JPH0676635A - Oil-immersed electric appliance - Google Patents
Oil-immersed electric applianceInfo
- Publication number
- JPH0676635A JPH0676635A JP23077492A JP23077492A JPH0676635A JP H0676635 A JPH0676635 A JP H0676635A JP 23077492 A JP23077492 A JP 23077492A JP 23077492 A JP23077492 A JP 23077492A JP H0676635 A JPH0676635 A JP H0676635A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- copper
- insulating oil
- amount
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Insulating Materials (AREA)
- Lubricants (AREA)
- Transformer Cooling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は油入電気機器に係わ
り、更に詳しくは絶縁油中での銅の溶解を抑制する技術
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil-filled electric device, and more particularly to a technique for suppressing dissolution of copper in insulating oil.
【0002】[0002]
【従来の技術】一般に、油入電気機器の異常はアーク放
電、部分放電、過熱等を伴って起こる。その際絶縁物や
絶縁油が熱分解して各種のガスが発生し、絶縁油中に溶
解する。この現象を利用し、油入電気機器の異常診断
は、一般に、油中溶解可燃性ガスの分析によって行って
いる。ところで、感覚的には考えにくいことではある
が、絶縁油に銅が溶解するという現象がある。溶けた銅
は触媒となって絶縁油の劣化を促進し可燃性ガスの発生
に影響を与えることが後述するように明らかになった。2. Description of the Related Art Generally, an abnormality of an oil-filled electric device is accompanied by arc discharge, partial discharge, overheating and the like. At that time, the insulating material and the insulating oil are thermally decomposed to generate various gases and are dissolved in the insulating oil. Utilizing this phenomenon, abnormality diagnosis of oil-filled electrical equipment is generally performed by analysis of flammable gas dissolved in oil. By the way, there is a phenomenon that copper is dissolved in insulating oil, which is difficult to think from a sensory point of view. It became clear that the molten copper acts as a catalyst to promote the deterioration of insulating oil and affects the generation of flammable gas, as described later.
【0003】即ち、銅の溶解は酸素があると起こるとさ
れていたが、酸素がなくても主として絶縁油中の硫黄化
合物が関与していることが判明した。市販の鉱物油系絶
縁油には硫黄化合物が0.01〜0.3%程度含まれて
いる。従って、酸化劣化防止を施した電気機器でも銅は
溶解することになる。また、溶解されていることが確認
された。そして、今まで、銅の溶解については知見がな
く、その対策について検討された例がみられなかった。That is, it was said that the dissolution of copper occurs in the presence of oxygen, but it was found that the sulfur compound in the insulating oil is mainly involved even without oxygen. Commercially available mineral oil-based insulating oil contains about 0.01 to 0.3% of sulfur compounds. Therefore, copper will be dissolved even in an electrical device that is protected from oxidative deterioration. In addition, it was confirmed that it was dissolved. So far, there is no knowledge about the dissolution of copper, and no cases were examined for its countermeasures.
【0004】[0004]
【発明が解決しようとする課題】以上のように、従来の
油入電気機器においては、たとえ酸化劣化防止対策を施
しても銅が絶縁油中に溶解し、その溶解した銅が触媒と
なって絶縁油を劣化させ、電気機器が異常でなくても可
燃性ガスを発生し異常診断に悪影響を及ぼすという問題
点が明らかになった。この発明は以上のような問題点を
解消するためになされたもので、銅の絶縁油中への溶解
を抑制し異常診断に支障のない油入電気機器を提供する
ことを目的とする。As described above, in conventional oil-filled electrical equipment, copper is dissolved in insulating oil even if measures against oxidative deterioration are taken, and the dissolved copper serves as a catalyst. It became clear that the insulating oil deteriorates and combustible gas is generated even if the electrical equipment is not abnormal, which adversely affects the abnormality diagnosis. The present invention has been made to solve the above problems, and an object of the present invention is to provide an oil-filled electrical device that suppresses the dissolution of copper in insulating oil and does not hinder abnormality diagnosis.
【0005】[0005]
【課題を解決するための手段】この発明に係わる油入電
気機器は、絶縁油をその芳香族成分量が10%以上のも
のとし、上記絶縁油中に1,2,3−ベンゾトリアゾー
ルを0.5mg/l以上30mg/l以下添加したもの
である。In an oil-filled electric device according to the present invention, the insulating oil has an aromatic content of 10% or more, and the insulating oil contains 0,2,3-benzotriazole. 0.5 mg / l or more and 30 mg / l or less are added.
【0006】[0006]
【作用】1,2,3−ベンゾトリアゾールはすみやかに
銅と反応し、銅表面を不活性にする被膜を形成するの
で、銅の絶縁油への溶解が抑制される。Function: 1,2,3-Benzotriazole promptly reacts with copper to form a film that inactivates the copper surface, so that the dissolution of copper in insulating oil is suppressed.
【0007】[0007]
実施例1.以下、この発明に基づく実験結果について説
明する。実験に使用した絶縁油は市販のもの2種類を使
用したが、これらはいずれもJIS C 2320、I
EC 296 Class I 等の規格を満足するも
のである。市販絶縁油1および2の一般特性を図9に示
す。よく研磨した30mm×50mm×3mmの銅板を
70mlの絶縁油に浸漬して120℃で40時間加熱
し、溶解銅量を測定した。絶縁油は真空脱気して使用
し、通常は油面上窒素とした。酸素の効果について調べ
る時のみ油面上に一定量の酸素を封入した。添加剤とし
ては前述の1,2,3−ベンゾトリアゾール(以下、B
TAと称す)と、比較例として従来から酸化劣化防止剤
として使用されている2,6−ジターシャリーブチルパ
ラクレゾール(以下、DBPCと称す)とを使用した。Example 1. The experimental results based on the present invention will be described below. Two types of commercially available insulating oil were used in the experiment, but these were all JIS C 2320, I
It satisfies the standards such as EC 296 Class I. The general characteristics of the commercial insulating oils 1 and 2 are shown in FIG. A well-polished 30 mm × 50 mm × 3 mm copper plate was immersed in 70 ml of insulating oil and heated at 120 ° C. for 40 hours to measure the amount of dissolved copper. The insulating oil was degassed in vacuum before use, and normally nitrogen was used on the oil surface. Only when investigating the effect of oxygen, a fixed amount of oxygen was filled on the oil surface. As the additive, 1,2,3-benzotriazole (hereinafter, referred to as B
(Hereinafter referred to as TA) and, as a comparative example, 2,6-ditertiarybutylparacresol (hereinafter referred to as DBPC), which has been conventionally used as an antioxidant, was used.
【0008】市販絶縁油1についてBTAを0〜30m
g/l添加した時の油中溶解銅量とBTA濃度との関係
を図1に示す。1mg/l以上BTAを添加すると、溶
解銅は検出されなかった。0.5mg/lでは検出され
るものの無添加の場合と比べるとかなり小さく、この程
度の濃度でも抑制効果があると考えられる。市販絶縁油
2についても0〜30mg/lのBTAを添加して溶解
銅量と添加量との関係を調べたのが、図2である。市販
絶縁油2はかなり銅を溶かしやすい絶縁油で、無添加で
は市販絶縁油1の6倍近くの溶解銅が検出された。とこ
ろが、BTAを1mg/l以上添加すると、溶解銅は検
出されなかった。このように、BTAは絶縁油の種類に
よらず、銅溶解を抑制する作用がある。For commercial insulating oil 1, BTA is 0 to 30 m
FIG. 1 shows the relationship between the amount of dissolved copper in oil and the BTA concentration when g / l was added. When 1 mg / l or more of BTA was added, dissolved copper was not detected. Although it was detected at 0.5 mg / l, it was considerably smaller than that in the case of no addition, and it is considered that even at this concentration, there is an inhibitory effect. FIG. 2 shows the relationship between the amount of dissolved copper and the added amount of the commercially available insulating oil 2 when 0 to 30 mg / l of BTA was added. Commercially available insulating oil 2 is an insulating oil in which copper is fairly easily dissolved, and without addition, about 6 times as much molten copper as in commercially available insulating oil 1 was detected. However, when BTA was added at 1 mg / l or more, no dissolved copper was detected. As described above, BTA has an action of suppressing copper dissolution regardless of the type of insulating oil.
【0009】また、比較例として、0.1%と0.3%
のDBPCをそれぞれ市販絶縁油1、2に添加して溶解
銅量と添加量との関係を調べた結果が図3である。市販
絶縁油2ではある程度の減少がみられるものの市販絶縁
油1では全く効果がみられないので、銅溶解抑制に効果
があるとはいえない。市販絶縁油2である程度の減少が
みられるのはDBPCに酸化劣化防止の作用があって、
酸化劣化によって生成する有機酸等による2次的な銅溶
解を抑制しているのにすぎないものと考えられる。Further, as comparative examples, 0.1% and 0.3%
FIG. 3 shows the results of investigating the relationship between the amount of dissolved copper and the amount added by adding DBPC of No. 1 to commercial insulating oils 1 and 2, respectively. Although the commercial insulating oil 2 shows some reduction, the commercial insulating oil 1 has no effect, so it cannot be said to be effective in suppressing copper dissolution. The reason why the commercially available insulating oil 2 shows some decrease is that DBPC has an action of preventing oxidative deterioration,
It is considered that the secondary copper dissolution due to the organic acid or the like generated by the oxidative deterioration is only suppressed.
【0010】次に酸素の影響を調査するため、BTAの
無添加および15mg/l添加した絶縁油の油面上空間
に7.4mlの酸素を封入して測定した溶解銅量の結果
を図4に示す。図のようにBTA添加油は油面上酸素の
状態でも、銅溶解抑制の効果を示している。一方、無添
加油では酸素が油面上に存在する方が溶解銅量が多い。
酸素が銅表面に保護膜を形成して銅の溶解を抑制すると
いう考え方もあるが、上記の無添加油の実験結果をみる
と、むしろ逆の傾向を示している。Next, in order to investigate the effect of oxygen, the results of the amount of dissolved copper measured by enclosing 7.4 ml of oxygen in the space above the oil surface of the insulating oil containing no BTA and adding 15 mg / l are shown in FIG. Shown in. As shown in the figure, the BTA-added oil shows the effect of suppressing copper dissolution even in the state of oxygen on the oil surface. On the other hand, in the additive-free oil, the amount of dissolved copper is larger when oxygen is present on the oil surface.
Although there is an idea that oxygen forms a protective film on the copper surface and suppresses dissolution of copper, the experimental results of the above additive-free oil show a rather opposite tendency.
【0011】次に、市販の鉱物油系絶縁油12種類と硫
黄量1ppm以下の合成系絶縁油とを用いて銅の溶解に
及ぼす因子を調べた。前述の市販絶縁油1と2とで差が
あったように、銘柄によって溶解銅量にかなり差がみら
れる。硫黄量に着目して溶解銅量を整理すると、図5の
ような関係が得られる。硫黄量が多いほど溶解銅量も多
い傾向がみられ、合成系絶縁油では銅の溶解はみられな
かった。ここで、前述の酸素共存系の実験については以
下のように考えられる。銅表面における硫黄、BTAと
酸素の三者共存状態での競争反応を上記の実験結果から
考えると、最も反応が速いのはBTAで、次に硫黄化合
物で、酸素が最も遅い。それゆえ、BTAが一度銅と反
応すると、硫黄等は反応できなくなり、銅溶解が抑制さ
れる。Next, the factors affecting the dissolution of copper were investigated using 12 kinds of commercially available mineral oil type insulating oils and synthetic type insulating oils having a sulfur content of 1 ppm or less. Similar to the difference between the above-mentioned commercially available insulating oils 1 and 2, there is a considerable difference in the amount of molten copper depending on the brand. When the amount of dissolved copper is sorted by focusing on the amount of sulfur, the relationship as shown in FIG. 5 is obtained. The amount of dissolved copper tended to increase as the amount of sulfur increased, and no copper dissolved in the synthetic insulating oil. Here, the above-mentioned oxygen coexistence experiment is considered as follows. Considering the competitive reaction in the coexistence state of sulfur, BTA and oxygen on the copper surface from the above experimental results, it is BTA that has the fastest reaction, the sulfur compound next, and the slowest oxygen. Therefore, once BTA reacts with copper, sulfur and the like cannot react, and copper dissolution is suppressed.
【0012】前述の12種類の市販絶縁油について溶解
銅量と可燃性ガスとの関係について調べると図6のよう
な結果が得られた。図のように、油中溶解銅が増加する
と、可燃性ガスの発生が増大する。また、合成油系絶縁
油では可燃性ガスの発生はみられなかった。絶縁油中の
可燃性ガス量の値から異常や寿命を判定している油入電
気機器にとっては、鉱物油系絶縁油のこのような現象は
好ましくない。従って、BTAを添加して銅溶解を抑え
ることは油入電気機器の保守管理上必要と考えられる。When the relationship between the amount of dissolved copper and the combustible gas was examined for the above-mentioned 12 types of commercial insulating oils, the results shown in FIG. 6 were obtained. As shown in the figure, when the amount of dissolved copper in oil increases, the generation of combustible gas increases. In addition, no combustible gas was generated in synthetic oil-based insulating oil. Such a phenomenon of mineral oil-based insulating oil is not preferable for oil-filled electrical equipment in which abnormality or life is determined from the value of the amount of combustible gas in insulating oil. Therefore, it is considered necessary to add BTA to suppress copper dissolution for maintenance of oil-filled electrical equipment.
【0013】BTAは前述のように、0.5〜30mg
/lといった広い範囲で効果がみられる。しかし、油入
電気機器内では、絶縁物への吸着作用があるので、この
点からすると添加量は多い方が好ましい。ところが、B
TAは鉱物油系絶縁油には、極めて溶解しにくい性質が
ある。図7はBTAの絶縁油に対する飽和溶解度を示す
もので、絶縁油が含有する芳香族成分が多い程溶け易い
が、天然原油から生成した通常の絶縁油の含有芳香族成
分量は20%以下であるため、その常温での飽和溶解度
は500mg/l以下であり、DBPCでの飽和溶解度
10,000mg/l以上より極めて低い。As mentioned above, BTA is 0.5 to 30 mg.
The effect is seen in a wide range such as / l. However, in an oil-filled electric device, there is an adsorption action to an insulator, and from this point, it is preferable that the addition amount is large. However, B
TA has a property that it is extremely difficult to dissolve in mineral oil type insulating oil. FIG. 7 shows the saturated solubility of BTA in insulating oil, and the more aromatic component the insulating oil contains, the easier it is to dissolve. Therefore, the saturated solubility at room temperature is 500 mg / l or less, which is extremely lower than the saturated solubility in DBPC of 10,000 mg / l or more.
【0014】この溶解度が低い点は特に低温時に問題と
なる。即ち、低温域で飽和溶解度が低下し、BTAが一
旦析出すると油中のBTA濃度が低下するとともにその
濃度分布も不均一となり、また再溶解するのに長時間を
要す。一方、JIS C 2320で規定される電気絶
縁油の流動点は−27.5℃である。そして流動点は周
囲温度の10℃上に設定されていることが多い。従っ
て、電気機器の最低使用温度は−17.5℃と考えら
れ、このような温度でも、過飽和にならない程度にBT
Aを添加しなければならない。This low solubility poses a problem especially at low temperatures. That is, the saturation solubility is lowered in a low temperature range, and once BTA is precipitated, the BTA concentration in the oil is lowered, its concentration distribution becomes non-uniform, and it takes a long time to redissolve. On the other hand, the pour point of electrical insulating oil specified by JIS C 2320 is -27.5 ° C. The pour point is often set to 10 ° C. above the ambient temperature. Therefore, the minimum operating temperature of electrical equipment is considered to be -17.5 ° C, and even at such temperatures, BT will not be oversaturated.
A must be added.
【0015】以上の温度条件および図7の溶解度特性を
考慮して絶縁油の芳香族成分を10%以上とすれば、油
入電気機器の運転使用温度においてBTAを析出させる
ことなくその濃度30mg/lを実現することが可能と
なる。If the aromatic component of the insulating oil is set to 10% or more in consideration of the above temperature conditions and the solubility characteristic of FIG. 7, the concentration of BTA does not precipitate at the operating temperature of the oil-filled electrical equipment and the concentration is 30 mg / It is possible to realize l.
【0016】実施例2.銅の代わりに黄銅を用いて、B
TAを0mg/l、15mg/l添加した絶縁油の溶解
銅量を測定した結果を図8に示す。銅よりは少ないもの
の、無添加油では銅が溶解していることが分かった。B
TAは黄銅に対しても溶解抑制効果がみられる。Example 2. Use brass instead of copper, B
FIG. 8 shows the result of measuring the dissolved copper amount of the insulating oil to which TA was added at 0 mg / l and 15 mg / l. Although less than copper, it was found that copper was dissolved in the additive-free oil. B
TA also has a dissolution inhibiting effect on brass.
【0017】実施例3.なお、上記各実施例では油入電
気機器に使用する絶縁油に直接BTAを添加する場合に
ついて説明したが、一旦、高芳香族成分の油にBTAを
溶解させて高濃度油を作り、しかる後、所定の濃度に希
釈するようにしてもよい。即ち、合成系絶縁油であるア
ルキルベンゼンや多環芳香族油は、芳香族成分30%以
上である。使用時には流動点近辺の飽和溶解度が問題と
なるが、製造時には常温近辺での飽和溶解度が高い方が
よい。図7にみられるように、アルキルベンゼン及び多
環芳香族油とも常温付近のBTAの飽和溶解度は鉱物油
系絶縁油よりも1桁程度高い。従って、このような高芳
香族油では鉱物油系絶縁油に比べて低温で多量のBTA
を溶解させることができる。以上で得られたBTA高濃
度油を最終的に電気機器で使用する絶縁油で希釈するこ
とにより、BTAを溶解する作業が簡便となる。Embodiment 3. In each of the above examples, the case where BTA is directly added to the insulating oil used in the oil-filled electrical equipment has been described, but once BTA is dissolved in the oil having a high aromatic component to make a high-concentration oil, and thereafter, Alternatively, it may be diluted to a predetermined concentration. That is, the synthetic insulating oil such as alkylbenzene and polycyclic aromatic oil has an aromatic content of 30% or more. When used, the saturated solubility near the pour point becomes a problem, but at the time of production, the saturated solubility near room temperature is preferably high. As shown in FIG. 7, both the alkylbenzene and the polycyclic aromatic oil have higher saturated solubilities of BTA at around room temperature than the mineral oil-based insulating oil by about one digit. Therefore, in such a high aromatic oil, a large amount of BTA is obtained at a low temperature as compared with the mineral oil type insulating oil.
Can be dissolved. By finally diluting the BTA high-concentration oil obtained above with the insulating oil used in electric equipment, the work of dissolving BTA becomes simple.
【0018】[0018]
【発明の効果】この発明は以上のように、絶縁油をその
芳香族成分量が10%以上のものとし、上記絶縁油中に
1,2,3−ベンゾトリアゾールを0.5mg/l以上
30mg/l以下添加したので、油中での銅もしくは銅
合金の溶解が抑制され、この溶解に基づく機器異常診断
に対する影響を除去して電気機器の確実な保守管理が可
能となる。As described above, according to the present invention, the insulating oil has an aromatic content of 10% or more, and 1,2,3-benzotriazole is contained in the insulating oil at 0.5 mg / l or more and 30 mg or more. Since the amount added is 1 / l or less, the dissolution of copper or copper alloy in the oil is suppressed, and the influence on the device abnormality diagnosis based on this dissolution is removed, and reliable maintenance and management of electric devices becomes possible.
【図1】この発明の実施例1に基づく実験結果で、市販
絶縁油1を使用した場合の溶解銅量とBTA添加量との
関係を示す図である。FIG. 1 is a graph showing the relationship between the amount of dissolved copper and the amount of BTA added when a commercially available insulating oil 1 is used, which is an experimental result based on Example 1 of the present invention.
【図2】この発明の実施例1に基づく実験結果で、市販
絶縁油2を使用した場合の溶解銅量とBTA添加量との
関係を示す図である。FIG. 2 is a graph showing the relationship between the amount of dissolved copper and the amount of BTA added when a commercially available insulating oil 2 is used, which is an experimental result based on Example 1 of the present invention.
【図3】比較例としての実験結果で、市販絶縁油1、2
を使用した場合の溶解銅量とDBPC添加量との関係を
示す図である。FIG. 3 is an experimental result as a comparative example, showing that commercially available insulating oils 1 and 2 are used.
It is a figure which shows the relationship between the amount of dissolved coppers, and the amount of DBPC additions when using.
【図4】この発明に基づく実験結果で、酸素共存下での
溶解銅量とBTA添加量との関係を示す図である。FIG. 4 is a diagram showing the relationship between the amount of dissolved copper and the amount of BTA added in the coexistence of oxygen, as an experimental result based on the present invention.
【図5】参考例としての実験結果で、硫黄量と溶解銅量
との関係を示す図である。FIG. 5 is a diagram showing the relationship between the amount of sulfur and the amount of dissolved copper, which is an experimental result as a reference example.
【図6】参考例としての実験結果で、溶解銅量と可燃性
ガス量との関係を示す図である。FIG. 6 is a diagram showing the relationship between the amount of dissolved copper and the amount of combustible gas, which is an experimental result as a reference example.
【図7】芳香族成分量をパラメータとしたBTA飽和溶
解度の温度特性を示す図である。FIG. 7 is a diagram showing temperature characteristics of BTA saturated solubility with the amount of an aromatic component as a parameter.
【図8】この発明の実施例2に基づく実験結果で、市販
絶縁油1、2を使用した場合の溶解銅量とBTA添加量
との関係を示す図である。FIG. 8 is a graph showing the relationship between the amount of dissolved copper and the amount of BTA added when using commercially available insulating oils 1 and 2 as an experimental result based on Example 2 of the present invention.
【図9】試料油としての市販絶縁油1、2の特性を表の
形で示す図である。FIG. 9 is a table showing characteristics of commercially available insulating oils 1 and 2 as sample oils.
Claims (1)
成体を浸漬する油入電気機器において、 上記絶縁油をその芳香族成分量が10%以上のものと
し、上記絶縁油中に1,2,3−ベンゾトリアゾールを
0.5mg/l以上30mg/l以下添加したことを特
徴とする油入電気機器。1. An oil-filled electrical device in which a component made of copper or a copper alloy is immersed in insulating oil, wherein the insulating oil has an aromatic component content of 10% or more, and An oil-filled electric device comprising 2,3-benzotriazole added in an amount of 0.5 mg / l or more and 30 mg / l or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23077492A JPH0676635A (en) | 1992-08-31 | 1992-08-31 | Oil-immersed electric appliance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23077492A JPH0676635A (en) | 1992-08-31 | 1992-08-31 | Oil-immersed electric appliance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0676635A true JPH0676635A (en) | 1994-03-18 |
Family
ID=16913057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23077492A Pending JPH0676635A (en) | 1992-08-31 | 1992-08-31 | Oil-immersed electric appliance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0676635A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010028022A (en) * | 2008-07-24 | 2010-02-04 | Mitsubishi Electric Corp | Additive dissolving device |
WO2011152177A1 (en) * | 2010-06-02 | 2011-12-08 | 三菱電機株式会社 | Diagnosis method and diagnosis apparatus for oil-filled electrical apparatus |
JP5186061B1 (en) * | 2011-11-30 | 2013-04-17 | 三菱電機株式会社 | Method for suppressing copper sulfide formation in oil-filled electrical equipment |
US20130216698A1 (en) * | 2011-04-08 | 2013-08-22 | Mitsubishi Electric Corporation | Method for inhibiting generation of copper sulfide |
JP2014045212A (en) * | 2013-11-05 | 2014-03-13 | Mitsubishi Electric Corp | Estimation method of copper sulfide formation amount in oil-filled electrical apparatus, diagnostic method of abnormality occurrence, estimation method of initial concentration of dibenzyl disulfide in insulation oil, and diagnostic method of possibility of abnormality occurrence |
JP5516601B2 (en) * | 2009-12-28 | 2014-06-11 | 三菱電機株式会社 | Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality |
CN103959409A (en) * | 2011-11-28 | 2014-07-30 | 三菱电机株式会社 | Method of diagnosing oil-filled electrical apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374007A (en) * | 1989-08-16 | 1991-03-28 | Mitsubishi Electric Corp | Oil immersed electric equipment |
-
1992
- 1992-08-31 JP JP23077492A patent/JPH0676635A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374007A (en) * | 1989-08-16 | 1991-03-28 | Mitsubishi Electric Corp | Oil immersed electric equipment |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010028022A (en) * | 2008-07-24 | 2010-02-04 | Mitsubishi Electric Corp | Additive dissolving device |
JP5516601B2 (en) * | 2009-12-28 | 2014-06-11 | 三菱電機株式会社 | Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality |
WO2011152177A1 (en) * | 2010-06-02 | 2011-12-08 | 三菱電機株式会社 | Diagnosis method and diagnosis apparatus for oil-filled electrical apparatus |
CN102870176A (en) * | 2010-06-02 | 2013-01-09 | 三菱电机株式会社 | Diagnosis method and diagnosis apparatus for oil-filled electrical apparatus |
JP5337303B2 (en) * | 2010-06-02 | 2013-11-06 | 三菱電機株式会社 | Diagnostic method and apparatus for oil-filled electrical equipment |
US20130216698A1 (en) * | 2011-04-08 | 2013-08-22 | Mitsubishi Electric Corporation | Method for inhibiting generation of copper sulfide |
CN103299380A (en) * | 2011-04-08 | 2013-09-11 | 三菱电机株式会社 | Process for suppressing copper sulphide production |
US8728565B2 (en) * | 2011-04-08 | 2014-05-20 | Mitsubishi Electric Corporation | Method for inhibiting generation of copper sulfide |
CN103959409A (en) * | 2011-11-28 | 2014-07-30 | 三菱电机株式会社 | Method of diagnosing oil-filled electrical apparatus |
JP5186061B1 (en) * | 2011-11-30 | 2013-04-17 | 三菱電機株式会社 | Method for suppressing copper sulfide formation in oil-filled electrical equipment |
US9396835B2 (en) | 2011-11-30 | 2016-07-19 | Mitsubishi Electric Corporation | Method for suppressing copper sulfide generation in oil-filled electrical equipment |
JP2014045212A (en) * | 2013-11-05 | 2014-03-13 | Mitsubishi Electric Corp | Estimation method of copper sulfide formation amount in oil-filled electrical apparatus, diagnostic method of abnormality occurrence, estimation method of initial concentration of dibenzyl disulfide in insulation oil, and diagnostic method of possibility of abnormality occurrence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Maina et al. | Corrosive sulfur effects in transformer oils and remedial procedures | |
JPH0676635A (en) | Oil-immersed electric appliance | |
Kato et al. | Effect of DBDS concentration and heating duration on copper sulfide formation in oil-immersed transformer insulation | |
Sevastyanova et al. | Copper release kinetics and ageing of insulation paper in oil-immersed transformers | |
Cong et al. | Protective performance of different passivators on oil-paper insulation containing multiple corrosive sulphides | |
US2539261A (en) | Fuse | |
CN105223217A (en) | The method that in detecting insulating oil, active sulfur compound exists in situation is there is based on oxygen | |
US2339091A (en) | Stabilized halogenated compound and apparatus containing it | |
JP4852186B1 (en) | Method for suppressing copper sulfide formation | |
US2453493A (en) | Halogenated hydrocarbon composition | |
US2627504A (en) | Dielectric containing halogenated aromatic hydrocarbon and mono ortho tolyl biguanide as corrosion inhibitor | |
US3362908A (en) | Electrical apparatus and dielectric material therefor | |
Samarasinghe et al. | A review on influencing factors of sulphur corrosion and metal passivation in power transformers | |
US2636074A (en) | Stabilized halogenated dielectric material | |
KR20210025409A (en) | ETCHING COMPOSITION WITH HIGH SELECTIVITY TO TiN LAYER USING HYDROGEN PEROXIDE | |
US2636006A (en) | Stabilization of halogenated compounds | |
US3094583A (en) | High voltage electric power cables | |
US2391685A (en) | Stabilization of halogenated compounds | |
CN103140756A (en) | Method for testing of electric insulating oil, method for treatment of electric insulating oil, and method for maintenance of oil-filled electric device | |
KR20210051085A (en) | An etchant composition and a pattern formation method using the same | |
JP5516601B2 (en) | Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality | |
Jiang et al. | Improvement of copper sulfur corrosion resistant based on cold-rolled deformation | |
Facciotti et al. | XPS study on direct detection of passivator Irgamet 39™ on copper surfaces aged in insulating mineral oil | |
JPH0374007A (en) | Oil immersed electric equipment | |
US2391689A (en) | Stabilization of halogenated compounds |