JPH0677301A - Surface treatment apparatus - Google Patents

Surface treatment apparatus

Info

Publication number
JPH0677301A
JPH0677301A JP22836392A JP22836392A JPH0677301A JP H0677301 A JPH0677301 A JP H0677301A JP 22836392 A JP22836392 A JP 22836392A JP 22836392 A JP22836392 A JP 22836392A JP H0677301 A JPH0677301 A JP H0677301A
Authority
JP
Japan
Prior art keywords
film
substrate
thin film
surface treatment
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22836392A
Other languages
Japanese (ja)
Inventor
Kyoji Tokunaga
恭二 徳永
Hiroshi Yamamoto
浩 山本
Yoshihisa Miyazaki
善久 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22836392A priority Critical patent/JPH0677301A/en
Publication of JPH0677301A publication Critical patent/JPH0677301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To adequately control the film conditions such as thickness and quality even when performing surface treatment of formed film for multi-layer thin films having two or more layers. CONSTITUTION:In a thin film forming apparatus housing a substrate to be treated S and being equipped with a chamber 10 for forming thin films on the surface of a substrate S, a spectral ellipsometer is provided comprising a polarizer portion 24 for directing polarized light at the surface of a substrate S, an analyzer portion 26 for receiving light reflected from the surface of the substrate S, a monochrometor 28 for measuring light by wavelength received by the analyzer portion and a computer for signal-processing light measured by the monochrometor 28 and outputting the results to a controller 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面処理装置、特に半
導体基板上に薄膜を積層形成するに好適な表面処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment apparatus, and more particularly to a surface treatment apparatus suitable for laminating thin films on a semiconductor substrate.

【0002】[0002]

【従来の技術】一般に、薄膜の膜厚や屈折率の測定に
は、非破壊、非接触で測定ができる偏光解析法が利用さ
れている。
2. Description of the Related Art In general, an ellipsometry method capable of non-destructive and non-contact measurement is used for measuring the thickness and refractive index of a thin film.

【0003】従来、上記偏光解析法にはレーザ光等の単
一波長光を光源とする単一波長偏光解析装置(エリプソ
メータ)が用いられており、この装置を備えた表面処理
装置としては、例えば、特開平3−82017号公報
に、半導体基板上に形成される膜の厚さを測定するため
のエリプソメータと、前記エリプソメータからの信号を
処理するデータ処理部と、前記データ処理部からの信号
により温度及び反応ガス量をそれぞれ制御する温度・ガ
ス流量制御部とを含む半導体装置の製造装置が開示され
ている。
Conventionally, a single-wavelength polarization analyzer (ellipsometer) using a single-wavelength light such as a laser beam as a light source has been used in the above-mentioned polarization analysis method. As a surface treatment apparatus equipped with this device, for example, JP-A-3-82017 discloses an ellipsometer for measuring the thickness of a film formed on a semiconductor substrate, a data processing unit for processing a signal from the ellipsometer, and a signal from the data processing unit. An apparatus for manufacturing a semiconductor device is disclosed which includes a temperature / gas flow rate control unit that controls the temperature and the amount of reaction gas, respectively.

【0004】又、特開昭59−3925号公報には、一
定の偏光状態にある光を被エッチング試料に入射し、反
射して検光子を通過した光をフォトセルで受けて電気信
号に変換し、この電気信号に基づいて試料膜厚及びエッ
チング速度等を算出するドライエッチング方法が開示さ
れている。
Further, in Japanese Patent Application Laid-Open No. 59-3925, light having a certain polarization state is incident on a sample to be etched, reflected, and passed through an analyzer, received by a photocell and converted into an electric signal. However, a dry etching method is disclosed in which the sample film thickness, the etching rate, and the like are calculated based on this electric signal.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の表面処理装置では、例えば、薄膜形成の場合で
あれば、薄膜形成の制御をエリプソメータによって測定
される情報に基づいて行ってはいるが、測定光として単
一波長を使用しているため、基本的に測定対象が単層膜
に限定されるという問題があり、又、形成される薄膜の
膜質を屈折率の変化によって評価しているが、その化学
的な解析には、他の分析方法による測定結果との間で予
め相関をとっておかなければならないという問題があ
る。
However, in the above-described conventional surface treatment apparatus, for example, in the case of thin film formation, the thin film formation is controlled based on the information measured by the ellipsometer. Since a single wavelength is used as the measurement light, there is a problem that the measurement target is basically limited to a single layer film, and the film quality of the formed thin film is evaluated by the change in the refractive index. However, the chemical analysis has a problem that it must be correlated beforehand with the measurement results of other analysis methods.

【0006】本発明は、前記従来の本問題点を解決する
べくなされたもので、成膜等の表面処理を二層以上の多
層薄膜について行う場合であっても、膜厚・膜質等の膜
状態を適切に制御することができる表面処理装置を提供
することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and even when the surface treatment such as film formation is performed on a multilayer thin film having two or more layers, the film such as film thickness and film quality can be obtained. An object of the present invention is to provide a surface treatment device capable of appropriately controlling the state.

【0007】[0007]

【課題を解決するための手段】本発明は、被処理体を収
容し、該被処理体の表面を処理する処理容器を備えた表
面処理装置において、上記被処理体の表面に形成されて
いる薄膜を光学的に測定する分光偏光解析手段を備えた
構成とすることにより、前記課題を達成したものであ
る。
SUMMARY OF THE INVENTION The present invention is a surface treatment apparatus having a treatment container for accommodating an object to be treated and treating the surface of the object to be treated, which is formed on the surface of the object to be treated. The above-mentioned problems are achieved by using a configuration including a spectral ellipsometer for optically measuring a thin film.

【0008】本発明は、又、前記表面処理装置におい
て、分光偏光解析手段により、薄膜の膜厚、屈折率及び
構成成分の少なくとも1つを解析し、その解析結果に基
づいて、温度、原料ガス流量、原料ガス成分及び処理容
器内圧力の少なくとも1つの処理条件を調整するための
制御手段を備えた構成とすることにより、同様に前記課
題を達成したものである。
According to the present invention, in the surface treatment apparatus, at least one of the film thickness, the refractive index and the constituents of the thin film is analyzed by the spectroscopic polarization analysis means, and based on the analysis result, the temperature and the raw material gas are analyzed. The above-mentioned problem is similarly achieved by providing a control means for adjusting at least one processing condition of the flow rate, the raw material gas component, and the pressure inside the processing container.

【0009】[0009]

【作用】本発明においては、成膜の場合であれば、例え
ば図1に示した薄膜形成装置のように、薄膜の状態を解
析するための分光エリプソメータ(分光偏光解析手段)
を装備し、該分光エリプソメータにより薄膜の厚さや膜
質等の膜状態をその場解析できるようにしたので、単層
膜に限らず多層膜についても成膜中の膜厚を解析するこ
とが可能であり、同時に膜質も、その化学的組成をモデ
ルによって直接近似することにより測定することが可能
となる。
In the present invention, in the case of film formation, a spectroscopic ellipsometer (spectral polarization analysis means) for analyzing the state of a thin film, such as the thin film forming apparatus shown in FIG.
Since the spectroscopic ellipsometer enables the in-situ analysis of the film condition such as the thickness and film quality of the thin film, it is possible to analyze the film thickness during film formation not only for a single layer film but also for a multilayer film. At the same time, the film quality can be measured by directly approximating its chemical composition by a model.

【0010】又、分光偏光解析手段により、薄膜の膜
厚、屈折率及び構成成分の少なくとも1つを解析し、そ
の解析データに基づいて、温度、原料ガス流量、原料ガ
ス成分(原料ガスの流量比)及び処理容器内圧力の少な
くとも1つの処理条件を調整するための制御手段を設け
る場合には、上記分光偏光解析手段による解析データを
該制御手段にフィードバックすることにより、成膜条件
を適切に調整し、膜厚等の膜状態を高精度に制御するこ
とが可能となる。
Further, at least one of the film thickness, the refractive index and the constituents of the thin film is analyzed by the spectroscopic polarization analysis means, and based on the analysis data, the temperature, the raw material gas flow rate, the raw material gas component (the raw material gas flow rate) are analyzed. Ratio) and the pressure inside the processing container, if a control means for adjusting at least one processing condition is provided, the analysis data by the above-mentioned spectroscopic ellipsometry means is fed back to the control means so that the film forming condition is appropriately adjusted. It is possible to adjust and control the film state such as the film thickness with high accuracy.

【0011】[0011]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1は、本発明に係る一実施例の薄膜形成
装置(表面処理装置)の全体構成の概略を示す説明図で
ある。
FIG. 1 is an explanatory view showing the outline of the overall structure of a thin film forming apparatus (surface treatment apparatus) according to an embodiment of the present invention.

【0013】本実施例の薄膜形成装置は、被処理基板
(被処理体)Sを収容し、該被処理基板Sの表面に薄膜
を形成するためのチャンバ(処理容器)10を備えてい
る。
The thin film forming apparatus of the present embodiment is provided with a chamber (processing container) 10 for accommodating a substrate (object to be processed) S and forming a thin film on the surface of the substrate S to be processed.

【0014】上記チャンバ10に収容されている被処理
基板Sは、ヒータ12が内蔵されてたホルダ14に取付
られるようになっており、又、上記ヒータ12は温度コ
ントローラ16により制御され、上記被処理基板Sを所
望の温度に加熱制御できるようになっている。
The substrate S to be processed housed in the chamber 10 is attached to a holder 14 having a heater 12 built therein, and the heater 12 is controlled by a temperature controller 16 so that the substrate to be processed S can be processed. The processing substrate S can be heated and controlled to a desired temperature.

【0015】又、上記チャンバ10には圧力コントロー
ラ18が連結され、該コントローラ18によりチャンバ
10内を所望の減圧状態に設定できるようになっている
と共に、上記被処理基板S上に成膜するための原料ガス
が複数のガスボンベBからマスフローコントローラ20
を介して該チャンバ10内に供給されるようになってい
る。
A pressure controller 18 is connected to the chamber 10 so that the chamber 18 can be set to a desired reduced pressure state by the controller 18 and a film is formed on the substrate S to be processed. The raw material gas from a plurality of gas cylinders B to the mass flow controller 20
And is supplied into the chamber 10 via.

【0016】又、上記温度コントローラ16、圧力コン
トローラ18及びマスフローコントローラ20はいずれ
も制御部22に接続され、該制御部22からの制御信号
によりそれぞれ適切に制御されるようになっている。
The temperature controller 16, the pressure controller 18, and the mass flow controller 20 are all connected to a control unit 22 and are appropriately controlled by control signals from the control unit 22.

【0017】又、本実施例の薄膜形成装置は、被処理基
板Sの表面に形成される薄膜を光学的に測定するための
分光エリプソメータを装備している。この分光エリプソ
メータは、上記被処理基板Sの表面に偏光を照射するた
めの偏光子部24、該被処理基板Sの表面で反射された
偏光を受光する検光子部26と、該検光子部26で受光
された波長毎の光を測定するモノクロメータ28と、該
モノクロメータ28で測定した波長毎の光を信号処理
し、その結果を制御信号として前記制御部22に出力す
る計算機30とで構成されている。
The thin film forming apparatus of this embodiment is equipped with a spectroscopic ellipsometer for optically measuring the thin film formed on the surface of the substrate S to be processed. The spectroscopic ellipsometer includes a polarizer section 24 for irradiating the surface of the substrate S to be processed with polarized light, an analyzer section 26 for receiving the polarized light reflected by the surface of the substrate S to be processed, and the analyzer section 26. It is composed of a monochromator 28 for measuring the light of each wavelength received by and a computer 30 for signal-processing the light of each wavelength measured by the monochromator 28 and outputting the result as a control signal to the control unit 22. Has been done.

【0018】上記薄膜形成装置においては、分光エリプ
ソメータによる測定結果、即ち上記計算機30の出力に
連動して処理条件が制御されるようになっているので、
例えばCVD法による成膜の場合であれば、通常の成膜
処理を実行すると共に、上記分光エリプソメータにより
成長しつつある薄膜の厚さや膜質等を測定することによ
り、該測定データに基づいて上記制御部22により前記
温度コントローラ16、圧力コントローラ18又マスフ
ローコントローラ20を制御することができる。
In the thin film forming apparatus, the processing conditions are controlled in association with the measurement result by the spectroscopic ellipsometer, that is, the output of the computer 30.
For example, in the case of film formation by the CVD method, a normal film formation process is executed, and the thickness and film quality of the growing thin film are measured by the spectroscopic ellipsometer, so that the above control is performed based on the measured data. The temperature controller 16, the pressure controller 18, and the mass flow controller 20 can be controlled by the section 22.

【0019】本実施例においては、多波長で偏光解析を
行う分光エリプソ法を採用しているので、従来とは異な
り光源にレーザ光ではなく特定波長領域を持つランプ光
を使用し、その光を分光器(図示せず)によって各波長
に分光し、各波長光に対する測定を行うことにより、そ
の変化(偏光変化)をスペクトルカーブとして得ること
ができ、その解析をシミュレーションモデルから計算さ
れるカーブとのフィッティングにより行う。この分光偏
光解析法については後に詳述する。
In this embodiment, since the spectroscopic ellipso method for performing polarization analysis at multiple wavelengths is adopted, lamp light having a specific wavelength region is used as the light source instead of the laser light and the light is different from the conventional light source. By spectrally splitting into each wavelength with a spectroscope (not shown) and measuring each wavelength light, the change (polarization change) can be obtained as a spectrum curve, and the analysis is performed with a curve calculated from a simulation model. Fitting. This spectroscopic ellipsometry will be described later in detail.

【0020】この方法によれば、各層を構成している物
質の光学特性の変化を測定波長域で測定することによ
り、単層の膜に限らず多層の膜についても、成膜中に非
破壊、非接触でその構造及び膜質の解析を行うことがで
きる。従って、その解析結果を用いてリアルタイムで成
膜条件を制御することが可能となる。
According to this method, the change in the optical characteristics of the substance forming each layer is measured in the measurement wavelength range, so that not only a single-layer film but also a multi-layer film is non-destructive during film formation. It is possible to analyze its structure and film quality without contact. Therefore, it becomes possible to control the film forming conditions in real time using the analysis result.

【0021】図2は、被処理基板Sとしてシリコンウエ
ハを用いると共に、原料ガスとしてSi H4 、N2 、N
2 Oを用いてプラズマCVD法によって上記シリコンウ
エハ上に酸化膜からなる半導体装置の絶縁層を形成した
場合の、N2 O/Si H4 ガス流量比に対する膜の屈折
率の変化を示した線図である。この屈折率の変化は、酸
化膜中に存在するSi −N結合(窒化物)によるもの
で、この結合は絶縁膜の誘電率及び絶縁破壊特性に影響
するため精度良くその生成率を制御する必要がある。
In FIG. 2, a silicon wafer is used as the substrate S to be processed, and Si H 4 , N 2 and N are used as raw material gases.
A line showing the change in the refractive index of the film with respect to the N 2 O / Si H 4 gas flow rate ratio when an insulating layer of a semiconductor device made of an oxide film is formed on the silicon wafer by plasma CVD using 2 O. It is a figure. This change in the refractive index is due to the Si-N bond (nitride) existing in the oxide film. Since this bond affects the dielectric constant and dielectric breakdown characteristics of the insulating film, it is necessary to control the generation rate with high accuracy. There is.

【0022】本実施例によれば、分光エリプソ法を利用
することにより、酸化膜に含有されてる窒化物(Si 3
4 )の量と屈折率の関係を直接求めることができる。
その結果の一例を図3に示した。
According to the present embodiment, by utilizing the spectroscopic ellipso method, the nitride (Si 3
The relationship between the amount of N 4 ) and the refractive index can be directly obtained.
An example of the result is shown in FIG.

【0023】又、同時に、分光エリプソ法による解析デ
ータを利用して、N2 O/Si H4ガス流量比を10〜
60で制御したところ、図4に示すように酸化物中の窒
化物の量を5〜25%の範囲で調整することができた。
At the same time, the N 2 O / Si H 4 gas flow ratio is set to 10 to 10 by utilizing the analysis data by the spectroscopic ellipsometry.
When controlled by 60, the amount of nitride in the oxide could be adjusted within the range of 5 to 25% as shown in FIG.

【0024】次に、前記分光偏光解析法を、次の表1に
示した、シリコン基板上にSi 3 4 を17%含む厚さ
3040Åのシリコン酸化膜をプラズマCVDで形成
し、更にその上にスピンコート法でボイドを7%含む厚
さ3450Åのシリコン酸化膜を積層した2層構造の酸
化膜を解析する場合を具体例として説明する。
Next, the spectroscopic ellipsometry is shown in Table 1 below.
Shown on the silicon substrate Si3N FourIncluding 17%
3040Å silicon oxide film is formed by plasma CVD
The thickness containing 7% voids by spin coating.
Acid with a two-layer structure in which a silicon oxide film of 3450Å is laminated
A case of analyzing a chemical film will be described as a specific example.

【0025】[0025]

【表1】 [Table 1]

【0026】この分光偏光解析法は、原理的には従来の
偏光解析法と同様に被測定物から反射してきた偏光の変
化の状態(強度変化tan ψ、位相差cos Δ)を測定する
ことにより解析を行う方法である。これを、例えば図5
(A)、(B)に示したような、ある特定波長領域(図
には0.25〜0.85μm の範囲が示してある)で波
長に対するスペクトルカーブとして測定する。同図には
この実測によるスペクトルカーブを実線で示してある。
解析は、上記表1のようなシミュレーションモデルを組
み、その物質の光学定数を基に描かれるカーブを求め、
このカーブと実際に測定されたスペクトルカーブとのフ
ィッティングをとることにより行う。図5には、上記シ
ミュレーションモデルが描くスペクトルカーブを破線で
示してあるが、この破線のスペクトルカーブは上記実測
スペクトルカーブと殆んど一致している。従って、上記
図5から、実測したスペクトルカーブに基づいて、2層
構造の薄膜について膜厚と構成成分を解析することがで
きる。
In principle, this spectroscopic ellipsometry method is similar to the conventional ellipsometry method, in that the state of change in the polarization reflected from the object to be measured (intensity change tan ψ, phase difference cos Δ) is measured. This is a method of analysis. This is shown in FIG.
As shown in (A) and (B), it is measured as a spectrum curve with respect to wavelength in a certain specific wavelength region (the range of 0.25 to 0.85 μm is shown in the figure). In the same figure, the spectrum curve by this measurement is shown by the solid line.
For the analysis, a simulation model as shown in Table 1 above was set up, and a curve drawn based on the optical constants of the substance was obtained.
This is done by fitting this curve with the actually measured spectrum curve. In FIG. 5, the spectrum curve drawn by the simulation model is shown by a broken line, but the spectrum curve of this broken line almost coincides with the measured spectrum curve. Therefore, from FIG. 5 described above, the film thickness and the constituent components of the two-layer thin film can be analyzed based on the measured spectrum curve.

【0027】この方法を利用することによって、これま
で不可能であった多相膜の解析と膜の分析とを同時に行
うことができる。
By using this method, it is possible to simultaneously perform the analysis of the multiphase film and the analysis of the film, which has been impossible so far.

【0028】以上詳述した如く、本実施例によれば、薄
膜成長過程に分光エリプソ法を取入れることにより、膜
厚、膜質、特に膜を構成する化学組成をその場解析する
と共に、そのデータを元にして膜厚、膜質を制御するこ
とが可能となる。従って、特にプラズマ酸化膜中に存在
する窒化物成分を調整することにより、目的とする特性
を有する絶縁膜を安定して供給することが可能となる。
As described in detail above, according to the present embodiment, by incorporating the spectroscopic ellipso method in the thin film growth process, the film thickness, film quality, especially the chemical composition of the film is analyzed in-situ, and the data thereof is obtained. Based on the above, it becomes possible to control the film thickness and film quality. Therefore, it is possible to stably supply an insulating film having desired characteristics by adjusting the nitride component existing in the plasma oxide film.

【0029】以上本発明について具体的に説明したが、
本発明は前記実施例に示したものに限られるものではな
く、その要旨を逸脱しない範囲で種々変更可能である。
The present invention has been specifically described above.
The present invention is not limited to the one shown in the above embodiment, and various modifications can be made without departing from the scope of the invention.

【0030】例えば、制御対象は前記原料ガスの流量比
に限られるものではなく、成膜温度や圧力等の2種類以
上のパラメータについてその場解析を行って調整するよ
うにしてもよく、この場合には、膜質、成長速度をコン
トロールしながら、所望の特性を備えた薄膜を形成する
ことができる。
For example, the control target is not limited to the flow rate ratio of the raw material gas, and in-situ analysis may be performed for two or more kinds of parameters such as film forming temperature and pressure. On the other hand, it is possible to form a thin film having desired characteristics while controlling the film quality and the growth rate.

【0031】又、本発明に係る表面処理装置はプラズマ
CVD装置に限られるものではなく、その他のCVD装
置、PVD装置、スパッタリング装置、エッチング装置
等の薄膜形成や薄膜加工等の表面処理に適用される装置
であってもよい。
The surface treatment apparatus according to the present invention is not limited to the plasma CVD apparatus, but is applied to the surface treatment such as thin film formation and thin film processing of other CVD apparatus, PVD apparatus, sputtering apparatus, etching apparatus and the like. May be a device.

【0032】[0032]

【発明の効果】以上説明したとおり、本発明によれば、
成膜等の表面処理を二層以上の多層薄膜について行う場
合でも、膜厚、膜質等の膜状態を適切に制御することが
できる。
As described above, according to the present invention,
Even when the surface treatment such as film formation is performed on a multilayer thin film having two or more layers, the film state such as film thickness and film quality can be appropriately controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る薄膜形成装置の全体構成を示す説
明図
FIG. 1 is an explanatory diagram showing an overall configuration of a thin film forming apparatus according to the present invention.

【図2】原料ガス流量比と薄膜の屈折率との関係を示す
線図
FIG. 2 is a diagram showing a relationship between a source gas flow rate ratio and a refractive index of a thin film.

【図3】Si 3 4 混入量と薄膜の屈折率との関係を示
す線図
FIG. 3 is a diagram showing the relationship between the amount of Si 3 N 4 mixed and the refractive index of the thin film.

【図4】原料ガス流量比と成膜中窒化物の混入量の関係
を示す線図
FIG. 4 is a graph showing the relationship between the source gas flow rate ratio and the amount of nitride mixed during film formation.

【図5】実測スペクトルとシミュレーションモデルによ
るスペクトルとを示す線図
FIG. 5 is a diagram showing an actually measured spectrum and a spectrum obtained by a simulation model.

【符号の説明】[Explanation of symbols]

10…チャンバ 12…ヒータ 14…ホルダ 16…温度コントローラ 18…圧力コントローラ 20…マスフローコントローラ 22…制御部 24…偏光子部 26…検光子部 28…モノクロメータ 30…計算機 DESCRIPTION OF SYMBOLS 10 ... Chamber 12 ... Heater 14 ... Holder 16 ... Temperature controller 18 ... Pressure controller 20 ... Mass flow controller 22 ... Control part 24 ... Polarizer part 26 ... Analyzer part 28 ... Monochromator 30 ... Calculator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被処理体を収容し、該被処理体の表面を処
理する処理容器を備えた表面処理装置において、 上記被処理体の表面に形成されている薄膜を光学的に測
定する分光偏光解析手段を備えていることを特徴とする
表面処理装置。
1. A surface treatment apparatus comprising a processing container for accommodating an object to be processed and for treating the surface of the object to be treated, which is a spectroscopic method for optically measuring a thin film formed on the surface of the object to be treated. A surface treatment apparatus comprising polarization analysis means.
【請求項2】請求項1において、 分光偏光解析手段により、薄膜の膜厚、屈折率及び構成
成分の少なくとも1つを解析し、その解析結果に基づい
て、温度、原料ガス流量、原料ガス成分及び処理容器内
圧力の少なくとも1つの処理条件を調整するための制御
手段を備えていることを特徴とする表面処理装置。
2. The method according to claim 1, wherein at least one of the film thickness, the refractive index, and the constituents of the thin film is analyzed by the spectroscopic ellipsometer, and the temperature, the raw material gas flow rate, and the raw material gas component are based on the analysis result. And a control means for adjusting at least one processing condition of the pressure inside the processing container.
JP22836392A 1992-08-27 1992-08-27 Surface treatment apparatus Pending JPH0677301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22836392A JPH0677301A (en) 1992-08-27 1992-08-27 Surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22836392A JPH0677301A (en) 1992-08-27 1992-08-27 Surface treatment apparatus

Publications (1)

Publication Number Publication Date
JPH0677301A true JPH0677301A (en) 1994-03-18

Family

ID=16875290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22836392A Pending JPH0677301A (en) 1992-08-27 1992-08-27 Surface treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0677301A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352127B1 (en) * 2000-04-11 2002-09-12 김상열 rotating analyzer type in situ ellipsometer
KR100381538B1 (en) * 2000-07-10 2003-05-22 학교법인 고황재단 film thickness and composition control method using surface photoabsorption
JP2004510152A (en) * 2000-09-27 2004-04-02 ケーエルエー−テンカー コーポレイション Improved system and application of scatterometer measurements
KR20040041311A (en) * 2002-11-11 2004-05-17 삼성전자주식회사 method and apparatus for analyzing a sample having an organic coating layer
US6994750B2 (en) 2001-09-10 2006-02-07 Matsushita Electric Industrial Co., Ltd. Film evaluating method, temperature measuring method, and semiconductor device manufacturing method
JP2008223140A (en) * 2007-03-13 2008-09-25 Jds Uniphase Corp Method and sputter-deposition system for depositing layer composed of mixture of material and having predetermined refractive index
JP2008541120A (en) * 2005-05-18 2008-11-20 コミサリア、ア、レネルジ、アトミク Method for measuring porosity by ellipsometry and device for carrying out one such method
JP2011133492A (en) * 2004-05-14 2011-07-07 Kla-Tencor Corp System and method for measuring specimen
US8327796B2 (en) 2008-06-11 2012-12-11 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
KR20180109288A (en) * 2017-03-27 2018-10-08 세메스 주식회사 Apparatus and method for treating substrate
WO2018186378A1 (en) * 2017-04-03 2018-10-11 三菱重工業株式会社 Method for evaluating structure used for nuclide transmutation reaction, evaluating device, structure manufacturing device provided with same, and nuclide transmutation system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352127B1 (en) * 2000-04-11 2002-09-12 김상열 rotating analyzer type in situ ellipsometer
KR100381538B1 (en) * 2000-07-10 2003-05-22 학교법인 고황재단 film thickness and composition control method using surface photoabsorption
JP2004510152A (en) * 2000-09-27 2004-04-02 ケーエルエー−テンカー コーポレイション Improved system and application of scatterometer measurements
JP2012185164A (en) * 2000-09-27 2012-09-27 Kla-Encor Corp Improved system for scatterometric measurements and applications
US6994750B2 (en) 2001-09-10 2006-02-07 Matsushita Electric Industrial Co., Ltd. Film evaluating method, temperature measuring method, and semiconductor device manufacturing method
KR20040041311A (en) * 2002-11-11 2004-05-17 삼성전자주식회사 method and apparatus for analyzing a sample having an organic coating layer
JP2011133492A (en) * 2004-05-14 2011-07-07 Kla-Tencor Corp System and method for measuring specimen
JP2008541120A (en) * 2005-05-18 2008-11-20 コミサリア、ア、レネルジ、アトミク Method for measuring porosity by ellipsometry and device for carrying out one such method
JP2008223140A (en) * 2007-03-13 2008-09-25 Jds Uniphase Corp Method and sputter-deposition system for depositing layer composed of mixture of material and having predetermined refractive index
US8327796B2 (en) 2008-06-11 2012-12-11 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
KR20180109288A (en) * 2017-03-27 2018-10-08 세메스 주식회사 Apparatus and method for treating substrate
WO2018186378A1 (en) * 2017-04-03 2018-10-11 三菱重工業株式会社 Method for evaluating structure used for nuclide transmutation reaction, evaluating device, structure manufacturing device provided with same, and nuclide transmutation system
US11630055B2 (en) 2017-04-03 2023-04-18 Mitsubishi Heavy Industries, Ltd. Method for evaluating structure used for nuclide transmutation reaction, evaluation device, structure manufacturing device provided with same, and nuclide transmutation system

Similar Documents

Publication Publication Date Title
US7253887B2 (en) Metrology system with spectroscopic ellipsometer and photoacoustic measurements
KR100694772B1 (en) Method and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate
US5313044A (en) Method and apparatus for real-time wafer temperature and thin film growth measurement and control in a lamp-heated rapid thermal processor
US5900633A (en) Spectrometric method for analysis of film thickness and composition on a patterned sample
US20030086097A1 (en) Method and system for thin film characterization
JPH0677301A (en) Surface treatment apparatus
Benson et al. In-situ spectroscopic reflectometry for polycrystalline silicon thin film etch rate determination during reactive ion etchinc
Nazarov et al. Parallel spectroscopic ellipsometry for ultra-fast thin film characterization
US6781692B1 (en) Method of monitoring the fabrication of thin film layers forming a DWDM filter
JPH0915140A (en) Elliptic polarization measuring method, elliptic polarimeterand device for controlling formation of layer using method and device thereof
KR100708585B1 (en) Method for processing silicon workpieces using hybrid optical thermometer system
JP3550315B2 (en) Equipment for processing silicon workpieces
US20050117165A1 (en) Semiconductor etching process control
EP0652304A1 (en) Film forming method and apparatus for carrying out the same
McGahan et al. Combined spectroscopic ellipsometry and reflectometry for advanced semiconductor fabrication metrology
JP2001165628A (en) Film thickness measuring device
TW517306B (en) Method and device to determine the end point of semiconductor device processing and the processing method and device of the processed material using the method
Kechagias et al. ‘Real-time’multiwavelength ellipsometry diagnostics for monitoring dry etching of Si and TiNx deposition
CN113466141B (en) Method for nondestructive testing of metal substrate oxidation denaturation by using elliptical polarization spectrometer
JP2002518665A (en) Ellipsometry and controller for manufacturing thin-layer components
Powell et al. Characterization of copper oxidation and reduction using spectroscopic ellipsometry
JPH1140635A (en) Method for evaluating layer thickness of semiconductor multilayered film
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
Aspnes et al. Real-Time Diagnosis of Etching and Deposition Processes by Spectroscopic Ellipsometry
Pickering et al. Instrumental and computational advances for real-time process control using spectroscopic ellipsometry