JPH0677039A - Method of manufacturing mn-zn ferrite sintered body - Google Patents

Method of manufacturing mn-zn ferrite sintered body

Info

Publication number
JPH0677039A
JPH0677039A JP4229854A JP22985492A JPH0677039A JP H0677039 A JPH0677039 A JP H0677039A JP 4229854 A JP4229854 A JP 4229854A JP 22985492 A JP22985492 A JP 22985492A JP H0677039 A JPH0677039 A JP H0677039A
Authority
JP
Japan
Prior art keywords
sintered body
molded
metallic mold
mold
hydrostatically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4229854A
Other languages
Japanese (ja)
Inventor
Toru Matsunaga
融 松永
Norio Sasaki
教雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4229854A priority Critical patent/JPH0677039A/en
Publication of JPH0677039A publication Critical patent/JPH0677039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a large sized and high density sintered bodies by a method wherein Mn-Zn ferrite raw material mixed particles are filled up and molded in a metallic mold internally lined with rubber while vertically vibrating the metallic mold and after being cold hydrostatically pressurized to be sintered at atmospheric pressure for performing hot hydrostatically pressuring step. CONSTITUTION:Mn-Zn ferrite raw material mixed particles comprising the mixed particles of Fe2O3, MnO and ZnO are thrown into a metallic mold internally1ined with rubber to be filled up and molded while vertically vibrating the metallic mold. Next, the molded bodies after being cold hydrostatically pressurized are to be sintered at atmospheric pressure for performing hot hydrostatically pressurizing step. Through these procedures, even large sized high density sintered bodies developing the least cracking defect can be made of previously processed material. Resultantly, the larger sized in higher density sintered bodies can be manufactured without decreasing the yield due to the development of cracking defect, etc., when the former sintered bodies are hot hydrostatically pressurized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度大型のMn−Z
nフェライト焼結体の作製方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a high density and large size Mn-Z.
The present invention relates to a method for producing an n-ferrite sintered body.

【0002】[0002]

【従来の技術】従来、Mn−Znフェライト焼結体を作
製する方法として、大きく乾式法と湿式法の2種類があ
り、成形する粉末の形態もさまざまであった。この中
で、仮焼成後粉砕した粉末を造粒し、直接金型に充填・
加圧して成形する方法が広く用いられている。この方法
の場合、仮焼成原料粉を用いて成形しているので、2次
焼成の際の膨張・収縮が小さく、寸法精度の高い焼結体
が得られる。また、熱間静水圧プレス(HIP)等を応
用すれば、密度98%以上の高密度が実現できる。
2. Description of the Related Art Conventionally, there are roughly two types of methods for producing a Mn-Zn ferrite sintered body, a dry method and a wet method, and the form of powder to be molded has been various. In this, the powder that has been calcinated and then pulverized is granulated and directly filled in the mold.
A method of pressurizing and molding is widely used. In the case of this method, since the raw material powder is used for calcination, expansion and contraction during secondary firing are small, and a sintered body with high dimensional accuracy can be obtained. If a hot isostatic press (HIP) is applied, a high density of 98% or more can be realized.

【0003】[0003]

【発明が解決しようとする課題】ところが、仮焼成後粉
砕した粉末は流動性が非常に悪いため、通常、PVA溶
液等有機化合物バインダーを混合して成形性の改善を図
かる必要があった。このため、2次焼成時に上記有機化
合物を蒸発させる(脱脂)操作が必要となり、この操作
をうまく行わないと、焼結体内にカーボン成分が残った
り空孔が発生するという欠点があった。特に、焼結体を
大型化しようとした際、この傾向は顕著になり、均質で
高密度の焼結体を得ることは困難であった。
However, since the powder pulverized after calcination has a very poor fluidity, it is usually necessary to mix an organic compound binder such as a PVA solution to improve the moldability. Therefore, an operation (degreasing) of evaporating the organic compound is required at the time of the secondary firing, and if this operation is not performed successfully, there is a drawback that carbon components remain in the sintered body or voids are generated. In particular, when an attempt was made to increase the size of the sintered body, this tendency became remarkable, and it was difficult to obtain a homogeneous and high-density sintered body.

【0004】また、上述の仮焼成後粉砕した粉末を直接
金型に充填・加圧して成形する場合、どうしても加圧面
内の圧力分布に差がでてしまい、成形体内にクラックが
発生したり、密度が不均一になってしまうという欠点が
あった。特に、金型の形状が大きくなった場合にこの傾
向は顕著となるため、大型の成形体を作製することは難
しかった。
Further, when the powder crushed after the above-mentioned calcination is directly filled and pressed in a mold for molding, a difference in pressure distribution in the pressing surface is inevitable, and cracks occur in the molded body. There is a drawback that the density becomes non-uniform. In particular, this tendency becomes remarkable when the shape of the mold becomes large, so that it is difficult to produce a large-sized molded body.

【0005】さらに、これら上述の仮焼成後粉砕した粉
末による焼結体を熱間静水圧プレス(HIP)処理した
場合、焼結体の形状が大きくなるにつれてHIPの歩留
りが低下する傾向があった。特に、歩留り低下となる主
要な要因がヒビ・割れの発生であり、プレス後数時間後
に突然割れてしまう場合などは圧力容器の破裂と同じか
たちで危険であった。そこで本発明は、上述の実情に鑑
みて提案されたものであって、Mn−Znフェライト焼
結体の作製において、大型でかつ高密度の焼結体の作製
方法の提供を目的とする。
Furthermore, when a sintered body made of the powder pulverized after the above-mentioned calcination is subjected to hot isostatic pressing (HIP), the yield of HIP tends to decrease as the shape of the sintered body increases. . In particular, cracks and cracks are the main factors that reduce the yield, and if the cracks suddenly occur a few hours after pressing, it was as dangerous as the rupture of the pressure vessel. Therefore, the present invention has been proposed in view of the above circumstances, and an object thereof is to provide a method for producing a large-sized and high-density sintered body in the production of a Mn-Zn ferrite sintered body.

【0006】[0006]

【課題を解決するための手段】本発明は、上述の如き目
的を達成するために、Fe2 3 とMnOとZnOの混
合粉末からなるMn−Znフェライト原料混合粉末を、
内部にラバーを密着させた金型内に投入して上記金型を
上下振動させながら充填・成形し、冷間静水圧プレスし
た後、該成形体を常圧下で焼結し、適当な厚みに加工し
た後、これを熱間静水圧プレスすることを特徴としてい
る。
In order to achieve the above object, the present invention provides a Mn-Zn ferrite raw material mixed powder comprising a mixed powder of Fe 2 O 3 , MnO and ZnO,
It is put into a mold with rubber adhered inside, filled and molded while vertically vibrating the mold, cold isostatic pressing is performed, and then the molded body is sintered under normal pressure to obtain an appropriate thickness. After processing, it is characterized by hot isostatic pressing.

【0007】[0007]

【作用】すなわち、前工程として、流動性の優れたFe
2 3 とMnOとZnOの混合粉末を、直接内部にラバ
ーを密着させた金型内に投入して充填・成形し、冷間静
水圧プレスした後に常圧下で焼結している。このことに
より、前処理品で大型でもヒビ・割れや欠陥の少ない高
密度の焼結体が得られ、その結果、これを熱間静水圧プ
レスした際、ヒビ・割れ等の発生のために歩留りを低下
させることなく、更に高密度の大型焼結体が得られるの
である。
Function: That is, as a pre-process, Fe having excellent fluidity is used.
A mixed powder of 2 O 3 , MnO, and ZnO is directly charged into a mold having a rubber adhered to the inside thereof to be filled / molded, cold isostatically pressed, and then sintered under normal pressure. As a result, it is possible to obtain a high-density sintered body that is a pretreatment product and has few cracks / cracks or defects even if it is large, and as a result, when this is hot isostatically pressed, the yield will be increased due to cracks / cracks. It is possible to obtain a large-sized sintered body of higher density without lowering the temperature.

【0008】[0008]

【実施例】以下、本発明によるMn−Znフェライト焼
結体の作製方法について、その実施例を示してその効果
を説明する。まず、MnO 22mol%、Fe2 3
55mol%、ZnO 23mol%となるように原料
を秤量し、ボールミル中にて平均粒径0.5〜0.6μ
m、2μm以下の粒度となるように粉砕した。そして、
該粉砕粉を乾燥器で乾燥し、その水分量が0.2〜0.
4%となるように設定した。
The method of producing a Mn-Zn ferrite sintered body according to the present invention will be described below with reference to its examples. First, MnO 22 mol%, Fe 2 O 3
The raw materials were weighed so that the mol content was 55 mol% and ZnO was 23 mol%, and the average particle diameter was 0.5 to 0.6 μm in a ball mill.
Milled to a particle size of 2 μm or less. And
The crushed powder is dried with a drier and the water content is 0.2 to 0.
It was set to be 4%.

【0009】次に、該乾燥粉末(原料混合粉末)を内部
にラバーを密着させた内径110mm、深さ580mm
の円柱状の金型に2kg投入し、2分間上記金型を上下
振動させて充填・成形した。続いて、成形体をラバーご
と金型からとりだし、98MPaで冷間静水圧プレスを
行った後、N2 雰囲気で昇温し1350℃大気中で焼結
した。さらに、室温まで徐冷した後に取りだし、円柱状
の焼結体を直径70mm、厚み8mm、重さ200gの
スライスに切断し、そのまま1250℃、98MPaで
熱間静水圧プレスした。
Next, an inner diameter of 110 mm and a depth of 580 mm in which the dry powder (raw material mixed powder) is closely adhered to rubber
2 kg was put into the columnar mold, and the mold was vertically vibrated for 2 minutes to fill and mold. Subsequently, the molded body together with the rubber was taken out from the mold, and after cold isostatic pressing was performed at 98 MPa, the temperature was raised in a N 2 atmosphere and sintered at 1350 ° C. in the atmosphere. Furthermore, after slowly cooling to room temperature, it was taken out, the cylindrical sintered body was cut into slices having a diameter of 70 mm, a thickness of 8 mm, and a weight of 200 g, and hot isostatic pressing was performed at 1250 ° C. and 98 MPa.

【0010】こうして得られた焼結体を鏡面研磨し、空
孔を観察した。更に、同一組成比のMn−Znフェライ
ト単結晶の密度を1として、該焼結体の密度を調べた。
また、比較のために、同一組成比の原料混合粉末を仮焼
成し、PVA溶液を用いて48メッシュ以下にふるいを
通し造粒したもの220gを内径70mmの金型で機械
プレスし、脱脂処理後、本発明のものと同条件で焼成
し、同様に1250℃、98MPaで熱間静水圧プレス
した。これら本発明及び比較例で得られたMn−Znフ
ェライト焼結体について、相対密度、1μm以上の残存
空孔、ヒビ・割れの発生率を比較したものを表1に示
す。
The sintered body thus obtained was mirror-polished and the pores were observed. Further, the density of the sintered body was examined with the density of Mn-Zn ferrite single crystal having the same composition ratio as 1.
In addition, for comparison, a raw material mixed powder having the same composition ratio was pre-baked and granulated through a sieve of 48 mesh or less using a PVA solution, and 220 g of the granulated material was mechanically pressed with a mold having an inner diameter of 70 mm and degreased Then, it was fired under the same conditions as those of the present invention, and was similarly hot isostatically pressed at 1250 ° C. and 98 MPa. Table 1 shows a comparison between the Mn-Zn ferrite sintered bodies obtained in the present invention and the comparative examples in terms of relative density, residual pores of 1 μm or more, and cracking / cracking incidence.

【0011】[0011]

【表1】 [Table 1]

【0012】表1から明らかなように、本発明による方
法で得られるMn−Znフェライト焼結体は、高密度で
巨大空孔が少なく、ヒビ・割れの発生率も小さい。
As is clear from Table 1, the Mn-Zn ferrite sintered body obtained by the method according to the present invention has a high density, a small number of huge pores, and a low cracking / cracking rate.

【0013】[0013]

【発明の効果】以上述べたように、本発明の作製方法に
よれば、Mn−Znフェライト原料混合粉末を、その良
好な流動性を生かして、内部にラバーを密着させた金型
内で上下振動させながら充填・成形し、冷間静水圧プレ
スした後に、該成形体を常圧下で焼結し、熱間静水圧プ
レス(HIP)している。この結果、仮焼成や脱脂等の
後工程を必要とせず、また、HIP処理で歩留りを低下
させることなく、高密度で均質な大型のMn−Znフェ
ライト焼結体を作製することが可能となっている。
As described above, according to the manufacturing method of the present invention, the Mn-Zn ferrite raw material mixed powder is used in the mold in which the rubber is adhered to the upper and lower sides by utilizing its good fluidity. After filling and molding while vibrating and cold isostatic pressing, the compact is sintered under normal pressure and hot isostatic pressing (HIP). As a result, it is possible to manufacture a large-sized and uniform large-sized Mn-Zn ferrite sintered body without requiring a post-process such as calcination and degreasing, and without lowering the yield by HIP treatment. ing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Fe2 3 とMnOとZnOの混合粉末
からなるMn−Znフェライト原料混合粉末を、内部に
ラバーを密着させた金型内に投入して上記金型を上下振
動させながら充填・成形し、冷間静水圧プレスした後
に、該成形体を常圧下で焼結したものを、熱間静水圧プ
レスを行うことを特徴とするMn−Znフェライト焼結
体の作製方法。
1. A Mn—Zn ferrite raw material mixed powder, which is a mixed powder of Fe 2 O 3 , MnO and ZnO, is put into a mold having a rubber adhered inside, and the mold is vertically vibrated and filled. A method for producing a Mn-Zn ferrite sintered body, which comprises performing hot isostatic pressing on a compact that has been molded and subjected to cold isostatic pressing and then sintered under normal pressure.
JP4229854A 1992-08-28 1992-08-28 Method of manufacturing mn-zn ferrite sintered body Pending JPH0677039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229854A JPH0677039A (en) 1992-08-28 1992-08-28 Method of manufacturing mn-zn ferrite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229854A JPH0677039A (en) 1992-08-28 1992-08-28 Method of manufacturing mn-zn ferrite sintered body

Publications (1)

Publication Number Publication Date
JPH0677039A true JPH0677039A (en) 1994-03-18

Family

ID=16898731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229854A Pending JPH0677039A (en) 1992-08-28 1992-08-28 Method of manufacturing mn-zn ferrite sintered body

Country Status (1)

Country Link
JP (1) JPH0677039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036414A (en) * 1998-05-12 2000-02-02 Murata Mfg Co Ltd Inductor and manufacture thereof
CN112250438A (en) * 2020-10-16 2021-01-22 江西德锆美瓷有限公司 Preparation method of high-uniformity zirconium oxide ceramic block for full-ceramic false tooth and product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036414A (en) * 1998-05-12 2000-02-02 Murata Mfg Co Ltd Inductor and manufacture thereof
CN112250438A (en) * 2020-10-16 2021-01-22 江西德锆美瓷有限公司 Preparation method of high-uniformity zirconium oxide ceramic block for full-ceramic false tooth and product thereof

Similar Documents

Publication Publication Date Title
JP2012216816A (en) Method for manufacturing electrostatic chuck, and electrostatic chuck
CN108911738B (en) Porous barium titanate piezoelectric ceramic and preparation method thereof
CN108218430B (en) Isostatic pressing graphite product and preparation method thereof
JPH08283073A (en) Kiln tool
JPH0677039A (en) Method of manufacturing mn-zn ferrite sintered body
JPH0152322B2 (en)
KR20190033527A (en) Low cost transparent spinel manufacturing method
JP2005324987A (en) Ito molded product, ito sputtering target using the same and its manufacturing method
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
US3724050A (en) Method of making beryllium shapes from powder metal
JP4217142B2 (en) Method for producing granules for ceramic molding
JPH0636918A (en) Manufacturing method of mn-zn ferrite sintered body
JP3320645B2 (en) Manufacturing method of ceramic sintered body
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
JP2006111518A (en) Method for manufacturing soft ferrite core
JP2004277836A (en) Method of producing ito target
JPH07115942B2 (en) Method for manufacturing thin plate ceramics sintered body
JPS58182883A (en) Manufacture of high density piezoelectric ceramics
JPS605073A (en) Silicon carbide sintered body and manufacture
KR101113157B1 (en) A method for zirconium oxide powder compaction using magnetic pulsed compaction apparatus, and zirconium oxide sintered body prepared by using the same
JPH07126070A (en) Production of silicon carbide sintered material
JPH08277167A (en) Formed ceramic article and its production
JP5181198B2 (en) Ceramic sintered body and method for producing the same
JPS609352B2 (en) Manufacturing method for high-density piezoelectric ceramics
JPS5832076A (en) Manufacture of high density ceramic sintered body