JPS61287492A - Method and apparatus for producing ultrapure water - Google Patents
Method and apparatus for producing ultrapure waterInfo
- Publication number
- JPS61287492A JPS61287492A JP12692285A JP12692285A JPS61287492A JP S61287492 A JPS61287492 A JP S61287492A JP 12692285 A JP12692285 A JP 12692285A JP 12692285 A JP12692285 A JP 12692285A JP S61287492 A JPS61287492 A JP S61287492A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- mol
- ultrapure water
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、水中のイj機物成分(TOC)を効率J−り
、かつ経済的に除去する超純水のtJ造方法おJ−び製
造装置に関する。ざらに詳しくは、膜電位の異なった多
段の分mt膜を使■することにより、著しくTOCを減
少できる技術に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing ultrapure water that efficiently and economically removes organic components (TOC) from water. and manufacturing equipment. More specifically, the present invention relates to a technique that can significantly reduce TOC by using multi-stage mt membranes with different membrane potentials.
TOCが低い超純水は、高品位な水を必要とする超LS
I製造などの電気、電子分野での洗浄工程で必須のもの
として要求されている。また、これら製造分野で使用す
る、原利薬晶希釈水および製薬工業分野にお1プるプロ
セス水等でも要求が高い。Ultra pure water with low TOC is ultra LS which requires high quality water.
It is required as an indispensable cleaning process in the electrical and electronic fields such as I manufacturing. In addition, there are high demands for raw drug crystal dilution water and process water used in the pharmaceutical industry, which are used in these manufacturing fields.
これらの要求に応えるべく、膜分離技術やイオン交換分
離技術が応用されている。逆浸透法の原理を利用した半
透膜による分餌1伎術は、従来から、海水やカン水から
の純水のV造、染料おJ−び電肴塗利などの各種工業廃
水からの有価物質回収、濃縮、または汚染物質の選択分
離、除去などらの多くの分野で工業的に利用されている
ものである。In order to meet these demands, membrane separation technology and ion exchange separation technology are being applied. The separation method using a semi-permeable membrane that utilizes the principle of reverse osmosis has traditionally been used to produce pure water from seawater and can water, as well as from various industrial wastewaters such as dyes, jelly, and dipping sauce. It is used industrially in many fields such as the recovery and concentration of valuable substances, and the selective separation and removal of pollutants.
電子工業の分野でも、逆浸透法を利用し、供給水中のイ
オンの排除を行ない、後工程にお(Jるイオン交換(か
1脂負傭を低減させている。このような利用方法は、水
の純化方法として一般的である。In the field of electronics industry, reverse osmosis is also used to eliminate ions in the feed water and reduce the amount of ion exchange (or 1) used in the subsequent process. This is a common method for purifying water.
最近ではLSIの高密度化に伴い、従来非常に分離しに
くかった水中の有機物質除去方法の開発が要求されてい
る。これら水中の有機物質とは、水中に溶解している低
分子は物質で、分子量約500以下のものである。これ
らは、フミン酸分解、微生物代謝物、置薬、および産業
廃棄物などに由来するものが代表的である。Recently, with the increase in the density of LSIs, there has been a demand for the development of a method for removing organic substances from water, which were previously very difficult to separate. These organic substances in water are low-molecular substances dissolved in water, and have a molecular weight of about 500 or less. These are typically derived from humic acid decomposition, microbial metabolites, medicines, and industrial waste.
しか[)従来これらのイバ分子量物質に由来する丁OC
を除去し、超純水を安価に得る技術1」なく、かかる技
術の改良か望まれていた。However, conventionally, DingOC derived from these Iba molecular weight substances
There is no technology to remove ultrapure water and obtain ultrapure water at low cost, and improvements to this technology have been desired.
(発明か解決しようとする問題点〕
本発明は上記従来技術の問題点を改善し、膜電位の異な
った膜素材を組合わ廿て多段処理することにより、フミ
ン酸などに起因する有機低分子量化合物を有効に除去し
、丁OCの極端に少ない超純水の製造技術を提供する。(Problems to be solved by the invention) The present invention improves the above-mentioned problems of the prior art, and by combining membrane materials with different membrane potentials and performing multi-stage processing, organic low molecular weight caused by humic acid, etc. To provide a technology for producing ultrapure water that effectively removes compounds and has extremely low levels of OC.
すイχわら、丁OCの増大を招くフミン酸などに起因す
る有機低分子量化合物1よ、プラス荷電を有するもの、
マイナス荷電を有するもの、および中性の物質が混合し
た状態で存在している。従って含有する物質の荷電状態
に対応させて膜を選択することが有効であることを本発
明者らは見い出し、本発明に至ったものである。Organic low molecular weight compounds 1 caused by humic acid etc. that cause an increase in OC, those with a positive charge,
A mixture of negatively charged and neutral substances exists. Therefore, the present inventors have discovered that it is effective to select a membrane in accordance with the charge state of the substance contained therein, leading to the present invention.
(発明を解決するLこめの手段〕 上記目的を達成するため本発明は下記の構成からなる。(L-intensive means to solve the invention) In order to achieve the above object, the present invention consists of the following configuration.
F(1) 原水からTOC1001)I)bJx下の
超純水を得る方法において、2段」ス上の多段の分離膜
を用い、かつその少なくとも2段の分離膜の膜電位が、
下記の測定条件において5ミリポル1〜」ス上異なった
ものを用いることを特徴とする超純水を製造する方法。F(1) A method for obtaining ultrapure water under TOC1001)I)bJx from raw water, using multi-stage separation membranes on two stages, and the membrane potential of at least two stages of separation membranes is
1. A method for producing ultrapure water, characterized in that the following measurement conditions differ by 5 millipol 1 to 1".
(ただし膜電位とは、25℃において、KCσ水溶液の
濃度が、低濃度側の瀧麻10−3モル10.、高濃度側
の濃度4X10−3モル/(1における膜電位をいう。(Membrane potential, however, refers to the membrane potential at 25°C when the concentration of the KCσ aqueous solution is 10.3 mol/(10.3 mol/(1) on the low concentration side and 4×10-3 mol/(1) on the high concentration side.
)
(2)原水からTOC1001111b以下の超純水を
1!!造する装置において、第1段目原水ポンプ、第1
段目分離膜、第2段目原水ポンプ、第2段目分@膜を少
なくとも設け、かつその少なくとも2段の分離膜の膜電
位が、下記の測定条件において5ミリボルト以上異なっ
た膜であることを特徴とする超純水の製造装置。) (2) 1! Ultrapure water with TOC1001111b or less from raw water! ! In the equipment for producing water, the first stage raw water pump, the first
At least a stage separation membrane, a second stage raw water pump, and a second stage @membrane are provided, and the membrane potentials of the at least two stages of separation membranes must differ by 5 millivolts or more under the following measurement conditions. Ultrapure water production equipment featuring:
(ただし膜電位とは、25℃において、KO(2,水溶
液の濃度が、低Ii度側の濃度10−3モル/σ、高濃
度側の濃度4X10−3モル/σにおける膜電位をいう
。)J
まず本発明の見本的構成を図面を用いて説明する。第1
図は本発明の基本プロレスの1実施態様である2段の処
理技術である。原水ライン1がら第1段目原水ポンプ2
により、第1段目分離膜3に原水を供給し、ここで第1
段の純水化処理を行う。廃液はライン5から排出する。(However, the membrane potential refers to the membrane potential at 25° C. when the concentration of the aqueous solution is 10 −3 mol/σ on the low Ii degree side and 4×10 −3 mol/σ on the high concentration side. ) J First, a sample configuration of the present invention will be explained using the drawings.
The figure shows a two-stage processing technique that is one embodiment of the basic wrestling of the present invention. First stage raw water pump 2 from raw water line 1
The raw water is supplied to the first stage separation membrane 3, where the first
Perform stage water purification treatment. Waste liquid is discharged through line 5.
次いで第1段処理水ラインより取り出された処理水を好
ましくは中間槽4(必ずしも槽でなくともJ−り、パイ
プを太く(]たものでもよい)に溜め、第2段目原水ポ
ンプ6を用いて第2段目分聞1膜7に供給し、超純水を
取り出しライン8から宥る。ライン9は廃液パイプであ
る。分離膜は2段以上であればいがなる数の段であって
もよい。Next, the treated water taken out from the first stage treated water line is preferably stored in an intermediate tank 4 (not necessarily a tank, but may be a tank with a thick pipe), and the second stage raw water pump 6 is pumped. The ultrapure water is taken out and discharged from the line 8.The line 9 is a waste liquid pipe.The separation membrane can have as many stages as there are two or more stages. It's okay.
そして前記少なくとも2段の分離膜として、25℃にお
いて、KGα水溶液の濶mが、低濃度側の瀧ri”to
−aモル/σ、高濃度側の濃度4X10−3モル/σに
おCJる膜電位が、5ミリポル1〜以上巽なったものを
用いるのである。As the at least two-stage separation membrane, at 25°C, the amount of KGα aqueous solution is reduced to
-a mol/σ, and the membrane potential at CJ of 4×10 −3 mol/σ on the high concentration side is used by 5 millipores or more.
ここで膜電位が、5ミリボルト以上異なった膜とは、い
かなるものの組み合わせであってもよく、具体的には、
酢酸1?ルロース系(はぼ中性)、ポリアミド系、架橋
ポリアミン系、架1nポリアミン7/ポリエーテル系、
架橋ポリエーテル系1以上プラス荷電性〉、ポリアクリ
ロニトリル、ポリエーテル、スルホン化ポリスルホン(
」ズ上マイナス荷電性)などを適宜組み合わせて用いる
。これらの膜素材から作られる逆浸透膜の膜形前として
は、非対称膜および複合IIIなどがある。純水装置に
おいて利用できる膜のエレメント構造としては、スパイ
ラル型、中空糸型、ヂコーブラー型、プレートアント′
フレーム型などがある。Here, the membranes whose membrane potentials differ by 5 millivolts or more may be any combination of membranes, and specifically,
Acetic acid 1? Lulose type (neutral), polyamide type, cross-linked polyamine type, cross-linked 1n polyamine 7/polyether type,
Cross-linked polyether type with positive charge of 1 or more>, polyacrylonitrile, polyether, sulfonated polysulfone (
(negatively charged) etc. are used in appropriate combinations. Membrane types of reverse osmosis membranes made from these membrane materials include asymmetric membranes and composite III membranes. Membrane element structures that can be used in water purification equipment include spiral type, hollow fiber type, dicobbler type, and plate ant.
There are frame types.
このようにすると、丁OCの増大を招くフミン酸などに
起因する荷電特性の異なる有機低分子量化合物は、各々
これiJ対応する荷電を有する膜によって効率よく分離
さハ、100ppbJズ下、好ましくは5oppb以下
の丁OC濃度の超純水を得ることができる。In this way, organic low molecular weight compounds with different charge characteristics such as humic acid, which cause an increase in OC, can be efficiently separated by a membrane having a charge corresponding to each iJ. Ultrapure water with the following concentration of OC can be obtained.
本発明のより好ましい態様としては、前記はぼ中性の膜
と、プラス傭電を有する膜と、マイノース荷電を有する
膜から選ばれる2f!iJズ−Hの膜を用いる。荷電特
・1ノ1の異なる有機低分子量化合物により対応させる
ためである。In a more preferred embodiment of the present invention, the 2f! iJ's-H membrane is used. This is because the charge characteristics can be handled by different organic low molecular weight compounds.
本発明において、膜電イウを25℃,KCβ水溶液の)
農度か、イバ濃度側の濃度10−3モルフ10、高濃度
側の濃度4X10−3モルフ/ρで求めた理由は、膜電
イ☆は第2図のとおり、測定液の塩の)農度(原水の王
OCt、:対応する)の変化により相対的に異なるもの
であるので、原水(通常の王OC濃度1ユ第2図の02
Is度10−2の近辺)から超純水に処理される際に
必らず通過する代表的な値どじたためである。In the present invention, the membrane electrolyte (KCβ aqueous solution) is heated at 25°C.
The reason why the concentration on the Iba concentration side was 10-3 morph/ρ and the concentration on the high-concentration side was 4X10-3 morph/ρ was determined as follows. It is relatively different depending on the change in the concentration (corresponding to the OCt of raw water).
This is because the typical value that must be passed when ultra-pure water is processed from 10-2 degree Is) to ultra-pure water has fluctuated.
本発明の逆浸透膜に供給する原水としては、市水、凝集
)−過水、活性炭)−過水、紫外照13=1分解水など
が使■できる。1段目逆浸透膜処理と2段目逆浸透膜処
理の間にはイオン交換処理、活゛1/I炭処理、紫外照
帽分解おJ−び他の方法による工程があっても良い。As the raw water to be supplied to the reverse osmosis membrane of the present invention, city water, coagulation)-superhydration, activated carbon)-superhydration, ultraviolet irradiation 13=1 decomposed water, etc. can be used. Between the first-stage reverse osmosis membrane treatment and the second-stage reverse osmosis membrane treatment, there may be steps such as ion exchange treatment, active charcoal treatment, ultraviolet decomposition, and other methods.
水中の有機物の分析は、市販されている微は有機物分析
計を使用した。分析計はアメ1〜口社製(米国)高感度
丁OC計モデル18001)r)l)、レンジ範囲:O
〜500Dr)b、再現性:±2%(±10ppb )
。レンジ範囲:O〜250011pb、再現性:土2%
(±50DDb>。温度25℃1KCθ水溶液の濃度が
、低濃度側の濃度10−3モル/ρ、高濃度側の濃度4
X10−3モル/L測定の方法は第3図に示すとおりで
ある。A commercially available micro organic matter analyzer was used to analyze organic matter in water. The analyzer is a high-sensitivity OC meter model 18001) r) l) manufactured by Amerikuchi Co., Ltd. (USA), range range: O
~500Dr)b, reproducibility: ±2% (±10ppb)
. Range range: O~250011pb, reproducibility: 2% soil
(±50DDb>.Temperature 25℃ 1KCθ The concentration of the aqueous solution is 10-3 mol/ρ on the low concentration side and 4 mol/ρ on the high concentration side.
The method for measuring X10-3 mol/L is as shown in FIG.
実施例1
第1図のプロセスにおいて、前段逆浸透膜ニレ段逆浸透
膜エレメントとして、スパイラル型芳香族ポリアミド複
合膜(東し株式会社!′!膜、膜電位−12ミリボルト
)を使用し、市水を前段逆浸透膜に圧力15kq/cJ
で供給し、前段逆浸透透過水を圧力15kq/cJで後
段逆浸透膜に供給した。このときの前段逆浸透膜に供給
した市水中の有機物濃度は1200Dpb 、前段逆浸
透膜透過水中の有機物fA度は921111bであった
。また前段逆浸透膜透過水を後段逆浸透膜に供給したと
きの後段逆浸透膜透過水中の有機物濃度は3(])rl
l)であった。Example 1 In the process shown in Figure 1, a spiral-type aromatic polyamide composite membrane (Toshi Co., Ltd.'! Membrane, membrane potential -12 millivolts) was used as the reverse osmosis membrane element in the first stage reverse osmosis membrane. Pressure 15kq/cJ of water to the front stage reverse osmosis membrane
The first-stage reverse osmosis permeated water was supplied to the second-stage reverse osmosis membrane at a pressure of 15 kq/cJ. At this time, the organic matter concentration in the city water supplied to the front stage reverse osmosis membrane was 1200 Dpb, and the organic matter fA degree in the water permeated through the front stage reverse osmosis membrane was 921111b. Furthermore, when the permeated water of the first stage reverse osmosis membrane is supplied to the second stage reverse osmosis membrane, the organic matter concentration in the second stage reverse osmosis membrane permeated water is 3 (]) rl
l).
ここで使用したJシメン1〜の脱塩性能は酢酸セルロー
ス膜が96%、造水量はIT、/m2・日(NaC11
500pI)m、圧ツノ30ki、/cJ)である。ま
た芳香族ポリアミJ−”複合膜エレメントの脱塩性り目
、180%、造水1112 T/7112・、/日(N
aCI 2000111’1m、圧力20kg/crり
である。The desalination performance of J Cymen 1~ used here was 96% for the cellulose acetate membrane, and the water production amount was IT,/m2・day (NaC11
500pI)m, pressure horn 30ki,/cJ). In addition, the desalting properties of the aromatic polyamide J-” composite membrane element are 180%, and the desalting properties are 1112 T/7112/day (N
aCI 2000111'1m, pressure 20kg/cr.
」ストの結果好ましい低濃度の丁OCの超純水を得るこ
とができた。As a result of this strike, we were able to obtain ultrapure water with a preferable low concentration of DOC.
実用例2
実施例1に使用した膜を、前段と後段で入れ換えて実験
しIこ。すなわち前段逆浸透膜■■レメントとして、ス
パイラル型芳香族ポリアミド複合膜を使用し、後段逆浸
透膜ニレメン1〜として、スパイラル型酢酸セルロース
非対称膜を使用した。前段および後段逆浸透膜運転条(
イ1(ま実施例]と同条件で行なった。このときの前段
透過水中の有機物濃度は94ppb、また前段逆浸透膜
透過水を後段逆浸透膜に供給したときの後段逆浸透膜透
過水中の有機物濃度は42DDbであった。ここで使用
した前段エレメントの脱塩性能は80%、造水量は2゜
5丁/ m2 m日(NaCI 2000 DDm 、
圧力20ky/cl’)後段エレメントの脱塩性能は9
7%、造水量は0.7丁/m2・日(NaCI 150
0DDm 、圧力30 kq / cJ >である。Practical Example 2 An experiment was conducted by replacing the membranes used in Example 1 in the front and rear stages. That is, a spiral-type aromatic polyamide composite membrane was used as the front-stage reverse osmosis membrane element 1, and a spiral-type cellulose acetate asymmetric membrane was used as the rear-stage reverse osmosis membrane element 1. Front and rear reverse osmosis membrane operating conditions (
The organic matter concentration in the permeated water in the first stage was 94 ppb, and the concentration of organic matter in the water permeated through the reverse osmosis membrane in the second stage when the water permeated through the first stage reverse osmosis membrane was supplied to the second stage reverse osmosis membrane. The organic matter concentration was 42 DDb. The desalination performance of the first stage element used here was 80%, and the amount of water produced was 2.5 tons/m2 m day (NaCI 2000 DDm,
Pressure: 20 ky/cl') The desalination performance of the latter element is 9.
7%, water production amount is 0.7 tons/m2・day (NaCI 150
0DDm, pressure 30 kq/cJ>.
この結果好ましい低濃度のTOCの超純水を得ることが
できた。As a result, ultrapure water with a preferable low concentration of TOC could be obtained.
比較例2
前段逆浸透膜ニレメン1へとして、スパイラル型芳香族
ポリアミド複合膜を使用し、後段逆浸透膜エレメントと
して、前段に使用した同種膜エレメントを使用した。前
段および後段逆浸透膜運転条件は実施例1と同条件で行
なった。このときの前段逆浸透膜透過水中の有I幾物瀧
度は181p面であった。また前段逆浸透膜透過水を、
後段逆浸透膜に供給したときの後段逆浸透膜透過水中の
有機物濃度は120叶すであった。Comparative Example 2 A spiral type aromatic polyamide composite membrane was used as the front stage reverse osmosis membrane Niremen 1, and the same type of membrane element used in the front stage was used as the rear stage reverse osmosis membrane element. The operating conditions for the front and rear reverse osmosis membranes were the same as in Example 1. At this time, the degree of crystallinity in the water permeated through the front stage reverse osmosis membrane was 181p. In addition, the water permeated through the reverse osmosis membrane in the first stage,
The organic matter concentration in the water permeated through the rear reverse osmosis membrane when supplied to the rear reverse osmosis membrane was 120%.
ここで使用した前段エレメントの脱塩性能は、75%、
造水量は2.5T/i2・日(NaC1200Oppm
、斥力20kq/c寸)後段ニレメン1への弱塩↑り能
は80%、造水Nは2.5丁/yn2・R(NaC12
000DDm、圧力20 kq、/ crK )である
。The desalination performance of the front element used here was 75%,
The amount of water produced is 2.5T/i2・day (NaC1200Oppm
, repulsion force 20kq/c dimension) weak salt ↑ repellency to the latter Niremen 1 is 80%, fresh water N is 2.5 tons/yn2・R (NaC12
000DDm, pressure 20 kq, / crK).
実施例1.2に比へて大幅に悪い結果となった。The results were significantly worse than those in Example 1.2.
本発明は上記の技術のとおり、TOCの増大を1Cくフ
ミン酸すどに起因するプラス、マイナス、中性のイオン
を持つ有機低分子量化合物に対応させて、分離膜を選択
し、膜電位の異なった膜素材を組合わけて多段処理する
ことにより、有機低分子は化合物を有効に除去し、TO
Cの極端に少ない超純水のV造が達成できたという顕著
な効果を奏する。In accordance with the above-mentioned technology, the present invention selects a separation membrane in response to an increase in TOC and an organic low molecular weight compound having positive, negative, and neutral ions caused by 1C humic acid, and increases the membrane potential. By combining different membrane materials and performing multi-stage processing, organic low-molecular compounds can effectively remove compounds and TO
This has the remarkable effect of achieving V-formation of ultrapure water with an extremely low C content.
そして装置の運転]ストは低師で、また膜の再生も簡単
であることなど、工業的に実用性が大である。また高品
位な水を工業的に安定して作れることができ、当業界に
貢献する度合は大きい。Furthermore, it is highly practical in industrial terms, as it is easy to operate the device, and it is easy to regenerate the membrane. In addition, high-quality water can be produced industrially and stably, making a significant contribution to this industry.
第1図は本発明の阜本プ[1−tごスの1実施態様であ
る2段の処理技術である。第2図は膜電位差と溶液濃度
の関係を示す。第3図は膜電位差測定方法を示す。
2;第1段目原水ポンプ、
3;第1段目分離膜
4;中間槽、6;第2段目原水ポンプ
7;第2段目分離膜
8;超純水取り出しライン。FIG. 1 shows a two-stage processing technique that is one embodiment of the Fumoto process of the present invention. FIG. 2 shows the relationship between membrane potential difference and solution concentration. FIG. 3 shows a method for measuring membrane potential difference. 2; 1st stage raw water pump; 3; 1st stage separation membrane 4; intermediate tank; 6; 2nd stage raw water pump 7; 2nd stage separation membrane 8; ultrapure water extraction line.
Claims (5)
る方法において、2段以上の多段の分離膜を用い、かつ
その少なくとも2段の分離膜の膜電位が、下記の測定条
件において5ミリボルト以上異なったものを用いること
を特徴とする超純水を製造する方法。 (ただし膜電位とは、25℃において、KCl水溶液の
濃度が、低濃度側の濃度10^−^3モル/l、高濃度
側の濃度4×10^−^3モル/lにおける膜電位をい
う。)(1) In a method for obtaining ultrapure water with a TOC of 100 ppb or less from raw water, two or more multi-stage separation membranes are used, and the membrane potential of at least two separation membranes differs by 5 millivolts or more under the following measurement conditions. 1. A method for producing ultrapure water, characterized by using ultrapure water. (However, membrane potential is the membrane potential at 25°C when the concentration of KCl aqueous solution is 10^-^3 mol/l on the low concentration side and 4 x 10^-^3 mol/l on the high concentration side. say.)
少なくとも2段の分離膜が、ほぼ中性の膜と、プラス荷
電を有する膜と、マイナス荷電を有する膜から選ばれる
2種以上の膜を用いることを特徴とする超純水を製造す
る方法。 (ただしプラス荷電膜とは、同一の条件における膜電位
でマイナス電位を示すものをいい、マイナス荷電膜とは
同一の条件における膜電位でプラス電位を示すものをい
い、ほぼ中性の膜とはその中間の値の膜をいう。)(2) In the method described in claim (1),
A method for producing ultrapure water, characterized in that at least two stages of separation membranes use two or more types of membranes selected from a substantially neutral membrane, a positively charged membrane, and a negatively charged membrane. (However, a positively charged membrane is one that exhibits a negative membrane potential under the same conditions, a negatively charged membrane is one that exhibits a positive membrane potential under the same conditions, and a nearly neutral membrane is one that exhibits a positive membrane potential under the same conditions.) (This refers to a film with a value between these values.)
造する装置において、第1段目原水ポンプ、第1段目分
離膜、第2段目原水ポンプ、第2段目分離膜を少なくと
も設け、かつその少なくとも2段の分離膜の膜電位が、
下記の測定条件において5ミリボルト以上異なった膜で
あることを特徴とする超純水の製造装置。 (ただし膜電位とは、25℃において、KCl水溶液の
濃度が、低濃度側の濃度10^−^3モル/l、高濃度
側の濃度4×10^−^3モル/lにおける膜電位をい
う。)(3) In an apparatus for producing ultrapure water with a TOC of 100 ppb or less from raw water, at least a first-stage raw water pump, a first-stage separation membrane, a second-stage raw water pump, and a second-stage separation membrane are provided, and The membrane potential of the at least two stages of separation membranes is
An apparatus for producing ultrapure water, characterized in that the membranes differ by 5 millivolts or more under the following measurement conditions. (However, membrane potential is the membrane potential at 25°C when the concentration of KCl aqueous solution is 10^-^3 mol/l on the low concentration side and 4 x 10^-^3 mol/l on the high concentration side. say.)
少なくとも2段の分離膜がほぼ中性の膜と、プラス荷電
を有する膜と、マイナス荷電を有する膜から選ばれる2
種以上の膜であることを特徴とする超純水の製造装置。 (ただしプラス荷電膜とは、同一の条件における膜電位
でマイナス電位を示すものをいい、マイナス荷電膜とは
同一の条件でプラス電位を示すものをいい、ほぼ中性の
膜とはその中間の値の膜をいう。)(4) In the device according to claim (3),
At least two stages of separation membranes are selected from a substantially neutral membrane, a positively charged membrane, and a negatively charged membrane.
An apparatus for producing ultrapure water characterized by a membrane that is more than 100% pure. (However, a positively charged membrane is one that exhibits a negative potential under the same conditions, a negatively charged membrane is one that exhibits a positive potential under the same conditions, and a nearly neutral membrane is one that exhibits a negative membrane potential under the same conditions.) It refers to the membrane of value.)
第1段目分離膜と第2段目原水ポンプとの間に中間槽を
設けたことを特徴とする超純水の製造装置。(5) In the device according to claim (3),
An apparatus for producing ultrapure water, characterized in that an intermediate tank is provided between a first-stage separation membrane and a second-stage raw water pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12692285A JPS61287492A (en) | 1985-06-11 | 1985-06-11 | Method and apparatus for producing ultrapure water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12692285A JPS61287492A (en) | 1985-06-11 | 1985-06-11 | Method and apparatus for producing ultrapure water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61287492A true JPS61287492A (en) | 1986-12-17 |
JPH0378156B2 JPH0378156B2 (en) | 1991-12-12 |
Family
ID=14947221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12692285A Granted JPS61287492A (en) | 1985-06-11 | 1985-06-11 | Method and apparatus for producing ultrapure water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61287492A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997034686A1 (en) * | 1996-03-18 | 1997-09-25 | Nitto Denko Corporation | Composite reverse osmosis membrane and method of reverse osmotic treatment of water using the same |
US6413425B1 (en) | 1997-04-10 | 2002-07-02 | Nitto Denko Corporation | Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same |
JP2011177675A (en) * | 2010-03-03 | 2011-09-15 | Miura Co Ltd | Pure water production system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS503968A (en) * | 1973-05-11 | 1975-01-16 | ||
JPS53132479A (en) * | 1977-04-25 | 1978-11-18 | Rohm & Haas | Coating membrane |
-
1985
- 1985-06-11 JP JP12692285A patent/JPS61287492A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS503968A (en) * | 1973-05-11 | 1975-01-16 | ||
JPS53132479A (en) * | 1977-04-25 | 1978-11-18 | Rohm & Haas | Coating membrane |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997034686A1 (en) * | 1996-03-18 | 1997-09-25 | Nitto Denko Corporation | Composite reverse osmosis membrane and method of reverse osmotic treatment of water using the same |
US6177011B1 (en) | 1996-03-18 | 2001-01-23 | Nitto Denko Corporation | Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same |
US6413425B1 (en) | 1997-04-10 | 2002-07-02 | Nitto Denko Corporation | Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same |
JP2011177675A (en) * | 2010-03-03 | 2011-09-15 | Miura Co Ltd | Pure water production system |
Also Published As
Publication number | Publication date |
---|---|
JPH0378156B2 (en) | 1991-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | Effective dye purification using tight ceramic ultrafiltration membrane | |
KR101398352B1 (en) | Thermal desalination | |
WO2002016269A2 (en) | Process and apparatus for blending product liquid from different thin film composite membranes | |
AU2001286770A1 (en) | Process and apparatus for blending product liquid from different TFC membranes | |
FR2668469A1 (en) | PROCESS FOR THE PURIFICATION OF WATER BY MEANS OF A COMBINATION OF SEPARATION UNITS WITH MEMBRANES, AND INSTALLATION FOR IMPLEMENTING SAME. | |
van Linden et al. | Separation of natural organic matter and sodium chloride for salt recovery purposes in zero liquid discharge | |
CN111661900A (en) | System and method for low-pressure high-power concentration of high-salinity wastewater | |
JPH0459878B2 (en) | ||
CN111867705A (en) | Solvent separation | |
CN103880041B (en) | A kind ofly combine the method that embrane method refines thiocyanate- | |
Volchek et al. | Selective removal of metal ions from ground water by polymeric binding and microfiltration | |
JPS61287492A (en) | Method and apparatus for producing ultrapure water | |
KR0162157B1 (en) | Process for treating chemical waste by reverse osmotic membrane system | |
DE2845797A1 (en) | ANISOTROPIC, SYNTHETIC MEMBRANE AND METHOD OF MANUFACTURING THEM | |
US7314606B2 (en) | Recovery of sodium thiocyanate from industrial process solution using nanofiltration technique | |
JPH1015356A (en) | Water treatment | |
Cséfalvay et al. | Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin | |
WO2014087991A1 (en) | Method and device for treating organic wastewater | |
CN217535536U (en) | Seawater desalination device | |
CN111115936A (en) | Membrane method treatment process of gallic acid crystallization mother liquor | |
JP2002336000A (en) | Purification apparatus for sugar liquid | |
JPH08318136A (en) | Seawater desalting and salt manufacturing method | |
JPH09225324A (en) | Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities | |
SU1125203A1 (en) | Method for preparing high purity water | |
JPH09155344A (en) | Method for desalination of brackish water and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |