する無
機塩を効率的に除去すると共に同時に5′−ヌクレオタ
イドを濃縮する方法を種々検討した結果、ルーズな逆浸
透膜の使用により上述の欠点を克服できることを見出し
た。即ち、ルーズな逆浸透膜を使用して低分子物質と高
分子物質を分離出来ることは知られているが(特開昭58
−175438、特開昭59−156402等)、発明者等はNaClの阻
止率が20〜80%でかつ5′−イノシン酸ジナトリウムの
阻止率が95%以上の特性を有するルーズな逆浸透膜を用
い、塩濃度及び5′−ヌクレオタイドの濃度が一定濃度
以上の溶液を上記逆浸透膜を用いる逆浸透処理に付する
ことにより共存する無機塩を効率的に除去し同時に5′
−ヌクレオタイドを効率的に濃縮できることを見出し、
本発明を完成するに至った。
The present inventors have conducted various studies on methods for efficiently removing coexisting inorganic salts and simultaneously concentrating 5'-nucleotide in order to overcome the above-mentioned drawbacks. It has been found that the drawbacks of can be overcome. That is, it is known that a low molecular weight substance and a high molecular weight substance can be separated using a loose reverse osmosis membrane (JP-A-58).
-175438, JP-A-59-156402, etc.), the inventors of the present invention have found that a loose reverse osmosis membrane having characteristics that the rejection of NaCl is 20 to 80% and that of 5'-disodium inosinate is 95% or more. The solution having a salt concentration and a concentration of 5'-nucleotide of not less than a certain concentration is subjected to reverse osmosis treatment using the above-mentioned reverse osmosis membrane to efficiently remove coexisting inorganic salts and simultaneously to obtain 5 '
-Finding that nucleotide can be concentrated efficiently,
The present invention has been completed.

本発明によれば、5′−ヌクレオタイドの生成反応液か
ら5′−ヌクレオタイドを単離精製する際に排出せられ
る多量の無機塩を含む5′−ヌクレオタイドの分離母液
から、高率にしかも高濃度の5′−ヌクレオタイドの脱
塩液を得る方法が提供され、工業的規模での5′−ヌク
レオタイドの製造において従来法の欠点であった副原料
の消費や蒸気等のエネルギー消費が大巾に削減でき、し
かも高収率に且つ簡便に5′−ヌクレオタイドの回収が
可能となり、大巾な製造コストの低減に貢献できる。更
に操作温度が低温であるために、5′−ヌクレオタイド
の分解を抑制でき、分解生成物による5′−ヌクレオタ
イドの品質低下の防止にも寄与できる。
According to the present invention, at a high rate, a separation mother liquor of 5'-nucleotide containing a large amount of an inorganic salt discharged during the isolation and purification of 5'-nucleotide from a reaction solution for producing 5'-nucleotide is used. Moreover, a method for obtaining a high-concentration desalted solution of 5'-nucleotide is provided, and in the production of 5'-nucleotide on an industrial scale, consumption of auxiliary raw materials and energy consumption such as steam, which are disadvantages of the conventional methods, are consumed. Can be greatly reduced, and 5'-nucleotide can be easily recovered with high yield, which can contribute to a large reduction in manufacturing cost. Further, since the operating temperature is low, the decomposition of 5'-nucleotide can be suppressed, and it can contribute to the prevention of the deterioration of the quality of 5'-nucleotide due to the decomposition products.

本発明方法の対象となる無機塩を含む5′−ヌクレオタ
イド溶液は、5′−イノシン酸、5′−グアニル酸等の
5′−ヌクレオタイドを工業的に製造する際に生ずるも
のである関係上、無機塩はNaClが主体であり、5′−ヌ
クレオタイドとしては5′−イノシン酸、5′−グアニ
ル酸、および/又は5′ーアデニル酸、或いはヌクレオ
サイドのジリン酸、トリリン酸等を含むものであって、
NaClが1%から飽和濃度、好ましくは5g/dlから飽和濃
度でかつ5′−ヌクレオタイドが0.01〜40g/dl、好まし
くは2〜35g/dlである溶液である。
The 5'-nucleotide solution containing an inorganic salt which is the subject of the method of the present invention is a solution which is produced during industrial production of 5'-nucleotide such as 5'-inosinic acid and 5'-guanylic acid. In addition, the inorganic salt is mainly NaCl, and 5'-nucleotide includes 5'-inosinic acid, 5'-guanylic acid, and / or 5'-adenylic acid, or nucleoside diphosphoric acid, triphosphoric acid, etc. The thing
A solution having a NaCl concentration of 1% to a saturated concentration, preferably 5 g / dl to a saturated concentration, and a 5'-nucleotide of 0.01 to 40 g / dl, preferably 2-35 g / dl.

又、後述するが、塩やヌクレオタイド類の濃度が高い
程、効率的にヌクレオタイドを濃縮しつつ塩を分離する
ことが見出されて本発明を完成したが、上記範囲外の低
濃度領域の場合には両者の分離効率が低下するので効率
的な濃縮、脱塩が達成出来なくなる。濃縮だけを目的と
するならば低濃度領域でも省エネルギー濃縮法としては
工業的に有利な濃縮方法となり得る。又、このような低
濃度の対象液の場合は通常知られている逆浸透膜で、塩
とヌクレオタイドの両方を上述した適性な濃度範囲まで
濃縮しておき、その後、後述するルーズな逆浸透膜で脱
塩・濃縮するのが好ましい。
Further, as will be described later, it was found that the higher the concentration of the salt or nucleotides, the more efficiently the nucleotide is concentrated and the salt is separated, and the present invention was completed. In the case of 1, the separation efficiency of both is lowered, so that efficient concentration and desalting cannot be achieved. If only for the purpose of concentration, even in a low concentration range, it can be an industrially advantageous concentration method as an energy-saving concentration method. Also, in the case of such a low concentration target liquid, a commonly known reverse osmosis membrane is used to concentrate both the salt and nucleotide to the appropriate concentration range described above, and then the loose reverse osmosis described later. Desalting / concentration with a membrane is preferable.

本発明に使用されるルーズな逆浸透膜は、酢酸セルロー
ス系、ポリアミド系、ポリベンズイミダゾール系、ポリ
スルホン系などのものを圧力56気圧、温度25℃において
NaCl及び5′−イノシン酸ジナトリウム7.5水和物の混
合溶液であって両溶質の濃度がいずれも3.5g/dlである
ものを逆浸透処理したときのNaClの膜阻止率20〜80%で
かつ5′−イノシン酸ジナトリウム7.5水和物の阻止率9
5%以上、好ましくは98%以上になるように調整された
ものであり膜の材質を問うものではない。ここに阻止率
(%)は次の定義による。
Loose reverse osmosis membrane used in the present invention, such as cellulose acetate type, polyamide type, polybenzimidazole type, polysulfone type at a pressure of 56 atm and a temperature of 25 ° C.
Membrane rejection of NaCl was 20-80% when reverse osmosis treatment was performed on a mixed solution of NaCl and disodium 5'-inosinate 7.5 hydrate with both solute concentrations of 3.5 g / dl. And inhibition rate of disodium 5'-inosinate 7.5 hydrate 9
It is adjusted to 5% or more, preferably 98% or more, regardless of the material of the film. Here, the blocking rate (%) is defined as follows.

前述のようにルーズな逆浸透膜を用いた場合低分子物質
と高分子物質を分離出来ることは知られているが、NaCl
の阻止率に関し鋭意検討した結果、同一膜でも塩濃度の
大小によって阻止率が大きく変化することを発見し、こ
れを用いて高濃度の無機塩を含む溶液から効率的に脱塩
する方法を見出した。塩はその分子量が100程度以下のN
aCl、KCl、NH4Clなどが脱塩されやすいが、分子量が100
以上のCaCl2、ZnCl2、FeCl3、リン酸塩、硫酸塩などの
塩は透過性が悪くなり効率的な脱塩が困難となるので、
このような塩が本発明の被処理液に混入するような工程
を採用することは好ましくない。
It is known that low molecular weight substances and high molecular weight substances can be separated when a loose reverse osmosis membrane is used as described above.
As a result of diligent study on the inhibition rate of the salt, it was found that the inhibition rate greatly changes depending on the salt concentration even in the same film, and a method for efficiently desalting from a solution containing a high concentration of inorganic salt was found using this. It was Salt has an N of about 100 or less
aCl, KCl, NH 4 Cl, etc. are easily desalted, but the molecular weight is 100
The above CaCl 2 , ZnCl 2 , FeCl 3 , phosphate, sulfate and other salts have poor permeability and are difficult to be efficiently desalted.
It is not preferable to employ a process in which such a salt is mixed in the liquid to be treated of the present invention.

5′−ヌクレオタイドの濃度を高めることにより更にNa
Clの脱塩率を高める効果のあることを発見した。このこ
とは更に濃縮液の中から5′−イノシン酸ジナトリウム
を効率よく回収することに継げることができる。
By increasing the concentration of 5'-nucleotide, Na
It was discovered that Cl has the effect of increasing the desalination rate. This can be further followed by efficient recovery of disodium 5'-inosinate from the concentrated liquid.

更におどろくべきことに、従来はpHを高くすると透過速
度が上昇し阻止率が低下することが知られているが(化
学技術誌MOL昭60年12月号「高分子分離膜モジュール性
能変化の原因とその防止法」)、本発明の対象液の場合
はpHの上昇によって透過速度が低下し5′−ヌクレオタ
イドの阻止率は向上すること、中性の塩の阻止率はあま
りpHの影響を受けないことが見出された。この発見を用
い適切はpHを選択することにより、5′−ヌクレオタイ
ドと低分子塩を効率よく分離できることが明らかとなっ
た。即ちpHは3〜12、好ましくは5〜11である。
Even more surprisingly, it has been conventionally known that the permeation rate increases and the rejection rate decreases when the pH is raised (Chemical Technology Journal MOL, December 60 issue, “Causes of changes in polymer separation membrane module performance”). And its prevention method "), in the case of the target liquid of the present invention, the permeation rate decreases with an increase in pH, and the inhibition rate of 5'-nucleotide is improved. I was found not to receive it. Using this finding, it was revealed that 5'-nucleotide and low-molecular salt can be efficiently separated by appropriately selecting pH. That is, the pH is 3-12, preferably 5-11.

又圧力によっても特異な挙動を示すことを発見した。即
ちルーズな逆浸透膜の場合、NaClの如き低分子は圧力の
増加に伴う阻止率の変化は小さいが、ヌクレオタイドは
圧力の増加と共に阻止率が向上することが発見され、よ
り高圧で操作するほど透過速度の向上とあいまって低分
子塩と核酸とをより効率的に分離できることが明らかと
なった。即ち圧力は10〜70気圧であってこれより低圧で
は5′−ヌクレオタイドの阻止率の低下、および処理能
力の低下等の不都合がある。
It was also discovered that the behavior behaves uniquely depending on the pressure. That is, in the case of loose reverse osmosis membranes, small molecules such as NaCl show a small change in the blocking rate with increasing pressure, but nucleotide was found to improve the blocking rate with increasing pressure, and operated at higher pressure. It became clear that the low-molecular salt and the nucleic acid can be separated more efficiently together with the improvement of the permeation rate. That is, the pressure is 10 to 70 atm, and if the pressure is lower than this, there are disadvantages such as a reduction in the blocking rate of 5'-nucleotide and a reduction in the processing capacity.

温度は5〜60℃、好ましくは20〜40℃でこの範囲外で
は、5′−ヌクレオタイドの阻止率の低下や基質の分解
が起り易く、低温だと結晶の析出等の不都合が起る。も
っともpH、圧力、温度はともに膜の材質のこれらに対す
る耐用の範囲でなければならないことはもちろんであ
る。また膜の耐用の範囲で有機溶媒、例えば、メタノー
ル、エタノール、トリアルキルリン酸酸エステルが混入
してもよい。
The temperature is 5 to 60 ° C., preferably 20 to 40 ° C. Outside this range, reduction of the inhibition rate of 5′-nucleotide and decomposition of the substrate are likely to occur, and at low temperature, disadvantages such as crystal precipitation occur. Needless to say, the pH, pressure, and temperature must be within the range that the material of the membrane can withstand them. Further, an organic solvent such as methanol, ethanol, or a trialkyl phosphate ester may be mixed within the durability of the membrane.

なお、本発明によって無機塩の除去された5′−ヌクレ
オタイド溶液から、目的とする5′−ヌクレオタイドを
回収するには通常の方法でよい。
In addition, a usual method may be used to recover the target 5'-nucleotide from the 5'-nucleotide solution from which the inorganic salt is removed according to the present invention.

以下、実施例によって本発明を詳述するが、実施例で使
用する膜の性能定義としてのNaClおよび5′−イノシン
酸ジナトリウムの各阻止率は前述と同じく、圧力56気
圧、温度25℃においてNaClおよび5′−イノシン酸ジナ
トリウム7.5水和物の混合溶液であって両溶質の濃度が
いずれも3.5g/dlであるものを逆浸透処理に付したとき
である。
Hereinafter, the present invention will be described in detail with reference to Examples. The rejections of NaCl and 5'-disodium inosinate as performance definitions of the membranes used in Examples are the same as above, at a pressure of 56 atm and a temperature of 25 ° C. When a mixed solution of NaCl and disodium 5'-inosinate 7.5 hydrate with both solute concentrations of 3.5 g / dl was subjected to reverse osmosis treatment Is.

また である。Also Is.

実施例1 ヌクレオタイド5g/dl、ヌクレオサイド0.1g/dl、NaCl17
g/dl、リン酸ソーダ(Pとして)0.6g/dl、を含有する
水性溶液をNaCl阻止率30%で5′−イノシン酸ジナトリ
ウム阻止率99%のルーズな逆浸透膜を用いて、pH=7、
圧力60気圧、温度30℃で非透過液を元の原料液に循環混
合しつつ行う方式での逆浸透処理に付して脱塩濃縮を行
なった。非透過液中のヌクレオタイドの濃度が高まるこ
とによってヌクレオタイドの阻止率が向上しかつNaClの
阻止率は30%から0%に低下したことによって効率よく
脱塩、濃縮することができた。結果を表1に示す。
Example 1 Nucleotide 5 g / dl, Nucleoside 0.1 g / dl, NaCl17
The pH of an aqueous solution containing g / dl and sodium phosphate (as P) of 0.6 g / dl was adjusted using a loose reverse osmosis membrane with a NaCl inhibition rate of 30% and a disodium 5'-inosinate inhibition rate of 99%. = 7,
Desalination and concentration were performed by reverse osmosis treatment in which the non-permeate was circulated and mixed with the original raw material liquid at a pressure of 60 atm and a temperature of 30 ° C. As the concentration of nucleotide in the non-permeate was increased, the inhibition rate of nucleotide was improved and the inhibition rate of NaCl was decreased from 30% to 0%, whereby desalting and concentration could be efficiently performed. The results are shown in Table 1.

参考例1(pHの影響) ヌクレオタイド6.5g/dl、ヌクレオサイド0.2g/dl、NaCl
17g/dl、リン酸ナトリウム(Pとして)0.6g/dl等を含
有する原料液を温度30℃、圧力40気圧でNaCl阻止率35
%、5′−イノシン酸ジナトリウム阻止率97%のルーズ
な逆浸透膜を用いる逆浸透膜処理に付した。透過液、非
透過液共元の原料液に循環混合しつつpHを変化させて脱
塩、濃縮を行なった。結果を表2に示す。
Reference Example 1 (Influence of pH) Nucleotide 6.5g / dl, Nucleoside 0.2g / dl, NaCl
A raw material solution containing 17 g / dl, sodium phosphate (as P) 0.6 g / dl, etc., at a temperature of 30 ° C. and a pressure of 40 atm, NaCl rejection rate of 35
%, 5′-disodium inosinate 97% rejection rate was used for reverse osmosis membrane treatment. The permeated liquid and the non-permeated liquid were subjected to desalting and concentration by changing the pH while circulatingly mixed with the raw material liquid. The results are shown in Table 2.

表2より無機塩を含むヌクレオタイド溶液の逆浸透処理
による脱塩濃縮が逆浸透処理のpHによって影響されるこ
とが理解されよう。
It will be understood from Table 2 that the desalting concentration of the nucleotide solution containing the inorganic salt by the reverse osmosis treatment is influenced by the pH of the reverse osmosis treatment.

参考例2(圧力の影響) ヌクレオタイド4.5g/dl、ヌクレオサイド0.3g/dl、NaCl
16.4g/dl、リン酸ナトリウム(Pとして)0.6g/dl等を
含有する原料液を温度30℃、pH=6に調整し、実施例1
で使用したと同一の膜を使用する逆浸透処理に付した。
透過液、非透過液共に元の原料液に循環混合しつつ圧力
を変化させて脱塩濃縮を行なった。
Reference Example 2 (Influence of pressure) Nucleotide 4.5g / dl, Nucleoside 0.3g / dl, NaCl
A raw material solution containing 16.4 g / dl, 0.6 g / dl of sodium phosphate (as P), etc. was adjusted to a temperature of 30 ° C. and pH = 6, and Example 1 was used.
It was subjected to reverse osmosis treatment using the same membrane used in.
Both the permeated liquid and the non-permeated liquid were circulatively mixed with the original raw material liquid, and the pressure was changed to perform desalting and concentration.

結果を表3に示す。The results are shown in Table 3.

表3より無機塩を含むヌクレオタイド溶液の逆浸透処理
による脱塩濃縮が逆浸透処理の圧力によって影響され特
に高圧下に於いて透過速度およびヌクレオタイドの阻止
率が向上し且つNaClが効率よく脱塩できることが理解さ
れよう。
From Table 3, desalination concentration of nucleotide solution containing inorganic salt by reverse osmosis treatment was affected by the pressure of the reverse osmosis treatment, and especially at high pressure, the permeation rate and the nucleotide rejection rate were improved, and NaCl was efficiently removed. It will be appreciated that salt is possible.

実施例2 ヌクレオタイド8g/dl、ヌクレオサイド1g/dl、NaCl25g/
dl、リン酸ソーダ(Pとして)0.5g/dl等を含有する水
性溶液を実施例1で使用したと同一の膜を使用する逆浸
透処理に付した。処理条件は、pH=10、圧力40気圧、温
度35℃で非透過液を元の原料液に循環混合しつつ脱塩濃
縮を行なった。非透過液中のヌクレオタイドの濃度が高
まることによってNaClの濃度が3.5g/dl時には阻止率が3
0%なのが、本実施例の如くNaClが25g/dlと高いと、NaC
lの濃度は透過液中の方が非透過液中より濃くなり、NaC
lの阻止率は−43%に低下し、効率よく脱塩濃縮するこ
とが出来た。
Example 2 Nucleotide 8 g / dl, Nucleoside 1 g / dl, NaCl 25 g /
An aqueous solution containing dl, sodium phosphate (as P) 0.5 g / dl, etc. was subjected to reverse osmosis treatment using the same membrane used in Example 1. The treatment conditions were pH = 10, pressure of 40 atm, and temperature of 35 ° C., while performing desalting and concentration while circulatingly mixing the non-permeate with the original raw material liquid. When the concentration of NaCl was 3.5 g / dl, the inhibition rate was 3 by increasing the concentration of nucleotide in the impermeable liquid.
0% is NaC when NaCl is as high as 25 g / dl as in this embodiment.
The concentration of l was higher in the permeate than in the non-permeate, and
The rejection rate of l decreased to -43%, and desalting and concentration could be efficiently performed.

結果を表4に示す。The results are shown in Table 4.

実施例3 ヌクレオタイド20g/dl、ヌクレオサイド0.2g/dl、NaCl1
5g/dl、リン酸ソーダ(Pとして)0.7g/dl、トリアルキ
ルリン酸エステル1.5g/dlを含有する溶液をNaCl阻止率2
0%で5′−イノシン酸ジナトリウム阻止率99.5%のル
ーズな逆浸透膜を使用する逆浸透膜処理に付した。処理
条件はpH=10、圧力40気圧、温度40℃で非透過液を元の
原料液に循環混合しつつ濃縮を行なった。
Example 3 Nucleotide 20 g / dl, Nucleoside 0.2 g / dl, NaCl1
A solution containing 5 g / dl, sodium phosphate (as P) 0.7 g / dl, and a trialkyl phosphate ester 1.5 g / dl was used for NaCl inhibition 2
It was subjected to reverse osmosis membrane treatment using a loose reverse osmosis membrane with 5% disodium 5'-inosinate inhibition of 99.5% at 0%. The treatment conditions were pH = 10, a pressure of 40 atm, and a temperature of 40 ° C., and the non-permeated liquid was circulated and mixed with the original raw material liquid for concentration.

結果を表5に示す。The results are shown in Table 5.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】NaCl濃度が5g/dlから飽和濃度でかつ5′
−ヌクレオタイド濃度が2g/dl〜35g/dlである無機塩を
含むpHが3〜12の5′−ヌクレオタイド溶液をNaClの阻
止率が20〜80%でかつ5′−イノシン酸ジナトリウムの
阻止率が95%以上のルーズな逆浸透膜を用いて逆浸透処
理に付することを特徴とする該溶液から無機塩を除去す
る方法。
1. A NaCl concentration of 5 g / dl to a saturated concentration of 5 '.
A 5'-nucleotide solution having an pH of 3 to 12 and containing an inorganic salt having a nucleotide concentration of 2 g / dl to 35 g / dl and having a NaCl rejection of 20 to 80% and 5'-disodium inosinate. A method for removing inorganic salts from a solution, which comprises subjecting to reverse osmosis treatment using a loose reverse osmosis membrane having a rejection rate of 95% or more.
【請求項2】pH5〜11において逆浸透処理を行うことを
特徴とする特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein reverse osmosis treatment is carried out at pH 5-11.
【請求項3】圧力10〜70kg/cm2において逆浸透処理を行
うことを特徴とする特許請求の範囲第1項又は第2項記
載の方法。
3. The method according to claim 1 or 2, wherein the reverse osmosis treatment is performed at a pressure of 10 to 70 kg / cm 2 .
JP61030469A 1986-02-14 1986-02-14 Method for desalting solution containing 5'-nucleotide Expired - Lifetime JPH0678351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030469A JPH0678351B2 (en) 1986-02-14 1986-02-14 Method for desalting solution containing 5'-nucleotide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030469A JPH0678351B2 (en) 1986-02-14 1986-02-14 Method for desalting solution containing 5'-nucleotide

Publications (2)

Publication Number Publication Date
JPS62190194A JPS62190194A (en) 1987-08-20
JPH0678351B2 true JPH0678351B2 (en) 1994-10-05

Family

ID=12304728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030469A Expired - Lifetime JPH0678351B2 (en) 1986-02-14 1986-02-14 Method for desalting solution containing 5'-nucleotide

Country Status (1)

Country Link
JP (1) JPH0678351B2 (en)

Also Published As

Publication number Publication date
JPS62190194A (en) 1987-08-20

Similar Documents

Publication Publication Date Title
AU2018343981B2 (en) Process for the purification of a neutral human milk oligosaccharide (HMO) from microbial fermentation
US20180147532A1 (en) Process For Concentration Of Lithium Containing Solutions
CN104803448A (en) Forward osmosis treatment method of wastewater with high salinity and high organic matter concentration
JP5135749B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JPH0459878B2 (en)
US4990441A (en) Process for separating 2-keto-L-gulonic acid from a fermented medium
CN107555542B (en) Multi-stage nanofiltration-reverse osmosis-membrane distillation combined desalting and salt separation method
RU2616002C2 (en) Method for cleaning 1,4-diaminobutane, cleaned by the provided method of 1,4-diaminobutane and polyamide obtained from it
CN111748592B (en) Preparation method of high-purity flavor nucleotide disodium
JP4273203B2 (en) Method for producing high purity sodium chloride
CN105836976A (en) Comprehensive treatment method of long-chain dialkyl acid crystallization mother liquor
JPH0678351B2 (en) Method for desalting solution containing 5'-nucleotide
US5965028A (en) Process for treating a liquid
JPH03133387A (en) Production of maltooligosaccharide
JP2008141981A (en) Method for producing lactic acid
CN113354702B (en) Separation and purification process of high-purity NADP
RU2016637C1 (en) Method of producing granulated sugar from sugar juices
EP0781264A1 (en) Process for recovering citric acid
WO2020196460A1 (en) Carboxylic acid production method
JP2834265B2 (en) Concentration method of organic valuables by reverse osmosis membrane
JPH11215980A (en) Treatment of liquid containing microbial cell
JPH04197424A (en) Purification of organic acid
JPS61287492A (en) Method and apparatus for producing ultrapure water
Kaiho Recycling of iodine
JPH055836B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term