JPH0676679B2 - Method for multicolor electrolytic coloring of aluminum or aluminum alloy - Google Patents

Method for multicolor electrolytic coloring of aluminum or aluminum alloy

Info

Publication number
JPH0676679B2
JPH0676679B2 JP31006791A JP31006791A JPH0676679B2 JP H0676679 B2 JPH0676679 B2 JP H0676679B2 JP 31006791 A JP31006791 A JP 31006791A JP 31006791 A JP31006791 A JP 31006791A JP H0676679 B2 JPH0676679 B2 JP H0676679B2
Authority
JP
Japan
Prior art keywords
current
coloring
aluminum
film
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31006791A
Other languages
Japanese (ja)
Other versions
JPH05125590A (en
Inventor
彰 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Ltd
Original Assignee
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Ltd filed Critical Takasago Ltd
Priority to JP31006791A priority Critical patent/JPH0676679B2/en
Publication of JPH05125590A publication Critical patent/JPH05125590A/en
Publication of JPH0676679B2 publication Critical patent/JPH0676679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニュウム又はアル
ミニュウム合金の多色電解着色方法に関し、特にアルミ
ニュウム又はアルミニュウム合金等の酸化皮膜を耐光性
のある多色に着色して、利用分野の限られていた着色皮
膜の用途を更に広げることを可能にしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multicolor electrolytic coloring method for aluminum or an aluminum alloy, and in particular, has limited the field of use by coloring an oxide film such as aluminum or an aluminum alloy into a lightfast multicolor. This makes it possible to further expand the applications of the colored film.

【0002】[0002]

【従来の技術】アルミニュウム等に陽極酸化皮膜を形成
したものを金属塩を含む溶液を満たした槽に入れ、同じ
槽に入れた他方の電極との間に交流電圧を加えて陽極酸
化皮膜を着色する無機着色方法は、特公昭38−171
5号(特許第310401)として良くしられている。
しかしこの方法では多色の着色を得ることは困難であ
る。又特公開昭54−85137には酸化皮膜を更に燐
酸等を含む溶液で陽極酸化させ、初期に生成した皮膜と
異なる構造の光干渉用の酸化皮膜の層を生成し、この皮
膜を上記方法で着色する三次電解着色方法があり、特公
開昭53−64635等には燐酸等による繊維状酸化皮
膜に金属を電析させ光の干渉を利用して多色膜を得る方
法がみられる。
2. Description of the Related Art An anodized film formed on aluminum or the like is placed in a tank filled with a solution containing a metal salt, and an alternating voltage is applied between the other electrode in the same tank to color the anodized film. The inorganic coloring method used is Japanese Patent Publication No. 38-171.
No. 5 (Patent No. 310401) is well known.
However, it is difficult to obtain multicolored coloring by this method. Further, in Japanese Patent Publication No. 54-85137, an oxide film is further anodized with a solution containing phosphoric acid or the like to form a layer of an oxide film for optical interference having a structure different from that of the film initially formed. There is a third electrolytic coloring method for coloring, and in Japanese Patent Publication No. 53-64635 and the like, there is a method of depositing a metal on a fibrous oxide film formed by phosphoric acid or the like to obtain a multicolor film by utilizing light interference.

【0003】更に、三次電解着色方法も提案されたが、
留まりが低く実用には適さず、本出願人が先に提案した
CLCC法と称する着色制御方法ではこの歩留まりを向
上させるが、燐酸を主体とする二次電解のプロセスは着
色コストを増大させ、燐散とアルミニュウムや着色用金
属との金属錯体の扱い等に多くの困難がある。又先の特
公開昭54−85137による方法は酸化皮膜が薄くて
光の干渉が強く、表面の状態で色の変化が起きる特色が
あるが、この特色も建材等に利用した場合は汚れや傷に
弱い欠点があつたり、皮膜の保護と表面状態を良くする
目的の透明電着塗装皮膜を行うと色相が大幅に変化する
欠点等もあった。
Further, a third electrolytic coloring method has been proposed,
The yield is low and is not suitable for practical use. The coloring control method called CLCC method previously proposed by the applicant improves the yield, but the secondary electrolysis process mainly containing phosphoric acid increases the coloring cost, There are many difficulties in handling metal complexes of aluminum and aluminum or coloring metals. In the method disclosed in JP-A-54-85137, there is a feature that the oxide film is thin and the light interference is strong and the color changes depending on the surface condition. However, when this feature is also used as a building material, stains and scratches are caused. However, there is a drawback that the hue is significantly changed when a transparent electrodeposition coating film is used for the purpose of protecting the film and improving the surface condition.

【0004】[0004]

【発明が解決しようとする課題】電解着色は耐光性の強
い着色膜が得られる特徴があり、建材等に大量に応用さ
れており、これによって得られる色はブロンズ系の着色
が最も容易であり、しかもこの系統の色は需要も多い。
しかして電解着色で得られる着色は、着色金属を超微粒
子にしたときの色と相関があり、金属塩の種類を変えて
も多様な着色を得ることはできず、光の干渉による着色
は原理的に干渉部分の厚みを極めて高い精度で制御する
必要がある。更に建材等に着色膜を利用する場合は干渉
部分を酸化皮膜の下層に生成しないと、表面状態で色相
が変化して使用できない等の問題もある。
The electrolytic coloring is characterized in that a colored film having strong light resistance can be obtained, and it is widely applied to building materials and the like. The color obtained by this is the bronze-based coloring, which is the easiest. Moreover, the color of this system is in great demand.
However, the color obtained by electrolytic coloring has a correlation with the color when the colored metal is made into ultrafine particles, and various colors cannot be obtained even if the type of metal salt is changed. Therefore, it is necessary to control the thickness of the interference portion with extremely high accuracy. Further, when a colored film is used for a building material or the like, there is a problem that unless an interference portion is formed in the lower layer of the oxide film, the hue changes depending on the surface condition and it cannot be used.

【0005】最近の多様化した時代に別の系統の着色の
要求も多くなっているが、多色化は多くの困難があり、
需要に応じられない状態であった。最大の困難は、電解
槽や溶液の管理等には膨大な費用がかかり、比較的需要
の少ない色のために新しい設備投資をしても採算に問題
があるためである。従来のように利用の少ない陽極酸化
用溶液や着色溶液,更に異なったプロセスで多色化が可
能であっても利用化が困難である。従って、従来のブロ
ンズ系の設備がそのまま利用でき、電解槽や溶液を変更
せずに多色化を可能とすることはこの業界の夢であっ
た。これを実現するには、従来のブロンズ系着色として
最も普及している方法から、陽極酸化皮膜は純粋な硫酸
による陽極酸化皮膜が利用でき、ニッケル塩やコバルト
塩又はこの混合物とほう酸を主体とする着色溶液でも着
色することが条件となる。しかし、硫酸による陽極酸化
皮膜は多色化が困難とされていた皮膜である。
In the recent diversified times, there are many demands for coloring different systems, but there are many difficulties in multicoloring,
It was unable to meet the demand. The biggest difficulty is that management of the electrolytic cell and solution requires a huge amount of money, and there is a problem in profitability even if a new capital investment is made due to the relatively low demand for colors. It is difficult to use anodizing solutions and coloring solutions that have not been used as in the past, and even if multiple colors can be obtained by different processes. Therefore, it was a dream of this industry that conventional bronze-based equipment can be used as it is, and multicoloring can be performed without changing the electrolytic cell or solution. In order to realize this, an anodic oxide film made of pure sulfuric acid can be used as the anodic oxide film, which is the most widely used conventional bronze-based coloring, and is mainly composed of nickel salt or cobalt salt or a mixture thereof and boric acid. Coloring is also a condition for the coloring solution. However, the anodic oxide film formed by sulfuric acid is a film that has been considered difficult to be multicolored.

【0006】[0006]

【課題を解決するための手段】このような点を考慮し
て、本発明人は種々実験や試作を試みた結果、酸化皮膜
を形成している状態で、酸化皮膜形成用の電流値を意識
的に低下させると、それまで生成されていた酸化皮膜の
下層に構造の異なる酸化皮膜を生成でき、その酸化皮膜
の構造変化の程度は電流或は電圧の低下幅で調節が可能
であり、膜厚は電流を低下してから遮断するまでの時間
とレベルで調節できることがわかり、これに着目してこ
の方法を用いて任意に初期に生成した酸化皮膜の下層に
光干渉用の酸化皮膜を得ることができた。
In consideration of the above points, the present inventors have tried various experiments and trial productions, and as a result, have been aware of the current value for forming an oxide film while the oxide film is being formed. When it is reduced, the oxide film with a different structure can be formed in the lower layer of the oxide film that has been formed so far, and the degree of structural change of the oxide film can be adjusted by the decrease width of the current or voltage. It was found that the thickness can be adjusted by the time and level from the time when the current is reduced to the time when the current is cut off. Focusing on this, this method is used to obtain an oxide film for optical interference as the lower layer of the oxide film initially formed. I was able to.

【0007】しかし、このようにして得られた陽極酸化
皮膜は通常の酸化皮膜と比較すると、着色溶液中に於け
る耐圧が非常に低く、安定な着色と付き回りを得ること
は困難であった。更に初期の皮膜を生成する期間をゼロ
にして、陽極酸化の初期から陽極酸化用の電流密度を極
めて低下させて干渉用皮膜を得ようとする場合は先の特
公開昭53−64635号と同等の理由で干渉用皮膜が
得られると考えられるが硫酸による陽極酸化皮膜では全
く着色しない。この欠点を除くため、着色溶液中に着色
皮膜側をアノード分極が起きるように直流成分を制御し
た交流電流を加え、更に陽極酸化を進めると安定な着色
と付き回りが得られ、硫酸による酸化皮膜でも着色が可
能であり、表面状態や視差による色相の変化の比較的に
少ない着色皮膜を得ることができるだけでなく、陽極酸
化の時間を全くゼロにした陽極酸化の行われていないア
ルミニュウムでも着色が可能であることがわかった。
However, the anodic oxide film thus obtained has a very low withstand voltage in the coloring solution as compared with an ordinary oxide film, and it is difficult to obtain stable coloring and covering. . Further, when the period for forming the initial film is set to zero and the current density for anodic oxidation is extremely reduced from the initial stage of anodic oxidation to obtain the interference film, it is the same as in Japanese Patent Publication No. 53-64635. It is thought that an interference film can be obtained for this reason, but the anodic oxide film of sulfuric acid does not cause any coloration. In order to eliminate this drawback, by applying an alternating current with a direct current component controlled so that anodic polarization occurs on the colored film side in the coloring solution and further anodic oxidation, stable coloring and covering can be obtained. However, it is possible to color, and not only it is possible to obtain a colored film with a relatively small change in hue due to the surface condition and parallax, but it is also possible to color aluminum that has not been anodized by completely reducing the anodizing time to zero. It turned out to be possible.

【0008】この方法によると、着色の調整は初期の皮
膜生成時間と電流値,電流低下幅,電流が低下してから
遮断するまでの時間とレベル,等を調節し、多様な色彩
が得られた。又初期の酸化皮膜が厚い程干渉色が強く原
色系の色を得やすかった。更に電圧が低下してから遮断
するまでの時間が増大すると、波長の長い系統の色が現
れて、これを繰り返す。又陽極酸化用の電流を大幅に低
下させ、初期の電流の1/10以下にした場合は原色に
近い非常に鮮明な色が得られるが、初期に生成した皮膜
と構造変化を起こした皮膜の境界面の機械的強度が低下
して剥離が起き易く、特に電流を低下させた期間を長く
して波長の長い色を出す場合はこの傾向が強い。この間
題を防ぐには色の鮮明度は低下するが、電流の低下速度
を下げるか段階的に低下させることである。
According to this method, the coloring is adjusted by adjusting the initial film formation time and current value, the amount of current decrease, the time and level from the time when the current is decreased until the current is cut off, and various colors can be obtained. It was Also, the thicker the initial oxide film, the stronger the interference color and the easier it was to obtain a primary color. When the time from when the voltage drops to when the voltage cuts off further increases, colors of a system with a long wavelength appear and this is repeated. When the current for anodic oxidation is significantly reduced to 1/10 or less of the initial current, a very vivid color close to the primary color can be obtained, but the film formed in the initial stage and the film having structural change The mechanical strength of the boundary surface is lowered and peeling is likely to occur, and this tendency is strong particularly when a period in which the current is lowered is extended to produce a color having a long wavelength. To prevent this problem, the sharpness of the color is reduced, but the reduction rate of the current is reduced or reduced stepwise.

【0009】本発明で使用する陽極酸化用の電源は直流
でも,これに交流を重畳した電流でも同様な目的が達成
されるが、定電流電源を使用すると制御が容易であり、
しかしこのときは皮膜の面積を正確に把握することが必
要である。実際の生産ラインの陽極酸化用の電源はこの
精度の要求を満たさない場合が多い。この場合は小型の
高い精度の定電流電源を用意して、低い電流の時に高精
度の電源に切り替えるか両者の電源の出力をダイオード
で0Rをとり、電流低下の時に容量の大きい電源を遮断
し、自動的に高精度の小容量の電源に切り替わるように
する。更に着色溶液では酸化皮膜側をアノード分極して
いる時間とこの電極を流れる直流電流成分で付き回り性
と微妙な色合いを調整でき、カソード分極している時間
とその直流成分では、主に明度を調整でき多様な色相と
明度の制御が可能である。
The anodizing power source used in the present invention achieves the same purpose with a direct current or a current obtained by superimposing an alternating current on the direct current. However, if a constant current power source is used, control is easy.
However, in this case, it is necessary to accurately grasp the area of the film. Power supplies for anodic oxidation in actual production lines often do not meet this accuracy requirement. In this case, prepare a small high-precision constant-current power supply, switch to a high-precision power supply when the current is low, or set the output of both power supplies to 0R with a diode, and shut off the power supply with a large capacity when the current drops. , Automatically switch to a high-precision, small-capacity power supply. Furthermore, in the coloring solution, the throwing power and the subtle color tone can be adjusted by the time of anodic polarization on the oxide film side and the direct current component flowing through this electrode. It can be adjusted and various hues and brightness can be controlled.

【0010】又一次の陽極酸化を省略した場合はアノー
ド分極している期間とその直流電流成分が大きい程波長
の長い着色が得られ、カソード分極している時間とその
直流電流成分では明度の調節が可能である。更に電圧低
下の期間をゼロにした場合は、従来のブロンズ系の色を
そのまま出すことが可能となり、同一の設備で従来の色
から多様な色彩を持った着色皮膜をうる万能な電解着色
システムを容易に構築できる。ここで記載するアノード
分極を強くするとは、着色を目的とする皮膜側から溶液
に向かって流れる電流を正として、この電流の1周期の
積分値が正の場合を意味し、カソード分極とはその積分
値が負の場合を意味している。
When the primary anodic oxidation is omitted, a longer wavelength is obtained as the anodic polarization period and its DC current component are larger, and the brightness is adjusted depending on the cathodic polarization period and its DC current component. Is possible. Furthermore, if the voltage drop period is set to zero, conventional bronze-based colors can be output as they are, and a universal electrolytic coloring system that can produce colored films with various colors from conventional colors with the same equipment. Easy to build. Increasing the anodic polarization described here means that the current flowing from the film side for coloring to the solution is positive, and the integral value of this current for one cycle is positive, and the cathode polarization is This means that the integrated value is negative.

【0011】先に本出願人が提案したように、着色時の
金属の電析は、着色用電極側のカソード分極が強い場合
に行われる。その金属の析出量は1周期の電流の積分値
にほぼ比例する。アノード分極が強い場合は酸化皮膜の
酸化が更に行われ、酸化皮膜に電折した金属ははぎ取ら
れる。この作用はすべて1周期の電流の積分値で行わ
れ、この時の直流成分だけが作用し、安定な着色を得る
にはこの直流成分の制御が最も重要となる。電流の交流
成分は1周期以内の短時間では色々な作用が行われてい
るが、正負の収支はゼロであり着色の明度には殆ど影響
せず、付き回り性に最も影響を与えるので直流成分程精
度は要求しない。
As proposed by the applicant of the present invention, the electrodeposition of metal during coloring is performed when the cathode polarization on the coloring electrode side is strong. The amount of the deposited metal is almost proportional to the integrated value of the current for one cycle. When the anodic polarization is strong, the oxide film is further oxidized, and the metal electro-folded on the oxide film is stripped off. This action is all performed by the integrated value of the current for one cycle, and only the DC component at this time acts, and the control of this DC component is the most important for obtaining stable coloring. The AC component of the current has various actions within a short time within one cycle, but the positive and negative balance is zero, it has little effect on the brightness of coloring, and has the greatest effect on throwing power, so the DC component It does not require as much accuracy.

【0012】本発明を実施するための着色用電源は定電
圧でも又定電流でも実現が可能で、その波形が正弦波で
ある必要もないので既に発表されている電源でも実現が
可能である。しかし、交流の定電圧による着色では、着
色皮膜の正負電圧に対する非線形特性によって直流電流
成分が決定され、直流電流成分の正確な制御が不可能で
あり、着色処理中に皮膜の電気的の特性が大幅に変化す
るような場合には安定な着色が得られない。既に本出願
人により提案されたCLCC法は分極の強さと極性を自
由にコントロールが可能で、電源に起因するあらゆる変
動要素を補正でき、更に着色の状態も自由にプログラム
できるので最適である。又本発明を実施するには陽極酸
化用の溶液は最も多く使用されている硫酸溶液やこれに
アルミニュウムの溶解を制御するために意識的に硫酸ア
ルミニュウムを混合した溶液等で可能であることを特徴
とし、利用範囲は限られるが硫酸等で非線形特性の電圧
を低下させ、これに燐酸や蓚酸さらには有機酸又はこれ
らの混酸を加えた溶液でも多色化が得られ夫々異なった
色相を得ることが可能である。
The coloring power supply for carrying out the present invention can be realized with a constant voltage or a constant current, and since the waveform does not need to be a sine wave, it can also be realized with a power supply that has already been announced. However, in coloring with a constant voltage of alternating current, the direct current component is determined by the non-linear characteristics of the colored film with respect to the positive and negative voltages, and it is impossible to control the direct current component accurately. Stable coloring cannot be obtained when there is a large change. The CLCC method already proposed by the present applicant is optimal because the intensity and polarity of polarization can be freely controlled, any variable elements due to the power source can be corrected, and the coloring state can be freely programmed. Further, in order to carry out the present invention, the solution for anodic oxidation can be a sulfuric acid solution which is most often used or a solution in which aluminum sulfate is intentionally mixed to control the dissolution of aluminum. Although the range of use is limited, the voltage of the non-linear characteristic is reduced with sulfuric acid, etc., and even if a solution of phosphoric acid, oxalic acid, an organic acid or a mixed acid thereof is added, multicoloring can be obtained and different hues can be obtained. Is possible.

【0013】又着色用の溶液は、従来のブロンズ系の着
色液であるニッケル,コバルト,錫,銅等の金属塩,或
はこれらの塩の混合物を主体とする一般的な溶液の使用
が可能であるが、実用的でない他の金属塩やその混合物
でも可能である。更に一次電解を行わない場合や着色の
容易でない状態の酸化皮膜を着色する目的の着色溶液で
は、金属塩に無機酸や有機酸又はその化合物を加え、緩
衝剤によって着色に最適なPHを保つようにして着色の
効率を上げることが望ましい。又多色化を行った場合、
電解用の溶液に含まれるアルミニュウムと酸の化合物が
初期に生成する酸化皮膜の透明度を変化させたり、着色
溶液に酸を入れた場合はこの酸とアルミニュウム又は着
色用金属等による錯化合物等の濃度によって着色膜の表
面が微妙に変化するので、これらの濃度を一定にするこ
とが再現性のある着色膜を得るポイントである。本発明
の特徴は陽極酸化と着色溶液中の電流の加え方にあっ
て、電極の材質や陽極酸化用の溶液,着色溶液の成分や
組成等が下記実施例と異なっても勿論可である。
As the coloring solution, it is possible to use a general solution mainly composed of a metal salt of nickel, cobalt, tin, copper or the like, which is a conventional bronze-based coloring solution, or a mixture of these salts. However, other impractical metal salts or mixtures thereof are possible. In addition, when the primary electrolysis is not performed or in the coloring solution for the purpose of coloring the oxide film in a state where coloring is not easy, an inorganic acid or organic acid or its compound is added to the metal salt, and the pH optimum for coloring is maintained by a buffering agent. It is desirable to improve the coloring efficiency. In addition, when multicolored,
When the compound of aluminum and acid contained in the solution for electrolysis changes the transparency of the oxide film that is initially generated, or when an acid is added to the coloring solution, the concentration of the acid and the complex compound such as aluminum or the coloring metal Since the surface of the colored film changes subtly due to this, keeping these concentrations constant is the point of obtaining a reproducible colored film. The feature of the present invention lies in the method of applying an electric current in the anodic oxidation and the coloring solution, and it goes without saying that the material of the electrode, the solution for the anodic oxidation, the components and the composition of the coloring solution and the like may be different from those in the following examples.

【0014】[0014]

【作用】陽極酸化皮膜を生成中に化成電流を低下させる
と、初期に生成された酸化皮膜の下層に構造の変化した
酸化皮膜が生成される。この構造変化した酸化皮膜は初
期に生成された酸化皮膜よりも微細な細孔が形成される
と考えられる。この細孔が微細な程溶液中の溶質が個体
化するための自由エネルギーが低く、構造変化の起きた
微細孔に優先的に析出する。この微細孔に晶析した物質
により、光の吸収と反射の状態が初期に生成された酸化
皮膜と異なる層が生成される。更にこの層の膜厚と光の
波長との関係で光の干渉を起こすので、この層の厚みを
調整することで多様な色彩が得られると考えられる。陽
極酸化されていないアルミニュウムを直接着色する場合
や着色の困難な皮膜では、着色の初期にアルミニュウム
をアノード分極した時に陽極酸化され、更に微細化され
た微細孔が形成される。ここでカソード分極を強くする
と上記と同様な理由で多様な着色が得られると考えられ
る。
[Function] When the formation current is lowered during the formation of the anodic oxide film, an oxide film having a changed structure is formed below the initially formed oxide film. It is considered that the oxide film with this structural change has finer pores than the oxide film initially formed. The finer the pores, the lower the free energy for the solute in the solution to solidify, and the solutes preferentially precipitate in the micropores in which the structural change occurs. The substance crystallized in the fine pores forms a layer having a light absorption and reflection state different from that of the oxide film initially formed. Further, since light interference occurs due to the relationship between the film thickness of this layer and the wavelength of light, it is considered that various colors can be obtained by adjusting the thickness of this layer. In the case of directly coloring aluminum that has not been anodized or in a film that is difficult to color, when the aluminum is anodically polarized at the initial stage of coloring, it is anodized and finer pores are formed. It is considered that if the cathodic polarization is increased, various colors can be obtained for the same reason as above.

【0015】[0015]

【実施例】次に本発明の実施例をもって具体的に説明す
る。板材としてアルミニュウム合金A5052P材(マ
グネシゥム2.5%,クロム0.25%)を使用した。
色彩色差計はミノルタ製CR200を使用し、色彩の名
称は大日本インキ化学の日本の伝統色第2版を参考にし
た。
EXAMPLES Next, examples of the present invention will be specifically described. An aluminum alloy A5052P material (magnesium 2.5%, chromium 0.25%) was used as the plate material.
The color difference meter used was CR200 manufactured by Minolta, and the name of the color was based on the Japanese traditional color second edition of Dainippon Ink and Chemicals.

【0016】[0016]

【実施例1】 ブロンズ系従来色。 アルミニュウム板を陽極とし、他方の電極をグラファイ
トとして15%硫酸溶液中で直流1.4A%dm2 で3
0分直流電解し、これを水洗し着色溶液中で他方の電極
をグラファイトとして、交流成分50Hz250mA%
dm2 としアノード分極する方向に直流成分を64mA
/dm2で1分継続した後、同一交流成分50Hzでカ
ソード分極する方向に直流成分を75mA/dm2 で6
分間流した場合は下記のように通常のブロンズ系着色が
得られた。着色溶液は既に知られている硫酸ニッケル6
水塩93g/リットル,硫酸マグネシゥム7水塩175
g/リットル,ほう酸40g/リットル,酒石酸4g/
リットル(軽金属Vo1,37No4 1987)をエ
チレンジアミンの緩衝溶液でPHを4.5に調整して使
用した。
Example 1 A conventional bronze color. The aluminum plate was used as the anode and the other electrode was used as graphite in a 15% sulfuric acid solution at a direct current of 1.4 A% dm 2
Direct current electrolysis for 0 minutes, washing this with water, and using graphite as the other electrode in a coloring solution, AC component 50 Hz 250 mA%
dc 2 and a DC component of 64 mA in the direction of anodic polarization
/ Min 2 for 1 minute, and then the direct current component is 75 mA / dm 2 in the direction of cathodic polarization with the same alternating current component of 50 Hz.
When it was run for a minute, the usual bronze-based coloring was obtained as described below. Coloring solution is already known nickel sulphate 6
Hydrosalt 93g / l, magnesium sulphate 7 hydrate 175
g / liter, boric acid 40 g / liter, tartaric acid 4 g /
1 (light metal Vo1, 37 No4 1987) was used after adjusting the pH to 4.5 with a buffer solution of ethylenediamine.

【表1】 [Table 1]

【0017】この場合の明度は着色する側の電極をカソ
ード分極するときの直流電流成分と時間にほぼ反比例さ
せて変化させることができる。しかし直流電流成分が或
る限界を越えると、明度が逆に上昇する。又着色溶液の
温度を上げると限界電流も増加するので直流成分と明度
に対する制御範囲が増加する。
In this case, the lightness can be changed substantially in inverse proportion to the direct current component and time when the electrode on the colored side is subjected to cathode polarization. However, when the direct current component exceeds a certain limit, the brightness rises conversely. Further, if the temperature of the coloring solution is increased, the limiting current also increases, so that the control range for the DC component and the brightness increases.

【0018】[0018]

【実施例2】 通常の皮膜厚における多色化。 アルミニュウム板を陽極とし、他方の電極をグラファイ
トとして15%硫酸溶液中で直流1.4A/dm2 で3
0分直流電解し、次に電流値を1/10に低下しこの時
間をT分継続して陽極酸化皮膜を作成し、これを乾燥し
ないように素早く水洗し実施例1と同じ着色溶液中で同
様の条件で着色した場合表2の着色が得られた。
Example 2 Multicoloring at normal film thickness. Aluminum plate as the anode and the other electrode as graphite in a 15% sulfuric acid solution at a direct current of 1.4 A / dm 2
Direct current electrolysis was carried out for 0 minutes, then the current value was reduced to 1/10 and this time was continued for T minutes to form an anodic oxide film, which was quickly washed with water so as not to dry, and in the same coloring solution as in Example 1. When colored under the same conditions, the coloring shown in Table 2 was obtained.

【表2】 [Table 2]

【0019】この方法によって得られる着色は電流低下
時間がゼロの状態と比較すると明度は下がり、表面の影
響が比較的少なく、落ち着いた品のある色である。この
実施例は最も簡単な例であり、この条件は最良ではな
く、皮膜の強度を保証するものではないが、電流低下の
時間とともに周期的に色が現れ、時間の増加とともに色
彩が明瞭になっていることを示す実例である。実験は都
合により1週間の間でランダムな間隔でデータを作成し
たので、溶液の温度は20゜C〜25゜C,皮膜面積は
約5%の変動がある。この間平方センチ当たり約7CC
の溶液を変更せずに行った。又実験の順番も電流値とは
異なりランダムである。更に上記と同一条件の酸化皮膜
と同一の着色溶液で、二次電解の条件を変更するだけで
皮膜強度を落とさずに、従来困難とされていた多彩なグ
レー色も安定に得ることができた。更に陽極酸化の電流
や時間条件を変更すれば、別の色彩も得られ、表面の影
響を殆ど受けない状態の強い紺色(ダークパープリッシ
ュブルー)を出すことも可能である。又通常皮膜との互
換性はなくなるが、可能であれば酸の濃度を変えたり、
混酸にするなどの方法でも、更に異なった着色をうるこ
とができる。
The coloring obtained by this method is a color with a calm quality, in which the brightness is lower than that in the state in which the current drop time is zero, the influence of the surface is relatively small, and the product is calm. This example is the simplest example, and although this condition is not the best and does not guarantee the strength of the film, color appears periodically with the time of current decrease, and the color becomes clear with the increase of time. It is an example showing that. Since the experiment was performed by creating data at random intervals for one week for convenience, the temperature of the solution varies from 20 ° C to 25 ° C and the coating area varies by about 5%. During this time, about 7 CC per square centimeter
Was carried out unchanged. Also, the order of experiments is random, unlike the current value. Furthermore, with the same colored solution as the oxide film under the same conditions as above, it was possible to stably obtain a variety of gray colors, which had previously been difficult, without lowering the film strength simply by changing the conditions of secondary electrolysis. . Further, by changing the anodizing current and time conditions, another color can be obtained, and it is also possible to produce a dark blue color (dark purplish blue) which is hardly affected by the surface. Also, it is not compatible with normal coatings, but if possible, change the acid concentration,
Further different coloring can be obtained by a method such as using mixed acid.

【0020】[0020]

【実施例3】 通常の皮膜厚におけるグレー系着色。 実施例2と同一条件でカソード分極する方向の直流成分
だけを43mA/dm2 に低下するだけで、グレー系の
多彩な着色が得られた。
Example 3 Gray-based coloring at a normal film thickness. Under the same conditions as in Example 2, only the direct current component in the direction of cathodic polarization was reduced to 43 mA / dm 2, and various gray-based coloring was obtained.

【表3】 [Table 3]

【0021】[0021]

【実施例4】 薄い陽極酸化皮膜での多色化。 アルミニュウム板を陽極とし、他方の電極をグラファイ
トとして15%硫酸溶液中で直流350mA/dm2
T分直流電解し、これを乾燥しないように素早く水洗
し、実施例1の着色溶液中で同一条件で着色した場合、
2分で鮮やかな金色が得られ時間の増加とともに波長の
長い系統の色が得られた。この方法で得られた色は上記
実施例2や3によるものより表面状態の影響を受ける。
電流がこのように大きい場合は金色は鮮やかではある
が、他の色は薄くなる。しかしさらに電流密度を下げ時
間をかけると、鮮明な色になる。又この方法は素材の影
響を受け易い。
Example 4 Multicoloring with a thin anodic oxide film. The aluminum plate was used as an anode, and the other electrode was used as graphite in a 15% sulfuric acid solution for direct current electrolysis for T minutes at a DC of 350 mA / dm 2 , and this was quickly washed with water so as not to dry, and the same conditions were applied in the coloring solution of Example 1. When colored with
A vivid gold color was obtained in 2 minutes, and a color with a long wavelength was obtained as the time increased. The color obtained by this method is more influenced by the surface condition than those obtained in Examples 2 and 3.
With such a large current, the gold color is bright, but the other colors are lighter. However, if the current density is further reduced and the time is increased, a clear color is obtained. This method is also susceptible to the material.

【0022】[0022]

【実施例5】 陽極酸化行程を省いた多色化,ニッケル浴。 この方法では、着色する側の電極をアノード分極してい
る時間と電流値で色彩を自由に変化することができる。
Fifth Embodiment A multi-color nickel bath without anodizing process. In this method, the color can be freely changed depending on the time and current value during which the electrode on the side to be colored is subjected to anodic polarization.

【発明の効果】本発明は従来のブロンズ系着色を得る場
合と同様の陽極酸化用溶液と、着色溶液をそのまま使用
して多色の着色皮膜を得ることができ、膨大な費用のか
かる電解槽等の設備を全く変更せずに、電流の加え方を
変更するだけで容易に多色の皮膜を得ることが可能であ
り、しかも陽極酸化の皮膜厚は任意に選ぶことが可能で
あり、通常の酸化皮膜厚を従来のJISに規定された膜
厚にしても容易に多色化が可能である。又この場合に得
られた着色膜は表面の影響による色彩の変化が少なく、
透明の電着塗装を行っても変色が少なく、構造変化した
酸化皮膜と通常の酸化皮膜の界面の機械的強度の低下も
補うことができる。又JISの規定から外れるが、陽極
酸化の行われていない場合や膜厚の極めて簿い硫酸によ
る酸化皮膜でも多色化が可能となり、建材以外の用途に
も応用できる。
INDUSTRIAL APPLICABILITY According to the present invention, an anodizing solution similar to the case of obtaining a conventional bronze-based coloring, and a coloring solution can be used as it is to obtain a multicolored colored film, which is an enormous costly electrolytic cell. It is possible to easily obtain a multi-colored film by simply changing the method of applying the current without changing the equipment such as, and the thickness of the anodizing film can be arbitrarily selected. Even if the thickness of the oxide film is set to the film thickness specified by the conventional JIS, it is possible to easily obtain multiple colors. The color film obtained in this case has little change in color due to the influence of the surface,
Even if transparent electrodeposition coating is performed, there is little discoloration, and it is possible to compensate for the decrease in mechanical strength at the interface between the oxide film with a structural change and a normal oxide film. Further, although it is out of the regulation of JIS, multicoloring is possible even when anodization is not carried out or an oxide film with extremely thin film of sulfuric acid can be applied, and it can be applied to applications other than building materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニュウム又はアルミニュウム合金を
直流や,直流に交流を重畳した電流で通常又は高速陽極
酸化皮膜を生成している途中に、陽極酸化皮膜形成用の
電流値或は電圧値を低下させ、電流或は電圧の低下まで
の陽極酸化電流或は電圧と時間を、更に低下の幅や低下
する状態と低下してから遮断するまでの時間と電流値或
は電圧値を制御し、初期に得た酸化皮膜の下層に構造の
異なる任意の厚みの陽極酸化皮膜を形成する第1の手段
と、かくて得た陽極酸化皮膜を金属塩等を含む着色溶液
に入れ、他方の電極との間に制御された直流成分を含む
交流電流を流し、着色の初期の期間には着色する側の電
極をアノード分極を強くして更に陽極酸化を進め、その
後に制御された直流成分を持つ交流電流を流しカソード
分極を強くして金属の電析を行う第2の手段と、により
多色皮膜を得ることを特徴とするアルミニュウム又はア
ルミニュウム合金の多色電解着色方法。
1. A current value or a voltage value for forming an anodic oxide film is lowered during the formation of a normal or high-speed anodic oxide film of aluminum or an aluminum alloy with a direct current or a current obtained by superimposing an alternating current on a direct current. , Control the anodic oxidation current or voltage and time until the current or voltage drops, and further control the time and current value or voltage value from the width of the drop or the state of the drop to the cutoff. Between the first means for forming an anodized film having an arbitrary thickness and a different structure on the lower layer of the obtained oxide film, and putting the thus obtained anodized film in a coloring solution containing a metal salt or the like, and between the other electrode. An alternating current containing a controlled direct current component is applied to the electrode, and during the initial period of coloring, the electrode on the side to be colored is strengthened by anodic polarization to further promote anodic oxidation, and then an alternating current with a controlled direct current component is applied. Sinking cathode with strong polarization Second means and, aluminum or aluminum multicolor electrolytic coloring method of the alloy, characterized in that to obtain a multi-color film by performing the electrodeposition.
【請求項2】アルミニュウム又はアルミニュウム合金を
直流や直流に交流を重畳した電流で生成して得た陽極酸
化皮膜をそのまま、金属塩等を含む着色溶液に入れ、他
方の電極との間に制御された直流成分を含む交流電流を
流し、着色の初期の期間には着色する側の電極をアノー
ド分極を強くして、更に陽極酸化を進め、その後に制御
された直流成分の電極を持つ交流成分を流しカソード分
極を強くして金属の電析を行うことにより多色皮膜をう
ることを特徴とするアルミニュウム又はアルミニュウム
合金の多色電解着色方法。
2. An anodized film obtained by producing aluminum or an aluminum alloy with a direct current or a current in which an alternating current is superimposed on a direct current is put as it is in a coloring solution containing a metal salt or the like, and controlled between the other electrode. An alternating current containing a direct current component is applied, and in the initial period of coloring, the electrode on the side to be colored is made to have stronger anodic polarization, and further anodic oxidation is promoted. A multicolor electrolytic coloring method for aluminum or an aluminum alloy, which comprises forming a multicolor film by increasing the flow cathode polarization and performing electrodeposition of a metal.
JP31006791A 1991-10-30 1991-10-30 Method for multicolor electrolytic coloring of aluminum or aluminum alloy Expired - Fee Related JPH0676679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31006791A JPH0676679B2 (en) 1991-10-30 1991-10-30 Method for multicolor electrolytic coloring of aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31006791A JPH0676679B2 (en) 1991-10-30 1991-10-30 Method for multicolor electrolytic coloring of aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPH05125590A JPH05125590A (en) 1993-05-21
JPH0676679B2 true JPH0676679B2 (en) 1994-09-28

Family

ID=18000772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31006791A Expired - Fee Related JPH0676679B2 (en) 1991-10-30 1991-10-30 Method for multicolor electrolytic coloring of aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0676679B2 (en)

Also Published As

Publication number Publication date
JPH05125590A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US5472788A (en) Colored anodized aluminum and electrolytic method for the manufacture of same
CA1054089A (en) Process for electrolytically coloring aluminum and aluminum alloys
CA1191476A (en) Method of production of colored aluminium articles
US3704209A (en) Method for electrochemical coloring of aluminum and alloys
JPH0347994A (en) Method for coloring titanium or alloy thereof by controlling quantity of supplied electric current
AU633132B2 (en) Improved electrolytic method for coloring anodized aluminum
TWI238858B (en) Process for the production of gold-colored surfaces of aluminum or aluminum alloys by means of silver salt-containing formulations
US3664932A (en) Objects of aluminum and alloys of aluminum having colored coatings and process
JP2931177B2 (en) Highly transparent colored film and electrolytic coloring method
US3935084A (en) Anodizing process
US4632735A (en) Process for the electrolytic coloring of aluminum or aluminum alloys
JPH0676679B2 (en) Method for multicolor electrolytic coloring of aluminum or aluminum alloy
WO2001000904A1 (en) Method for electrolytic coloring of aluminum material
JPS5940917B2 (en) Electrolytic coloring method
CN110453263A (en) A kind of aluminium alloy mirror surface anode oxidation method
JP2931176B2 (en) Colored film formed on aluminum material surface and electrolytic coloring method
EP0936288A2 (en) A process for producing colour variations on electrolytically pigmented anodized aluminium
KR850001214B1 (en) Method for producing colored aluminum articles
JP2706681B2 (en) Electrolytic coloring method of aluminum material
TW567238B (en) Process for coloring ion-plating titanium frame
JPH0770791A (en) Electrolytic coloring method for aluminum or aluminum alloy
JPS61127898A (en) Electrolytic pigmentation method of aluminum or aluminum alloy
JPH0359150B2 (en)
KR100324966B1 (en) An Electrolytic Co1oring Method of An Aluminium Products
JPH0577758B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees