JPH0676602B2 - Manufacturing method of germanium molding granules that impart bioactivity - Google Patents

Manufacturing method of germanium molding granules that impart bioactivity

Info

Publication number
JPH0676602B2
JPH0676602B2 JP60253960A JP25396085A JPH0676602B2 JP H0676602 B2 JPH0676602 B2 JP H0676602B2 JP 60253960 A JP60253960 A JP 60253960A JP 25396085 A JP25396085 A JP 25396085A JP H0676602 B2 JPH0676602 B2 JP H0676602B2
Authority
JP
Japan
Prior art keywords
germanium
powder
molded
melting point
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60253960A
Other languages
Japanese (ja)
Other versions
JPS62112701A (en
Inventor
武義 山口
Original Assignee
武義 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武義 山口 filed Critical 武義 山口
Priority to JP60253960A priority Critical patent/JPH0676602B2/en
Publication of JPS62112701A publication Critical patent/JPS62112701A/en
Publication of JPH0676602B2 publication Critical patent/JPH0676602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 ゲルマニウムが半導体材料としてではなく、生体活性に
も効果があるとされ、有機ゲルマニウムは勿論のこと、
ゲルマニウム元素単独でも生体に接触させると有効であ
ると一般に言われるようになった。そのためゲルマニウ
ムの成形粒が市販されるに至った。しかしゲルマニウム
は極めて脆い物質であるため、重量物の下になったり、
強い衝撃を受けると粉砕破損するという欠点がある。ゲ
ルマニウムが価格の安いものならば新しい成形粒を用い
ればよい訳であるが、非常に高価な物質であるため、ゲ
ルマニウム粉末の破損は使用者にとっては大きな損失で
ある。本発明はこのような危険をなくすためになされた
ものである。
DETAILED DESCRIPTION OF THE INVENTION Germanium is said to be effective not only as a semiconductor material but also as a bioactive substance. Not to mention organic germanium,
It has come to be generally said that the germanium element alone is effective when brought into contact with a living body. Therefore, germanium molding particles have come to be marketed. However, since germanium is an extremely brittle substance,
It has the drawback of being crushed and broken when subjected to a strong impact. If the price of germanium is low, it is possible to use new molding particles, but since germanium powder is a very expensive material, breakage of germanium powder is a great loss to the user. The present invention has been made to eliminate such a danger.

即ち本発明は破損の心配のない生理活性を付与するゲル
マニウム成形粒を供給することのできる製造法を提供す
ることを目的としている。
That is, an object of the present invention is to provide a manufacturing method capable of supplying germanium compacted particles which impart physiological activity without fear of breakage.

ゲルマニウムの生体活性化作用はゲルマニウム原子の外
側電子の運動特異性によるものといわれており、かつ人
体無毒の物質であるため有機塩として、あるいは鉱水と
して内服されているのであるが、皮膚接触使用も前記し
た原子の外側電子の運動特異性の作用を期待し使用され
ているのである。従ってこのような作用効果をゲルマニ
ウム粒子にも期待しているのならば成形粒子のゲルマニ
ウムは表層にだけあればよい筈であり、他の物質の成形
粒子の表面層だけにゲルマニウムが存在すればよいこと
になる。そして事実もその様である。
The biological activation effect of germanium is said to be due to the kinetic peculiarity of the electrons outside the germanium atom, and since it is a substance that is non-toxic to the human body, it is taken internally as an organic salt or as mineral water, but it can also be used on skin. It is used in anticipation of the action of the motion singularity of the outer electrons of the atom. Therefore, if one expects such an effect on germanium particles, the germanium in the molded particles should be present only in the surface layer, and the germanium should be present only in the surface layer of the molded particles of other substances. It will be. And so is the fact.

しかしゲルマニウムの被覆はスパッタリングや真空蒸着
によって行うが、ゲルマニウムの脆さの故に完全な被覆
したものを得ることはかなり難しく、又ゲルマニウム粒
使用者の立場からすれば粒全体がゲルマニウムである方
が遥かに望ましいという心理が生ずるのも尤もなことで
ある。
However, although the coating of germanium is performed by sputtering or vacuum evaporation, it is rather difficult to obtain a completely coated one because of the brittleness of germanium, and from the standpoint of the user of the germanium grain, it is much better that the whole grain is germanium. It is also plausible that there will be a desirable psychology.

一方ゲルマニウムを単独で粒とすると高価となるばかり
でなく、前述のようにゲルマニウムは極めて脆く破砕粉
化し易いという欠点がある。本発明はこのような矛盾を
も解決しようとするものである。
On the other hand, if the grains of germanium are used alone, they are not only expensive, but as described above, germanium is extremely brittle and easily crushed into powder. The present invention is intended to solve such a contradiction.

本発明に使用するゲルマニウムの粉末としては200メッ
シュ程度のものが好ましく、余り微細にすぎるものを用
いると成形後の粒子中のゲルマニウム粒子が互いに隔離
される恐れがある。この点やゝ大粒の粉末の混在は障害
にはならない。
The germanium powder used in the present invention is preferably about 200 mesh, and if too fine one is used, the germanium particles in the particles after molding may be separated from each other. This point and the mixing of large powders are not obstacles.

第1発明および第2発明に用いる熱熔融性バインダー物
質としては種々多様なものが使用可能であるが、ゲルマ
ニウムの融点(958.5℃)より低い融点のものでなけれ
ばならず、又粒子径もなるべく小さいミクロン単位の径
のものが望ましい。又成形の容易さから言えば出来るだ
け融点の低いもの、できれば約600℃以下のものがよ
い。
A wide variety of heat-fusible binder materials can be used in the first and second inventions, but the melting point must be lower than the melting point of germanium (958.5 ° C), and the particle size should be as small as possible. It is desirable that the diameter is in the small micron range. From the viewpoint of ease of molding, it is preferable that the melting point be as low as possible, preferably about 600 ° C or lower.

熱熔融性バインダー物質としては無機物質、有機物質の
多くのものが使用可能である。無機物質中金属としては
錫(融点231.9℃)やその合金、あるいは亜鉛(融点419
℃)やその合金等の微粉末が使用可能であり、金属以外
でも低融点ガラスのフリット、低融点のセラミック粉末
(釉薬成分の如き)が使用することができる。更に有機
のバインダー物質としては乳化重合によって得られる各
種の熱可塑性高分子重合体粉末あるいはフェノール樹脂
のような熱硬化性樹脂の初期縮合物の微粉末の使用が可
能である。
As the heat-fusible binder substance, many inorganic and organic substances can be used. As the metal in the inorganic substance, tin (melting point 231.9 ° C) or its alloy, or zinc (melting point 419)
C.) and its alloys, etc., and fine powders such as low-melting-point glass frit and low-melting-point ceramic powder (such as glaze component) can be used in addition to metals. Further, as the organic binder substance, it is possible to use various thermoplastic polymer powders obtained by emulsion polymerization or fine powders of precondensates of thermosetting resins such as phenol resins.

熱熔融性バインダー物質の使用量は容量比で5〜50%程
度の使用が望ましい。5%未満ではゲルマニウム粒子相
互の結着が充分でなく50%以上ではゲルマニウム粒子相
互が接触しなくなる恐れがあるからである。
The amount of the hot-melt binder material used is preferably about 5 to 50% by volume. If it is less than 5%, the germanium particles are not sufficiently bound to each other, and if it is 50% or more, the germanium particles may not contact each other.

この場合のゲルマニウム成形粒の成形は、バインダー物
質の融点に近い(場合によっては高い)温度に加熱した
原料を普通のペレタイザーにより圧縮成形すればよく、
場合によっては原料を棒状に押し出してペレット化し、
このペレットを再プレスしてもよい。又これ等手段とは
別に、先づ原料をプレス成形した後成形品をバインダー
の融点温度に昇温させてもよい。何れにしても成形手段
自体は任意の手段を採用すればよい。なお成形粒の形状
は任意であるが、直径3〜10mm程度の中高の円盤状のも
のが一般的には望ましい。
In this case, the germanium molded particles can be molded by compressing a raw material heated to a temperature close to the melting point of the binder substance (in some cases, high) with an ordinary pelletizer,
Depending on the case, the raw material is extruded into a rod shape and pelletized,
The pellets may be repressed. Separately from these means, the raw material may be first press-molded and then the molded product may be heated to the melting point of the binder. In any case, as the molding means itself, any means may be adopted. The shape of the molding particles is arbitrary, but it is generally desirable that the shape is a medium-high disk shape having a diameter of 3 to 10 mm.

以上のようにして得られた成形物は、そのままの状態で
ゲルマニウム成形粒として商品化し得るが、この成形粒
をベースとし、この上に更にゲルマニウムで被覆するこ
とが望ましい。ゲルマニウム被覆の成形手段としてはス
パッタリングあるいは通常の真空蒸着手段により蒸着さ
せればよい。
The molded product obtained as described above can be commercialized as a germanium molded particle as it is, but it is desirable that the molded particle is used as a base and further coated with germanium. The germanium coating may be formed by sputtering or vapor deposition by a usual vacuum vapor deposition means.

次に第3発明について説明する。この場合に用いるゲル
マニウムの融点よりも高い融点の貴金属の微粉末等は白
金、パラジウム、金、銀、銅のような金属で比較的柔ら
かく粘性に富み、かつ電気導電性に優れた金属であり、
これ等の中でも銀が最も好ましい。このような貴金属の
微粉末の粒度はゲルマニウム粉末の粒度と同等、又はそ
れ以下の粒形のものでもよい。又、混合比はゲルマニウ
ム粉末に対し容量比で3〜30%程度であるが、現実には
8〜15%程度が望ましい。加圧成形は金属型中に混合粉
末を入れ1〜10t/cm2でよい。
Next, the third invention will be described. Fine powder of noble metal having a melting point higher than that of germanium used in this case is a metal such as platinum, palladium, gold, silver, and copper, which is relatively soft and rich in viscosity, and is a metal having excellent electric conductivity,
Of these, silver is the most preferable. The particle size of such a noble metal fine powder may be the same as or smaller than the particle size of the germanium powder. The mixing ratio is about 3 to 30% by volume with respect to the germanium powder, but in reality it is preferably about 8 to 15%. The pressure molding may be carried out at 1-10 t / cm 2 by putting the mixed powder in a metal mold.

加圧成形したものは次に加熱して焼結を行う。焼結の温
度はゲルマニウムの融点よりも低い温度でなければなら
ず、銀粉末を用いた時は600〜800℃の範囲内が良い。ゲ
ルマニウムの融点近く、即ち900℃を越えると、両金属
間に生ずる合金部分の融点低下による成形物の液化現像
がおこり、溶融金属が滴下する恐れがある。この焼結は
成形後に炉(連続炉)で普通行うが、成形圧力の高い場
合には型自体を加熱しておき高圧で成形するだけでもよ
い。特に金や白金を用いる場合にはこれ等金属はかなり
柔らかいので、この方法は好ましい方法である。
The pressure molded product is then heated and sintered. The sintering temperature must be lower than the melting point of germanium, and when silver powder is used, it is preferably in the range of 600 to 800 ° C. When the temperature is close to the melting point of germanium, that is, above 900 ° C., the melting point of the alloy portion between the two metals is lowered, so that the molded product is liquefied and developed, and the molten metal may drop. This sintering is usually carried out in a furnace (continuous furnace) after molding, but when the molding pressure is high, it is sufficient to heat the mold itself and then mold at high pressure. Especially when gold or platinum is used, these metals are quite soft, so this method is preferable.

以下実施例を示す。Examples will be shown below.

実施例1 150メッシュ通過のゲルマニウム粉末100容量部に0.2%
のアルギン酸水溶液を少量(2容量部)吹き付けて粉末
を濡らし、これに直ちに蒸溜法により得られた錫微粉末
を25容量部加えて混和し、直径5mm、厚さ2mmの型でプレ
ス成形した。この成形物を400℃に保持した炉中で30分
焼成後取り出した。得られた成形物は外見はゲルマニウ
ム単独の成形物と変らず、しかも金属錫と同様のある程
度粘性をもち破砕し難いものであった。なおアルギン酸
水溶液は常温での仮結着剤として用いたものであるが、
焼成段階で水分は完全に揮発し、僅かに分解に際し生じ
た炭素分が残っても、炭素は導電性であるのでゲルマニ
ウム粒の作用効果の障害にはならなかった。
Example 1 0.2% in 100 parts by volume of germanium powder passing through 150 mesh
A small amount (2 parts by volume) of the alginic acid aqueous solution was sprayed to wet the powder, and 25 parts by volume of tin fine powder obtained by the distillation method was immediately added to and mixed with the powder, followed by press molding with a mold having a diameter of 5 mm and a thickness of 2 mm. This molded product was fired in a furnace maintained at 400 ° C. for 30 minutes and then taken out. The appearance of the obtained molded product was the same as that of the germanium alone, and it had the same degree of viscosity as metallic tin and was difficult to crush. The alginic acid aqueous solution was used as a temporary binder at room temperature,
Moisture was completely volatilized during the firing step, and even if a small amount of carbon was generated during decomposition, carbon did not interfere with the action and effect of the germanium particles because the carbon was electrically conductive.

実施例2 前例と同じゲルマニウム粉100部を霧で濡らし、これに1
0容量部の乳化重合によって得られた酢酸ビニル−ポリ
ビニルアルコール共重合体樹脂粉末を均一に混合し、25
0℃に加熱した前例と同じ型でプレス成形し、取り出し
た。成形物はやゝゲルマニウム単独粒に劣るが、靱性は
非常に大きく破砕し難いものであった。なお本例におい
ては加熱は使用樹脂の軟化温度に達すればよく、樹脂を
熔融させる必要はない。又水分は混和を均一にするため
に加えたものである。
Example 2 100 parts of the same germanium powder as in the previous example was wetted with a mist, and
Vinyl acetate-polyvinyl alcohol copolymer resin powder obtained by emulsion polymerization of 0 parts by volume was uniformly mixed, and
It was press-molded with the same mold as the previous example heated to 0 ° C. and taken out. The molded product was slightly inferior to the germanium single particle, but the toughness was very large and it was difficult to crush. In this example, the heating need only reach the softening temperature of the resin used, and it is not necessary to melt the resin. Water is added to make the mixing uniform.

実施例3 前2例と同じゲルマニウム粉に融点560℃のガラス微粉
末15容量部を加え実施例1と同様に成形した。この成形
物を炉に入れ600℃で10分間焼成した。外観は実施例1
で得たものより良好であったが、耐破砕性はやゝ劣って
いる。しかしゲルマニウム単独粒に比べれば耐破砕性は
遥かに高い。
Example 3 The same germanium powder as in the previous two examples was added with 15 parts by volume of fine glass powder having a melting point of 560 ° C. and molded in the same manner as in Example 1. This molded product was placed in a furnace and baked at 600 ° C. for 10 minutes. Appearance is Example 1
Although it was better than that obtained in step 1, the crush resistance was slightly inferior. However, the crush resistance is much higher than that of germanium alone.

実施例4 以上の三実施例により得られたものの表面に、常法に従
いゲルマニウムの被覆を真空蒸着により行った。得られ
た粒の外観は何れも同様で、ゲルマニウム単独の粒と変
るところがなかった。
Example 4 The surface of the one obtained in the above three examples was coated with germanium by vacuum deposition according to a conventional method. The appearance of each of the obtained grains was the same, and there was no difference from the grains of germanium alone.

実施例5 150メッシュ通過のゲルマニウム粉末100容量部に200メ
ッシュ通過の銀粉末を容量比で8%加え混合し、これを
直径6mmの型内に前記金属混合物粉末を入れ、圧力1ト
ンでプレス成形し直径6mm厚さ2mmの成形物を得た。この
成形物を取り出し連続式加熱炉中で730℃に加熱焼結し
て得られた製品は非常に靱性に富みかつ硬く、外観は全
くゲルマニウム単独の成形粒と同様であった。又、この
成形物は良導電性であるため、他のバインダーを用いた
ものよりもゲルマニウム特有の性質がよく発揮されてい
るように使用時感じられた。
Example 5 To 100 parts by volume of germanium powder passing through 150 mesh, 8% by volume of silver powder passing through 200 mesh was added and mixed, and this metal mixture powder was put into a mold having a diameter of 6 mm and press-molded at a pressure of 1 ton. Then, a molded product having a diameter of 6 mm and a thickness of 2 mm was obtained. The molded product was taken out and heated and sintered at 730 ° C. in a continuous heating furnace, and the product obtained was extremely tough and hard, and its appearance was completely similar to that of germanium alone. Further, since this molded product had good conductivity, it was felt at the time of use that the properties peculiar to germanium were better exhibited than those using other binders.

実施例6 前例の銀粉を変え金粉を用い前例に従ってゲルマニウム
粒を製造した。この場合の製品は光沢が多少金色がかっ
て見えた他は効果上前例と何等変るところはなかった。
Example 6 Germanium particles were produced according to the previous example using gold powder instead of the silver powder of the previous example. In this case, the product had no difference from the previous example in effect, except that the product had a slightly golden luster.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ゲルマニウム粉末に、ゲルマニウムの融点
より低い熱熔融性バインダー物質の微粉末を、ゲルマニ
ウム粉末に対し容量比で5〜50%加えて混和し加熱成形
することを特徴とする生理活性を付与するゲルマニウム
成形粒の製造法。
1. A physiological activity characterized in that fine powder of a heat-fusible binder substance having a melting point lower than that of germanium is added to germanium powder in an amount of 5 to 50% by volume ratio and mixed to heat-mold. Method of manufacturing germanium molding particles to be imparted.
【請求項2】ゲルマニウム粉末に、ゲルマニウムの融点
より低い熱熔融性バインダー物質の微粉末を、ゲルマニ
ウム粉末に対し容量比で5〜50%加えて混和し加熱成形
し、次いでこの粒子表面にゲルマニウムを蒸着させるこ
とを特徴とする生理活性を付与するゲルマニウム成形粒
の製造法。
2. A fine powder of a heat-fusible binder substance having a melting point lower than that of germanium is added to germanium powder in an amount of 5 to 50% by volume ratio and mixed, and the mixture is heat-molded. A method for producing germanium molded particles which imparts physiological activity, characterized by vapor deposition.
【請求項3】ゲルマニウム粉末にゲルマニウムの融点よ
りも高い融点をもつ貴金属の微粉末をゲルマニウム粉末
に対し容量比で3〜30%加え混合し加圧成形し、焼結す
ることを特徴とする生理活性を付与するゲルマニウムの
製造法。
3. Physiology, characterized in that fine powder of noble metal having a melting point higher than that of germanium is added to germanium powder in a volume ratio of 3 to 30%, mixed, pressure-molded and sintered. A method for producing germanium that imparts activity.
JP60253960A 1985-11-13 1985-11-13 Manufacturing method of germanium molding granules that impart bioactivity Expired - Fee Related JPH0676602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253960A JPH0676602B2 (en) 1985-11-13 1985-11-13 Manufacturing method of germanium molding granules that impart bioactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253960A JPH0676602B2 (en) 1985-11-13 1985-11-13 Manufacturing method of germanium molding granules that impart bioactivity

Publications (2)

Publication Number Publication Date
JPS62112701A JPS62112701A (en) 1987-05-23
JPH0676602B2 true JPH0676602B2 (en) 1994-09-28

Family

ID=17258348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253960A Expired - Fee Related JPH0676602B2 (en) 1985-11-13 1985-11-13 Manufacturing method of germanium molding granules that impart bioactivity

Country Status (1)

Country Link
JP (1) JPH0676602B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696039A (en) * 1979-12-29 1981-08-03 Inoue Japax Res Inc Dental amalgam
JPS5735655A (en) * 1980-08-12 1982-02-26 G C Dental Ind Corp Alloy powder for dental silver amalgam
JPS59110755A (en) * 1982-12-15 1984-06-26 Hitachi Metals Ltd Composite alloy powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696039A (en) * 1979-12-29 1981-08-03 Inoue Japax Res Inc Dental amalgam
JPS5735655A (en) * 1980-08-12 1982-02-26 G C Dental Ind Corp Alloy powder for dental silver amalgam
JPS59110755A (en) * 1982-12-15 1984-06-26 Hitachi Metals Ltd Composite alloy powder

Also Published As

Publication number Publication date
JPS62112701A (en) 1987-05-23

Similar Documents

Publication Publication Date Title
JPH06215903A (en) Electric resistance element
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
CN100365747C (en) Electric contact material for low-voltage electric appliance
JPH0676602B2 (en) Manufacturing method of germanium molding granules that impart bioactivity
JP3138965B2 (en) Material for electrical contacts made of silver with carbon
JPH08315825A (en) Manufacture of electrode for battery
US20060162381A1 (en) Method of manufacturing tin oxide-based ceramic resistors & resistors obtained thereby
US4377541A (en) Process for preparing low voltage varistors
JP3105294B2 (en) Granulation method of tantalum powder
JPS6123849B2 (en)
JPS6360502A (en) Temperature sensor
WO2022106613A1 (en) Electrically conductive, porous sintered body
KR20210119910A (en) Method for manufacturing molybdenum copper sintered alloy
JPS62243726A (en) Cu-tib2 composite sintered material
JPH02196012A (en) Self-hardening particulate chaff charcoal
JPH0136773B2 (en)
JPS5446110A (en) Material for electrical contact point material and its preparation
JPS60131963A (en) Target plate for sputtering
US3216955A (en) Electrical resistor
CN212754268U (en) Ceramic heating body
US3275572A (en) Refractory composition and electrical resistance made therefrom
JPS61240962A (en) Solid aromatic product having surface conductivity
JP3057989B2 (en) Manufacturing method of ceramic electronic components
US4418009A (en) Electrical resistor and method of making the same
KR100318666B1 (en) Manufacturing Method of Liquid Dissipated Metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees