JPS6123849B2 - - Google Patents

Info

Publication number
JPS6123849B2
JPS6123849B2 JP6807079A JP6807079A JPS6123849B2 JP S6123849 B2 JPS6123849 B2 JP S6123849B2 JP 6807079 A JP6807079 A JP 6807079A JP 6807079 A JP6807079 A JP 6807079A JP S6123849 B2 JPS6123849 B2 JP S6123849B2
Authority
JP
Japan
Prior art keywords
powder
silver
base metal
metal oxide
extrusion direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6807079A
Other languages
Japanese (ja)
Other versions
JPS54158311A (en
Inventor
Shurainaa Horusuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS54158311A publication Critical patent/JPS54158311A/en
Publication of JPS6123849B2 publication Critical patent/JPS6123849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)

Description

【発明の詳細な説明】 本発明は銀・卑金属酸化物複合粉末
(AgMeO)から成る電力用低電圧開閉器のための
電気接触子に用いる方向性結晶組織をもつ異方性
焼結複合材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an anisotropic sintered composite material with a oriented crystal structure for use in electrical contacts for low voltage switchgears for power use, which is made of silver/base metal oxide composite powder (AgMeO). Regarding the manufacturing method.

AgMeO系の接触子材料とその製法は公知であ
る(ドイツ連邦共和国特許第1029571号明細書)。
その有効な総合特性のためにそれは電力用低電圧
開閉器中の接触子として用いられる。酸化の際に
銀の素地の内部に微細に析出しない卑金属との銀
合金が存在する。この場合には酸化は主として板
または粉末粒子の表面における被覆層として起き
る。複合粉末から成る成形部品の粉末治金法製造
のためにはこれまで沈澱粉末または内部酸化合金
粉末、すなわち銀格子の中に細かい酸化析出物を
持つ粉末が用いられた。接触子の粉末治金法製造
のためにはこれまで専ら内部酸化複合粉末が用い
られた。
AgMeO-based contact materials and their production methods are known (German Patent No. 1029571).
Due to its effective overall properties it is used as a contact in low voltage switchgears for power applications. There are silver alloys with base metals that do not precipitate finely inside the silver matrix during oxidation. In this case, oxidation occurs primarily as a coating layer on the surface of the plates or powder particles. To date, precipitated powders or internally oxidized alloy powders, ie powders with fine oxidized precipitates in the silver lattice, have been used for the powder metallurgical production of molded parts made of composite powders. Up to now, only internally oxidized composite powders have been used for the powder metallurgy production of contacts.

本発明は電気接触子用材料として上述の種類の
材料の製造方法を更に改善された接触特性をもつ
ように発展させることを目的とする。
The object of the invention is to develop the method for producing materials of the above-mentioned type as materials for electrical contacts with further improved contact properties.

この目的は本発明によればスズ、亜鉛、銅のい
ずれか一つの卑金属と銀との合金粉末を酸化させ
ることによりこの合金粉末粒子の周りに卑金属酸
化物の外皮層を形成させ、次いで生成された銀・
卑金属酸化物複合粉末を成形体に圧縮し、焼結
し、さらにこの成形体を熱間押出しにより変形加
工し、この変形加工の際前記卑金属酸化物の外皮
層を破つて銀結晶を押出し方向に並列させること
によつて達成される。
According to the invention, this purpose is achieved by oxidizing an alloy powder of silver and a base metal of tin, zinc, or copper to form an outer layer of base metal oxide around the alloy powder particles, and then forming a base metal oxide shell layer around the alloy powder particles. Silver
The base metal oxide composite powder is compressed into a compact, sintered, and then this compact is deformed by hot extrusion, and during this deformation, the outer skin layer of the base metal oxide is broken to release silver crystals in the extrusion direction. This is achieved by paralleling.

これまで卑金属酸化物から成る外皮層酸化を生
ずる銀合金は、不均一な酸化物分布が恐れられた
ために接触子の製造には用いられなかつた。しか
し驚くべきことには外皮層が酸化された金属粉
末、例えば表面にZnO層を有するAgZnO,SnO2
層を有するAgSnO2またはCuO層を有する
AgCuOを縁の固い圧縮体にち密化し焼結によつ
て強化することができることが判明した。本発明
においては、熱間変形加工の加工率を特に大き
く、例えば50%以上にすると、著しい組織変化が
生じるので有利である。変形加工の際に粉末粒子
の上の酸化物外皮層は破れ、押出し方向に平行に
存在するベイリービーズ状の模様に変形する。こ
の際現れる組織変化はこの接触材料の総合特性に
極めて積極的に作用する。この場合問題になるに
は溶着力、消耗値および接触抵抗値である。
Until now, silver alloys that produce oxidation of the outer skin layer of base metal oxides have not been used in the manufacture of contacts because of fear of non-uniform oxide distribution. However, surprisingly, metal powders with an oxidized outer layer, such as AgZnO and SnO 2 with a ZnO layer on the surface,
AgSnO with layer or with CuO layer
It has been found that AgCuO can be densified into hard-edged compacts and strengthened by sintering. In the present invention, it is advantageous if the processing rate of the hot deformation process is particularly high, for example, 50% or more, since significant structural changes occur. During the deformation process, the oxide skin layer on the powder particles is broken and deformed into a Bailey bead-like pattern that is parallel to the extrusion direction. The structural changes that occur in this case have a very positive effect on the overall properties of the contact material. In this case, problems include welding force, wear value, and contact resistance value.

図と実施例を用いて本発明をなお詳細に述べ
る。
The invention will be explained in more detail with the aid of figures and examples.

第1図および第2図は本発明方法で造られた
AgSnO2(SnO210.5重量%)の顕微鏡組織を、第
3図および第4図は本発明方法で造られた
AgZnO(ZnO8重量%)の顕微鏡組織を示す。第
1図および第3図にそれぞれ押出方向に平行に切
断した顕微鏡組織を示す。第2図および第4図に
押出方向に垂直に切断した顕微鏡組織を示す。
Figures 1 and 2 were made using the method of the present invention.
Figures 3 and 4 show the microscopic structure of AgSnO 2 (SnO 2 10.5% by weight) produced by the method of the present invention.
The microscopic structure of AgZnO (ZnO 8% by weight) is shown. FIGS. 1 and 3 show microscopic structures cut parallel to the extrusion direction, respectively. FIGS. 2 and 4 show microscopic structures cut perpendicular to the extrusion direction.

例 1 AgSnO2(SnO210.5重量%で15.3容積%に対応
する)接触子材料の製造。金属銀と錫から
Ag91.5重量%、Sn8.5重量%の組成の合金をつく
つた。融解した合金は加圧噴霧法によつて金属粉
末にした。0.15mm以下の合金粉末の篩分けの後に
800℃において8時間空気中で熱処理した。粉末
のより強い粘結を避けるために、初めはしばし
ば、後には半時間間隔で撹拌した。酸化の完全さ
は重量増加により調節した。埋込まれた粉末を金
相学的研磨のために標本にした。酸化錫は実際に
は粉末粒子の表面だけを覆う。内部酸化、すなわ
ち粉末粒子の内部における微細析出はほとんど証
明できない。AgSnO2(SnO210.5重量%)粉末を
800MN/m2で直径38mmの円柱状成形体に圧縮し
た。空気中での850℃における1時間の焼結の後
に焼結体を600℃以上の温度において押出した。
10mmの押出直径は93.1%の加工率を生ずる。こゝ
でも押出棒の空孔率は1%以下である。接触子材
料は全く特色のある組織を示し公知の押出し接触
子材料と相違している。押出方向に平行の研磨面
による第1図(倍率200:1)に長く伸ばされた
銀体がSnO2中間層と共に明らかに認められる。
押出方向に垂直の研磨面による第2図(倍率
200:1)では組織は比較的一様である。なぜな
らこの場合は長く伸ばされた銀結晶はその伸長方
向に垂直に切断されているからである。試験用遮
断器(「Z.f.Werkstofftechnik/J.of Materials
Technology」第7巻381〜389頁(1976年)参
照)において混合粉末からつくられた同じ組成の
押出しAgSnO2材料と遮断試験値を比較した。押
出方向に平行な接触子材料の使用の際には消耗値
は15%だけ混合粉末の場合よりも良好になつてお
り、押出方向に垂直な接触面で使用した際には約
30%だけ良好になつている。それに対応する溶着
力は両方の材料において100Nであり、すなわち
その材料は非常に良好な投入能力を持つ。接触抵
抗Rk1(mΩでRk99.9値)は本発明における材料
においては比較できるAgZnO(ZnO8%)材料に
おけるよりも若干高くなつている。
Example 1 Production of contact material AgSnO 2 (10.5% by weight of SnO 2 corresponding to 15.3% by volume). from metal silver and tin
An alloy with a composition of 91.5% Ag and 8.5% Sn was created. The molten alloy was made into metal powder by a pressure spray method. After sieving the alloy powder below 0.15mm
Heat treatment was performed at 800° C. for 8 hours in air. To avoid stronger caking of the powder, it was stirred often at first and then at half-hour intervals. Completeness of oxidation was controlled by weight increase. The embedded powder was specimened for metallurgical polishing. The tin oxide actually covers only the surface of the powder particles. Internal oxidation, ie fine precipitation inside the powder particles, can hardly be evidenced. AgSnO2 ( SnO2 10.5% by weight) powder
It was compressed into a cylindrical molded body with a diameter of 38 mm at 800 MN/m 2 . After sintering for 1 hour at 850°C in air, the sintered body was extruded at temperatures above 600°C.
An extrusion diameter of 10 mm yields a processing rate of 93.1%. Here too, the porosity of the extruded rod is 1% or less. The contact material exhibits a quite unique texture and differs from known extruded contact materials. An elongated silver body is clearly visible in FIG. 1 (magnification 200:1) with a polished surface parallel to the extrusion direction together with the SnO 2 intermediate layer.
Figure 2 with a polished surface perpendicular to the extrusion direction (magnification
200:1), the texture is relatively uniform. This is because in this case, the elongated silver crystal is cut perpendicular to its elongation direction. Test circuit breaker (ZfWerkstofftechnik/J.of Materials
The cut-off test values were compared with an extruded AgSnO 2 material of the same composition made from a mixed powder in 1976, Vol. 7, pages 381-389 (1976). When using contact material parallel to the extrusion direction, the wear values are only 15% better than for mixed powders, and when using contact surfaces perpendicular to the extrusion direction, they are approximately 15% better.
Only 30% are getting better. The corresponding welding force is 100N for both materials, i.e. the materials have very good dosing capacity. The contact resistance Rk 1 (Rk99.9 value in mΩ) is slightly higher in the material according to the invention than in the comparable AgZnO (ZnO 8%) material.

例 2 金属銀および亜鉛からAg93.5重量%、Zn6.5重
量%の組成の合金がつくられた。その合金は加圧
噴霧法によつて同じ組成の合金粉末に変えられ
た。圧力媒体としては水又は空気もしくは両方の
混合物を用いることができる。噴霧条件は90%を
こえて0.2mm以下の粒子径をもつて落下するよう
に選ばれる。乾燥の後粉末は篩分けられる(篩目
の大きさは0.2mm)。粉末は空気中で6時間800℃
において熱処理された。その場合それは耐熱鋼の
箱の中で20mmの充てん高さで始めはしばしば、後
には半時間ごとに撹拌された。酸化の完全さは重
量増加の大きさで検知され制御された。酸化の後
に複合粉末はZnO8重量%でZnO14.2容積%に相
当するAgZnOの組成を持つ。その粉末は合成樹
脂に埋込まれ組織検鏡のための金相学的研磨が施
された。優勢な外部酸化のために個々の粉末粒子
の各々がZnO外皮層によつて囲まれているのが示
された。少ない部分(10%以下)だけが粉末粒子
の内部においてZnO析出物の形で存在している。
粉末は800MN/m2で直径38mmの円柱状成形体に
ち密化された。空気中850℃において1時間焼結
の後に冷却し押出温度に新しく加熱してから、あ
るいは焼結の後に直接600℃以上の温度で押出さ
れた。押出し直径は10mmで、その場合生ずる加工
率は93.1%である。押出された材料の空孔率は1
%以下にある。接触子材料は第3図および第4図
(倍率100:1)に示された押出し方向の配列を示
す。変形加工の際に個々の粉末粒子の周りのZnO
外皮が破れ、そして押出方向に平行に配列されて
いる。接触子材料は押出方向に平行又は垂直に使
用される。押出方向に平行な接触面の例において
は上述の材料の性質はZnO混合粉末から圧縮、焼
結および押出しの同じ工程を経てつくられた同じ
組成の材料と対照して改善が示された。試験用遮
断器(「Z.f.Werkstofftechnik/J.of Materials
Technologey」第7巻381〜389頁(1976年)参
照)において黄銅支持体の上にろう付された10×
10mm2の大きさの接触子を標準試験条件で試験し
た。混合粉末からつくられた同じ組成のAgZnO
(ZnO8%)材料に比較して本発明による接触子材
料は同じ溶着力とほゞ同じ接触抵抗Rk1(投入後
測定)において30%小さい消耗値を持つた。容積
消耗値は41mmに対して29mm2になつた。溶着力値
s99.9は双方の場合に100Nと160Nの間にあつ
た。この接触子材料は中でも接触器のような電力
用の高負荷低電圧開閉器に特別に利益がある。
Example 2 An alloy with a composition of 93.5% by weight Ag and 6.5% by weight Zn was made from metallic silver and zinc. The alloy was converted into alloy powder of the same composition by pressure spraying method. Water or air or a mixture of both can be used as pressure medium. Spraying conditions are selected such that more than 90% of the particles fall with a particle size of 0.2 mm or less. After drying, the powder is sieved (sieve mesh size is 0.2 mm). Powder is heated at 800℃ for 6 hours in air.
heat treated in In that case it was stirred often at first and then every half hour at a filling height of 20 mm in a heat-resistant steel box. The completeness of oxidation was detected and controlled by the magnitude of weight gain. After oxidation, the composite powder has a composition of AgZnO corresponding to 8% by weight of ZnO and 14.2% by volume of ZnO. The powder was embedded in synthetic resin and metallographically polished for microscopic examination. It was shown that each individual powder particle was surrounded by a ZnO skin layer due to the dominant external oxidation. Only a small portion (less than 10%) is present in the form of ZnO precipitates inside the powder particles.
The powder was densified into cylindrical compacts with a diameter of 38 mm at 800 MN/m 2 . After sintering in air at 850° C. for 1 hour, it was cooled and heated again to the extrusion temperature, or directly after sintering it was extruded at temperatures above 600° C. The extrusion diameter is 10 mm, and the resulting processing rate is 93.1%. The porosity of the extruded material is 1
% or less. The contact material exhibits the extrusion direction alignment shown in Figures 3 and 4 (100:1 magnification). ZnO around individual powder particles during deformation processing
The skin is torn and aligned parallel to the extrusion direction. Contact material can be used parallel or perpendicular to the extrusion direction. In the case of contact surfaces parallel to the extrusion direction, the properties of the above-mentioned materials showed improvement compared to materials of the same composition made from ZnO mixed powders through the same steps of compaction, sintering and extrusion. Test circuit breaker (ZfWerkstofftechnik/J.of Materials
Technology, Vol. 7, pp. 381-389 (1976)) soldered onto a brass support.
Contacts measuring 10 mm 2 were tested under standard test conditions. AgZnO with the same composition made from mixed powder
Compared to the ZnO (8%) material, the contact material according to the invention has a 30% lower wear value at the same welding force and approximately the same contact resistance R k1 (measured after application). The volume consumption value was 29mm 2 compared to 41mm 3 . The welding force values Fs99.9 were between 100N and 160N in both cases. This contact material is of particular benefit in high-load, low-voltage switchgears for power applications, such as contactors, among others.

例 3 CuO9.7重量%でCuO15容積%に相当する
AgCuO接触子材料。金属銀および銅からAg92.2
重量%、Cu7.8重量%の組成の合金がつくられ
た。上記の例におけるようにこの合金は加圧噴霧
法により対応する合金粉末にされた。0.2mm以下
に篩分けられた粉末は700℃において6時間熱処
理された。酸化の完全さは重量増加において制御
された。酸化の後にCuO9.7重量%のAgCuOから
成る複合粉末が得られる。複合粉末の金相学的研
磨は優勢な外皮層酸化と粉末粒子の内部における
ばらばらのCuO析出物を示す。粉末の圧縮は
800MN/m2で行われ直径38mmの円柱状成形体が
得られ、圧縮体の焼結は空気中で850℃において
1時間行われた。10mmの棒直径への押出しは600
℃で行われた。押出材料の空孔率は1%以下であ
る。この材料の特色ある結晶組織はその特徴にお
いて上述の両方の例とよく一致する。例1および
例2による材料と比較すれば平均消耗値は2桁ま
でも高いが、しかし同じ組成で混合粉末からつく
られ押出された品質と直接比較すると25%以上良
好である。本発明によるAgCuO材料の溶着力値
はAgZnOおよびAgSnOに比較して良好である。
接触抵抗Rk1(99.9)はAgZnO(ZnO8%)とほゞ
同じである。低い溶着力値が重大である特別の応
用の場合においては上述の本発明による接触子材
料が有利である。
Example 3 CuO 9.7% by weight corresponds to CuO 15% by volume
AgCuO contact material. Ag92.2 from metal silver and copper
An alloy with a composition of 7.8% Cu by weight was prepared. As in the above examples, this alloy was made into the corresponding alloy powder by pressure atomization method. The powder sieved to 0.2 mm or less was heat treated at 700°C for 6 hours. The completeness of oxidation was controlled in weight gain. After oxidation, a composite powder consisting of AgCuO with 9.7% by weight of CuO is obtained. Metallographic polishing of the composite powder shows predominant outer layer oxidation and loose CuO precipitates inside the powder particles. Compression of powder
Sintering was carried out at 800 MN/m 2 to obtain a cylindrical molded body with a diameter of 38 mm, and the compacted body was sintered in air at 850° C. for 1 hour. Extrusion to 10mm rod diameter is 600
Performed at °C. The porosity of the extruded material is 1% or less. The characteristic crystal structure of this material corresponds well in its characteristics to both of the above-mentioned examples. The average attrition values are up to two orders of magnitude higher when compared with the materials according to Examples 1 and 2, but are more than 25% better when compared directly with the extruded quality made from mixed powders of the same composition. The welding force values of the AgCuO material according to the invention are good compared to AgZnO and AgSnO.
The contact resistance R k1 (99.9) is almost the same as that of AgZnO (8% ZnO). In the case of special applications where low welding force values are important, the contact material according to the invention described above is advantageous.

AgMeO接触子材料は融解硬ろうによりよく濡
れないから、支持体金属との良好な結合を得るた
めにろう付面の表面処理が施される。この表面処
理は、例えば還元焔であるいは表面層から酸化物
成分を酸によつて除去することによつて行うこと
ができる。
Since the AgMeO contact material does not wet well with molten solder, a surface treatment of the brazing surface is applied to obtain a good bond with the support metal. This surface treatment can be carried out, for example, with a reducing flame or by removing oxide components from the surface layer with an acid.

本発明による方法によりつくられた接触子材料
は有利な溶着力、消耗値および接触抵抗値によつ
てすぐれている。標準的な個々の値はそれに対し
て要求される限界値以下にある。そのほかに三つ
の性質全体の総和値(溶着力+消耗値+接触抵抗
値)は他の接触子材料と比較して有利な値にあ
る。
The contact material produced by the method according to the invention is distinguished by advantageous welding forces, wear values and contact resistance values. The standard individual values are below the required limit values. In addition, the total value of all three properties (welding force + wear value + contact resistance value) is an advantageous value compared to other contact materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるAgSnO2接触
子材料の押出方向に平行な断面の顕微鏡組織図、
第2図は同じく押出方向に垂直な断面の顕微鏡組
織図で倍率はいずれも200:1、第3図は本発明
の別の一実施例であるAgZnO接触子材料の押出
方向に平行な断面の顕微鏡組織図、第4図は同じ
く押出方向に垂直な断面の顕微鏡組織図で倍率は
いずれも100:1である。
FIG. 1 is a microscopic structure diagram of a cross section parallel to the extrusion direction of AgSnO 2 contact material, which is an example of the present invention.
Fig. 2 is a microscopic structure diagram of a cross section perpendicular to the extrusion direction, both at a magnification of 200:1, and Fig. 3 is a cross section parallel to the extrusion direction of an AgZnO contact material, which is another embodiment of the present invention. The microscopic structure diagram, FIG. 4, is a microscopic structure diagram of a cross section perpendicular to the extrusion direction, and both magnifications are 100:1.

Claims (1)

【特許請求の範囲】[Claims] 1 スズ、亜鉛、銅のいずれか一つの卑金属と銀
との合金粉末を酸化させることによりこの合金粉
末粒子の周りに卑金属酸化物の外皮層を形成さ
せ、次いで生成された銀・卑金属酸化物複合粉末
を成形体に圧縮し、焼結し、さらにこの成形体を
熱間押出しにより変形加工し、この変形加工の際
前記卑金属酸化物の外皮層を破つて銀結晶を押出
し方向に並列させることを特徴とする銀・卑金属
酸化物複合粉末から成る電力用開閉器のための電
気接触子に用いる方向性結晶組織をもつ異方性焼
結複合材料の製造方法。
1 By oxidizing an alloy powder of silver and a base metal of tin, zinc, or copper, an outer skin layer of base metal oxide is formed around the alloy powder particles, and then the produced silver/base metal oxide composite The powder is compressed into a compact, sintered, and this compact is deformed by hot extrusion, and during this deformation, the outer skin layer of the base metal oxide is broken to arrange the silver crystals in parallel in the extrusion direction. A method for manufacturing an anisotropic sintered composite material with a oriented crystal structure for use in electrical contacts for power switches, which is made of a silver/base metal oxide composite powder.
JP6807079A 1978-06-01 1979-05-31 Production of directional sintered composite material having directional crystal structure Granted JPS54158311A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19782824117 DE2824117A1 (en) 1978-06-01 1978-06-01 PROCESS FOR MANUFACTURING ANISOTROPIC SINTER COMPOSITE MATERIAL WITH ORIENTATIONAL STRUCTURE

Publications (2)

Publication Number Publication Date
JPS54158311A JPS54158311A (en) 1979-12-14
JPS6123849B2 true JPS6123849B2 (en) 1986-06-07

Family

ID=6040801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6807079A Granted JPS54158311A (en) 1978-06-01 1979-05-31 Production of directional sintered composite material having directional crystal structure

Country Status (4)

Country Link
JP (1) JPS54158311A (en)
DE (1) DE2824117A1 (en)
FR (1) FR2427157B1 (en)
GB (1) GB2022145B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3017424A1 (en) * 1980-05-07 1981-11-12 Degussa Ag, 6000 Frankfurt MATERIAL FOR ELECTRICAL CONTACTS
DE3146972A1 (en) * 1981-11-26 1983-06-01 Siemens AG, 1000 Berlin und 8000 München METHOD FOR PRODUCING MOLDED PARTS FROM CADMIUM-FREE SILVER METAL OXIDE COMPOSITIONS FOR ELECTRICAL CONTACTS
DE19544697C1 (en) * 1995-11-30 1996-07-11 Abb Research Ltd Metal-ceramic composite material used e.g. in high temp.superconductors
CN103611755B (en) * 2013-11-28 2016-02-03 昆明理工大学 Complex-phase metallic oxide strengthens the preparation method of Ag-based electrical contact silk material
CN104821248B (en) * 2015-04-10 2018-03-13 上海和伍复合材料有限公司 A kind of manufacture method of AgC electrical contacts and its integral component
CN104867620B (en) * 2015-04-10 2017-07-14 上海和伍复合材料有限公司 A kind of manufacture method of AgMeO electrical contacts and its integral component
DE102016105437A1 (en) * 2016-03-23 2017-09-28 Doduco Gmbh Process for the preparation of a contact material based on silver-tin oxide or silver-sink oxide and contact material
CN109128212B (en) * 2018-08-16 2022-05-27 西安工程大学 Preparation method of silver-nickel zinc oxide electric contact alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2310784B2 (en) * 1973-03-03 1975-03-13 Fa. Dr. Eugen Duerrwaechter Doduco, 7530 Pforzheim Process for the production of a ductile silver-metal oxide semi-finished product
US3933486A (en) * 1974-02-12 1976-01-20 Chugai Denki Kogyo Kabushiki-Kaisha Silver-metal oxide composite and method of manufacturing the same
GB1507854A (en) * 1974-04-01 1978-04-19 Mallory & Co Inc P R Electric contact materials

Also Published As

Publication number Publication date
DE2824117A1 (en) 1979-12-06
GB2022145A (en) 1979-12-12
FR2427157B1 (en) 1983-10-07
FR2427157A1 (en) 1979-12-28
GB2022145B (en) 1982-10-13
JPS54158311A (en) 1979-12-14

Similar Documents

Publication Publication Date Title
CN107794389B (en) Silver tin oxide indium oxide electric contact material and preparation method thereof
CN103695682B (en) A kind of silver oxide contact material and preparation method and products thereof with strengthening substrate performance additive
US4609525A (en) Cadmium-free silver and metal oxide composite useful for electrical contacts and a method for its manufacture
JPH02225637A (en) Preparation of material for electric contact point and production of contact point element containing material therefor
JPS6112841A (en) Sintered contact material for electric power low voltage open-close instrument and manufacture
JPS6123849B2 (en)
JPH0586006B2 (en)
US4681702A (en) Sintered, electrical contact material for low voltage power switching
JPH0135914B2 (en)
US5152959A (en) Sinterless powder metallurgy process for manufacturing composite copper strip
JP2810162B2 (en) Sintered contact materials for power low-voltage switchgear
JPH0561334B2 (en)
CN109593981A (en) A kind of preparation method for the sliver oxidized tin contactor materials improving ingot blank agglutinating property
CN109609794A (en) A kind of preparation method of high ductility sliver oxidized tin contactor materials
JPS619541A (en) Sintered contact material for electric power low voltage open-close instrument
KR830002683B1 (en) Manufacturing method of anisotropic sintered composite material with directional crystal structure
CN109500392A (en) A kind of preparation method for the silver zinc oxide contact material improving ingot blank agglutinating property
JPS6048578B2 (en) electrical contact materials
EP0273876A1 (en) Spot welding electrode and method for making it
JPS6244541A (en) Manufacture of silver-tin oxide-type electric contact point material
JPS6354770B2 (en)
JPS55134144A (en) Electrical contact material
JPS5938301A (en) Manufacture of sintered ag-w contact
JPH0474404B2 (en)
JPS6337175B2 (en)