JPH0676344B2 - Method for producing chlorofluorobenzenes - Google Patents

Method for producing chlorofluorobenzenes

Info

Publication number
JPH0676344B2
JPH0676344B2 JP21143889A JP21143889A JPH0676344B2 JP H0676344 B2 JPH0676344 B2 JP H0676344B2 JP 21143889 A JP21143889 A JP 21143889A JP 21143889 A JP21143889 A JP 21143889A JP H0676344 B2 JPH0676344 B2 JP H0676344B2
Authority
JP
Japan
Prior art keywords
reaction
represented
general formula
following general
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21143889A
Other languages
Japanese (ja)
Other versions
JPH02131441A (en
Inventor
清作 熊井
明宏 和田
真介 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP21143889A priority Critical patent/JPH0676344B2/en
Publication of JPH02131441A publication Critical patent/JPH02131441A/en
Publication of JPH0676344B2 publication Critical patent/JPH0676344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はクロロフルオロベンゼン類の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing chlorofluorobenzenes.

[従来技術および発明が解決しようとする課題] クロロフルオロベンゼン類の製造方法としては、以下の
方法が知られている。(1)還元とBalzand Schiemann
法の組合せによる方法(Rec.trav.chim.,51,98-113(19
32);Acta Chim,Acad.Sci.Hung.,10,227-32(195
6))。(2)還元とSandmeyer法の組合せによる方法。
(3)2,4−ジニトロフルオロベンゼンを脱ニトロ塩素
化する方法(Khim. Nauka i Prom.,3,404-5(1958);Z
h.Obshch.Khim.,31,1222-6(1961))。
[Problems to be Solved by Prior Art and Invention] The following methods are known as methods for producing chlorofluorobenzenes. (1) Reduction and Balz and Schiemann
Method by combination of methods (Rec.trav.chim., 51 , 98-113 (19
32); Acta Chim, Acad.Sci.Hung., 10 , 227-32 (195
6)). (2) Method by a combination of reduction and Sandmeyer method.
(3) Method for denitrochlorinating 2,4-dinitrofluorobenzene (Khim. Nauka i Prom., 3 , 404-5 (1958); Z
h.Obshch.Khim., 31 , 1222-6 (1961)).

他に、(4)1,2,4−トリクロロベンゼンをフッ化カリ
ウムでフッ素化する方法(J.FluorineChem.,(1),1
9-26(1972))、あるいは(5)パラジクロロベンゼン
をフッ化銀でフッ素化する方法(J.Org. Chem.,45(1
8),3597-603(1980)等である。
Besides, (4) a method of fluorinating 1,2,4-trichlorobenzene with potassium fluoride (J. Fluorine Chem., 2 (1), 1
9-26 (1972)) or (5) Method of fluorinating paradichlorobenzene with silver fluoride (J.Org. Chem., 45 (1
8), 3597-603 (1980).

(1)の方法は、危険なフッ酸を大量に使用する上、容
積効率も低いという欠点がある。(2)の方法は下記の
ごとく2ステップの反応を要するばかりでなく、2ステ
ップ目のSandmeyer法で大量の塩酸廃液が副生し、その
処理費にコストがかかる上、容積効率も低いので高価な
製造方法である。
The method (1) has a drawback in that a large amount of dangerous hydrofluoric acid is used and the volume efficiency is low. The method (2) not only requires a two-step reaction as described below, but also a large amount of hydrochloric acid waste liquid is by-produced in the second step Sandmeyer method, resulting in high processing cost and low volumetric efficiency, which is expensive. Manufacturing method.

(3)の方法は、未反応のクロロフルオロニトロベンゼ
ンが副生しやすく、収率が低い。(4)および(5)の
方法は、さらに収率が低く、工業的な方法にはなり得な
い。
In the method (3), unreacted chlorofluoronitrobenzene is easily produced as a by-product and the yield is low. The methods (4) and (5) have lower yields and cannot be industrial methods.

[課題を解決するための手段] 本発明者らは、含フッ素ニトロベンゼン類から、工業的
に有利に、クロロフルオロベンゼン類を得る方法を見い
だすべく、鋭意研究を重ねた結果、ここに工程数を短縮
し、高い生産性を実現し得る優れた方法を完成し、提案
するにいたった。
[Means for Solving the Problems] The inventors of the present invention have conducted intensive studies to find a method of industrially advantageously obtaining chlorofluorobenzenes from fluorinated nitrobenzenes, and as a result, the number of steps is shown here. We have completed and proposed an excellent method that can shorten and achieve high productivity.

すなわち、本発明は、下記一般式(1)で表わされる含
フッ素ニトロベンゼン類と塩素ガスとを反応せしめ、下
記一般式(2)で表わされるクロロフルオロベンゼン類
を得ることを特徴とする、クロロフルオロベンゼン類の
製造方法に関するものである。
That is, the present invention is characterized by reacting a fluorine-containing nitrobenzene represented by the following general formula (1) with chlorine gas to obtain a chlorofluorobenzene represented by the following general formula (2). The present invention relates to a method for producing benzenes.

前記式中、n,mは1≦n≦3,0≦m≦2,1≦n+m≦3を
満足する整数であり、一般式(1)で表される含フッ素
ニトロベンゼン類としては少なくとも1個のフッ素がベ
ンゼン核に結合しているものである。一般式(2)で表
わされるクロロフルオロベンゼン類は、前記含フッ素ニ
トロベンゼン類のニトロ基が塩素に変換されるため、少
なくとも1個のフッ素および少なくとも1個の塩素がベ
ンゼン核に結合しているものである。
In the above formula, n and m are integers satisfying 1 ≦ n ≦ 3, 0 ≦ m ≦ 2, 1 ≦ n + m ≦ 3, and at least one fluorine-containing nitrobenzene represented by the general formula (1) is used. Fluorine is bound to the benzene nucleus. The chlorofluorobenzenes represented by the general formula (2) are those in which at least one fluorine and at least one chlorine are bonded to the benzene nucleus because the nitro group of the fluorine-containing nitrobenzene is converted to chlorine. Is.

本発明方法の反応温度は出発物質や反応圧力により変化
し得るものであるが、典型的には約300〜600℃の範囲で
行なう気相反応が好ましい。好ましくは、出発物質が3,
4−ジフルオロニトロベンゼン等においては、380〜450
℃である。常圧で反応を行なうことができるが、減圧ま
たは加圧を用いてもよい。
The reaction temperature in the method of the present invention may vary depending on the starting materials and the reaction pressure, but a gas phase reaction which is typically carried out in the range of about 300 to 600 ° C. is preferred. Preferably the starting material is 3,
In 4-difluoronitrobenzene, etc., 380-450
℃. The reaction can be carried out at normal pressure, but reduced pressure or increased pressure may be used.

塩素ガスの使用量は、望む反応率によって変わりうる
が、過剰の塩素ガスを使用することもできる。例えば出
発物質の含フッ素ニトロベンゼン1モルに対して0.1か
ら20倍モル、好ましくは、1から5倍モルが適当であ
る。気相反応の場合、反応に必要な滞留時間は0.1〜100
秒、好ましくは、5〜20秒であり、出発物質は反応器に
供給されるに先立って気化されるが、このときに気化し
易いように窒素、アルゴン、ヘリウムなどの反応不活性
なガスで希釈してもよい。あるいは、出発物質をあらか
じめ反応不活性な溶媒に溶解しておいて、気化器に供給
することもできる。
The amount of chlorine gas used may vary depending on the desired reaction rate, but it is also possible to use an excess of chlorine gas. For example, 0.1 to 20 times mol, preferably 1 to 5 times mol, is suitable for 1 mol of fluorine-containing nitrobenzene as a starting material. For gas phase reactions, the residence time required for the reaction is 0.1-100.
Seconds, preferably 5 to 20 seconds, and the starting material is vaporized prior to being fed to the reactor, but at this time, a reaction-inert gas such as nitrogen, argon, or helium is used to facilitate vaporization. You may dilute. Alternatively, the starting material may be previously dissolved in a reaction-inert solvent and then supplied to the vaporizer.

反応器の形式は任意であるが、一般には空筒の反応器が
用いられる。
Although the type of reactor is arbitrary, an empty reactor is generally used.

本発明のクロロフルオロベンゼン類の製法としては、下
記一般式(3)で表わされる含フッ素ニトロベンゼン類
と塩素ガスを反応させて下記一般式(4)で表わされる
クロロフルオロベンゼン類を得る方法が特に有利であ
る。
As a method for producing chlorofluorobenzenes of the present invention, a method of reacting a fluorine-containing nitrobenzene represented by the following general formula (3) with chlorine gas to obtain a chlorofluorobenzene represented by the following general formula (4) is particularly preferable. It is advantageous.

(式中、n,mは1≦n≦3,0≦m≦2,1≦n+m≦3を満
足する整数。) 従来、ニトロベンゼン類のニトロ基の塩素化は、ニトロ
基に対してパラ位にNO2,CN,CF3等の電子吸引力の大きな
置換基がある場合に起こり(米国特許第4470930号明細
書等参照)、塩素等電子吸引力の小さな置換基である場
合には起こりにくいとされている。例えば、下記の反応
ではジクロロベンゼンは生成しないとされている。[Be
richte der deutschen chemischen Geselshaft 24,3749
(1891)] しかしながら、電子吸引力の一つの指標である置換基定
数δp(数値大きい程電子吸引力大)が塩素よりも小さ
なフツ素がニトロ基に対してパラ位にあっても、このニ
トロ基の塩素化が容易に起こることを本発明においては
じめて見い出すことができた。これにより、ベンゼン環
に直接結合したフッ素に対してパラ位に塩素を導入する
反応を極めて有利に行なうことができるようになったも
のである。
(In the formula, n and m are integers satisfying 1 ≤ n ≤ 3, 0 ≤ m ≤ 2, 1 ≤ n + m ≤ 3.) Conventionally, chlorination of a nitro group of nitrobenzene has been performed at a para position with respect to the nitro group. Occurs when there is a substituent with a large electron-withdrawing force such as NO 2 , CN, CF 3 (see US Pat. No. 4,470,930, etc.), and it is less likely to occur when there is a substituent with a small electron-withdrawing force such as chlorine. It is said that. For example, it is said that dichlorobenzene is not produced in the following reaction. [Be
richte der deutschen chemischen Geselshaft 24 , 3749
(1891)] However, even if fluorine having a substituent constant δp (a larger value is larger in electron withdrawing force), which is one index of electron withdrawing force, is smaller than chlorine in the para position to the nitro group, chlorination of this nitro group It has been found for the first time in the present invention that the phenomenon occurs easily. As a result, the reaction of introducing chlorine at the para position with respect to the fluorine directly bonded to the benzene ring can be extremely advantageously performed.

本発明における、クロロフルオロベンゼン類は、下記一
般式(5)で表わされる芳香族ニトロ化合物を出発原料
として、これとフッ素化剤とのフッ素化反応で得られる
下記一般式(6)で表わされる含フッ素ニトロベンゼン
を経て、これを塩素化することにより得ることもでき
る。
The chlorofluorobenzenes in the present invention are represented by the following general formula (6) obtained by a fluorination reaction of an aromatic nitro compound represented by the following general formula (5) as a starting material with this and a fluorinating agent. It can also be obtained by chlorinating this through fluorinated nitrobenzene.

式中、X1,X2はそれぞれH,Cl又はFであり、Y1,Y2はそ
れぞれH,Cl又はFである。但し、X1,X2がH又はFの時
は、X1=Y1,X2=Y2であり、X1,X2がClの時は、Y1,Y2
はそれぞれCl又はFである。通常、フッ素化剤のみによ
るフッ素化の場合には、X1,X2のClはFに置換されるこ
とはないが、フッ素化触媒を用いれば、Fに置換するこ
とも可能である。
In the formula, X 1 and X 2 are each H, Cl or F, and Y 1 and Y 2 are each H, Cl or F. However, when X 1 and X 2 are H or F, X 1 = Y 1 and X 2 = Y 2 , and when X 1 and X 2 are Cl, Y 1 and Y 2
Are Cl or F, respectively. Usually, in the case of fluorination with only a fluorinating agent, Cl of X 1 and X 2 is not replaced by F, but it can be replaced by F by using a fluorination catalyst.

前記フッ素化反応の反応温度は出発物質等により変化し
得るものであるが、典型的には約100〜300℃、好ましく
は150〜250℃の温度範囲が適当である。
The reaction temperature of the fluorination reaction may vary depending on the starting materials and the like, but a temperature range of typically about 100 to 300 ° C, preferably 150 to 250 ° C is suitable.

フッ素化剤としてはアルカリ金属フルオライドが好まし
く、特にKF,RbF,CsF等が好ましく、その使用量は、芳香
族ニトロ化合物中のフッ素置換すべき塩素がフッ素化さ
れるのに必要な反応理論量の1〜3倍、好ましくは1〜
2倍が適当である。
Alkali metal fluorides are preferable as the fluorinating agent, particularly KF, RbF, CsF and the like are preferable, and the amount thereof is a reaction theoretical amount necessary for fluorinating chlorine to be fluorine-substituted in the aromatic nitro compound. 1-3 times, preferably 1-
Twice is appropriate.

この反応において反応溶媒は必ずしも必要ではないが、
非プロトン性極性溶媒を用いることもできる。非プロト
ン性極性溶媒としては、例えばアセトニトリル,ジメチ
ルホルムアミド,ジメチルスルホキサイド,スルホラ
ン,N−メチル−2−ピロリドン,N−シクロヘキシル−2
−ピロリドン,ヘキサメチルホスホルトリアミド,1,3−
ジメチル−2−イミダゾリジノン等が挙げられ、特にス
ルホラン,1,3−ジメチル−2−イミダゾリジノンが好ま
しい。溶媒の使用量は特に限定されないが、出発原料の
芳香族ニトロ化合物に対して重量部で0.2〜10倍量、好
ましくは1〜5倍量が適当である。
A reaction solvent is not always necessary in this reaction,
An aprotic polar solvent can also be used. Examples of the aprotic polar solvent include acetonitrile, dimethylformamide, dimethylsulfoxide, sulfolane, N-methyl-2-pyrrolidone, N-cyclohexyl-2.
-Pyrrolidone, hexamethylphosphortriamide, 1,3-
Examples thereof include dimethyl-2-imidazolidinone, and sulfolane and 1,3-dimethyl-2-imidazolidinone are particularly preferable. The amount of the solvent to be used is not particularly limited, but 0.2 to 10 times by weight, preferably 1 to 5 times by weight, is suitable for the aromatic nitro compound as a starting material.

また、必要に応じて相間移動触媒を添加してもよい。相
間移動触媒としては、例えば、テトラブチルアンモニウ
ムブロマイド,テトラメチルアンモニウムクロライド等
の四級アンモニウム塩、または、テトラブチルホスホニ
ウムブロマイド等の四級ホスホニウム塩、あるいは、N-
(2−エチル−ヘキシルアミノ)−4−(N′,N′−ジ
メチル)−ビルジニウムクロリド等のビリジニウム塩な
どが挙げられる。
Moreover, you may add a phase transfer catalyst as needed. Examples of the phase transfer catalyst include, for example, tetrabutylammonium bromide, quaternary ammonium salts such as tetramethylammonium chloride, or quaternary phosphonium salts such as tetrabutylphosphonium bromide, or N-
Examples include viridinium salts such as (2-ethyl-hexylamino) -4- (N ', N'-dimethyl) -virdinium chloride.

一方、前記一般式(6)で表わされる含フッ素ニトロベ
ンゼンから一般式(7)で表わされるクロロフルオロベ
ンゼン類への反応は、前述の本発明における塩素化反応
を採用することができる。
On the other hand, for the reaction from the fluorine-containing nitrobenzene represented by the general formula (6) to the chlorofluorobenzenes represented by the general formula (7), the above-mentioned chlorination reaction of the present invention can be adopted.

[実施例] 実施例1 3,4−ジフルオロニトロベンゼンを連続的にガラス製の
気化器に供給して気化させ、これに若干の窒素を同伴さ
せて反応器に供給した。3,4−ジフルオロニトロベンゼ
ンと窒素のモル比は130:1であった。塩浴炉によって400
℃に保持された内径27mm、長さ1000mmのニッケル製の反
応器中に、上記のガスと塩素ガスを連続的に流通させ
た。このときの滞留時間は10秒、塩素の3,4−ジフルオ
ロニトロベンゼンに対するモル比は1.2であった。出口
で冷却凝縮させた液をガスクロマトグラフィーにより分
析したところ、3,4−ジフルオロニトロベンゼンの反応
率は100%、3,4−ジフルオロクロロベンゼンの選択率は
82%であった。
[Example] Example 1 3,4-Difluoronitrobenzene was continuously supplied to a vaporizer made of glass to be vaporized, and a small amount of nitrogen was entrained in the vaporizer and supplied to a reactor. The molar ratio of 3,4-difluoronitrobenzene to nitrogen was 130: 1. 400 by salt bath furnace
The above-mentioned gas and chlorine gas were continuously circulated in a nickel reactor having an inner diameter of 27 mm and a length of 1000 mm, which was kept at ℃. At this time, the residence time was 10 seconds, and the molar ratio of chlorine to 3,4-difluoronitrobenzene was 1.2. When the liquid condensed by cooling at the outlet was analyzed by gas chromatography, the reaction rate of 3,4-difluoronitrobenzene was 100% and the selectivity of 3,4-difluorochlorobenzene was 100%.
It was 82%.

比較例1 (還元法とジアゾ塩素化法を用いた合成方法) 10gの3,4−ジフルオロニトロベンゼンを20gのメタノー
ルに溶解し、10gの濃塩酸と2gの鉄粉を加え、60℃で2
時間撹拌し、これを蒸留して、3,4−ジフルオロアニリ
ンを得た。還元収率86%であった。これに70gの36%塩
酸を加えて塩酸塩とし、撹拌しながら0℃において18g
の25%NaNO2水溶液を加え、ジアゾニウム塩を得た。こ
れを120℃に加熱した塩化第二銅の塩酸溶液に滴下し、
熱分解を行った。ジアゾ化収率84%であった。総合収率
が72%で、3,4−ジフルオロクロロベンゼンを得た。
Comparative Example 1 (Synthesis method using reduction method and diazo chlorination method) 10 g of 3,4-difluoronitrobenzene was dissolved in 20 g of methanol, 10 g of concentrated hydrochloric acid and 2 g of iron powder were added, and the mixture was mixed at 60 ° C. for 2 hours.
Stir for hours and distill it to give 3,4-difluoroaniline. The reduction yield was 86%. To this, add 70g of 36% hydrochloric acid to form the hydrochloride salt, and add 18g at 0 ℃ with stirring.
25% NaNO 2 aqueous solution was added to obtain a diazonium salt. This was dropped into a hydrochloric acid solution of cupric chloride heated to 120 ° C,
Pyrolysis was performed. The diazotization yield was 84%. The overall yield was 72% and 3,4-difluorochlorobenzene was obtained.

実施例2 3−クロロ−4−フルオロニトロベンゼンを出発物質と
して用いるほかは、実施例1と同様にして反応を行なっ
たところ、3−クロロ−4−フルオロニトロベンゼンの
反応率は95%、1,3−ジクロロ−4−フルオロベンゼン
の選択率は90%であった。
Example 2 The reaction was performed in the same manner as in Example 1 except that 3-chloro-4-fluoronitrobenzene was used as the starting material, and the reaction rate of 3-chloro-4-fluoronitrobenzene was 95%, 1,3. The selectivity of -dichloro-4-fluorobenzene was 90%.

実施例3 還流コンデンサーを備えた200mlガラス製反応器に3,4−
ジクロロニトロベンゼン50g、スプレー乾燥KF20g、それ
にスルホラン100gを仕込み、激しく撹拌しながら225℃
で4.5時間反応させた。
Example 3 3,4-in a 200 ml glass reactor equipped with a reflux condenser.
Charge 50 g of dichloronitrobenzene, 20 g of spray-dried KF, and 100 g of sulfolane, and stir vigorously at 225 ° C.
And reacted for 4.5 hours.

反応液をガスクロで分析したところ、原料の反応率は10
0%、3−クロロ−4−フルオロニトロベンゼンへの選
択率は93%であった。
When the reaction solution was analyzed by gas chromatography, the reaction rate of the raw materials was 10
The selectivity to 0% and 3-chloro-4-fluoronitrobenzene was 93%.

この反応液を蒸留精製して得た3−クロロ−4−フルオ
ロニトロベンゼンを連続的にガラス製の気化器に供給し
て気化させ、これに若干の窒素を同伴させて反応器に供
給した。3−クロロ−4−フルオロニトロベンゼンと窒
素のモル比は130:1であった。塩浴炉によって400℃に保
持された内径27mm、長さ10000mmのニッケル製の反応器
中に、上記のガスと塩素ガスを連続的に流通させた。こ
のときの滞留時間は10秒、塩素の3−クロロ−4−フル
オロニトロベンゼンに対するモル比は、1.2であった。
出口で冷却凝縮させた液をガスクロマトグラフィーによ
り分析したところ、3−クロロ−4−フルオロニトロベ
ンゼンの反応率は95%、1,3−ジクロロ−4−フルオロ
ベンゼンの選択率は90%であった。
3-Chloro-4-fluoronitrobenzene obtained by distilling and purifying this reaction solution was continuously supplied to a vaporizer made of glass for vaporization, and a small amount of nitrogen was entrained in the vaporizer and supplied to the reactor. The molar ratio of 3-chloro-4-fluoronitrobenzene to nitrogen was 130: 1. The above gas and chlorine gas were continuously circulated in a nickel reactor having an inner diameter of 27 mm and a length of 10,000 mm, which was kept at 400 ° C. by a salt bath furnace. At this time, the residence time was 10 seconds, and the molar ratio of chlorine to 3-chloro-4-fluoronitrobenzene was 1.2.
When the liquid cooled and condensed at the outlet was analyzed by gas chromatography, the reaction rate of 3-chloro-4-fluoronitrobenzene was 95% and the selectivity of 1,3-dichloro-4-fluorobenzene was 90%. .

実施例4 還流コンデンサーを備えた200mlガラス製反応器に3,4−
ジクロロニトロベンゼン50g、スプレー乾燥KF30g、N−
(2−エチル−ヘキシルアミノ)−4−(N′,N′−ジ
メチル)−ピルジニウムクロリド2.5g、それにスルホラ
ン100gを仕込み、激しく撹拌しながら190℃で15時間反
応させた。
Example 4 3,4-in a 200 ml glass reactor equipped with a reflux condenser.
Dichloronitrobenzene 50g, spray dried KF30g, N-
(2-Ethyl-hexylamino) -4- (N ', N'-dimethyl) -pyrudinium chloride (2.5 g) and sulfolane (100 g) were charged, and the reaction was carried out at 190 ° C for 15 hours with vigorous stirring.

反応液をガスクロで分析したところ、原料の反応率は10
0%、3,4−ジフルオロニトロベンゼンへの選択率は51%
であった。
When the reaction solution was analyzed by gas chromatography, the reaction rate of the raw materials was 10
0%, 51% selectivity to 3,4-difluoronitrobenzene
Met.

この反応液を蒸留精製して得た3,4−ジフルオロニトロ
ベンゼンを出発物質として用いるほかは、実施例3と同
様にして塩素化反応を行ったところ、3,4−ジフルオロ
ニトロベンゼンの反応率は100%、3,4−ジフルオロクロ
ロベンゼンの選択率は82%であった。
A chlorination reaction was performed in the same manner as in Example 3 except that 3,4-difluoronitrobenzene obtained by distilling and purifying this reaction solution was used as a starting material, and the reaction rate of 3,4-difluoronitrobenzene was 100. %, The selectivity of 3,4-difluorochlorobenzene was 82%.

実施例5 還流コンデンサーを備えた200mlガラス製反応器に3,4,5
−トリクロロニトロベンゼン50g、スプレー乾燥KF20g、
それにスルホラン100gを仕込み、激しく撹拌しながら22
0℃で4.5時間反応させた。
Example 5 3,4,5 in a 200 ml glass reactor equipped with a reflux condenser.
-Trichloronitrobenzene 50g, spray dried KF 20g,
Charge 100g of sulfolane and stir vigorously 22
The reaction was carried out at 0 ° C for 4.5 hours.

反応液をガスクロで分析したところ、原料の反応率は95
%、3,5−ジクロロ−4−フルオロニトロベンゼンへの
選択率は83%であった。
When the reaction solution was analyzed by gas chromatography, the reaction rate of the raw materials was 95.
%, The selectivity to 3,5-dichloro-4-fluoronitrobenzene was 83%.

この反応液を蒸留精製して得た3,5−ジクロロ−4−フ
ルオロニトロベンゼンを出発物質として用いるほかは、
実施例3と同様にして塩素化反応を行ったところ、3,5
−ジクロロ−4−フルオロニトロベンゼンの反応率は94
%、1,3,5−トリクロロ−2−フルオロベンゼンの選択
率は92%であった。
In addition to using 3,5-dichloro-4-fluoronitrobenzene obtained by distilling and purifying this reaction solution as a starting material,
When the chlorination reaction was carried out in the same manner as in Example 3, it was found to be 3,5
-The reaction rate of dichloro-4-fluoronitrobenzene is 94
%, The selectivity of 1,3,5-trichloro-2-fluorobenzene was 92%.

実施例6 還流コンデンサーを備えた200mlガラス製反応器に3,4,5
−トリクロロニトロベンゼン50g、スプレー乾燥KF40g、
テトラ(n−ブチル)ホスホニウムブロマイド5g,それ
にスルホラン100gを仕込み、激しく撹拌しながら200℃
で15時間反応させた。
Example 6 3,4,5 in a 200 ml glass reactor equipped with a reflux condenser.
-Trichloronitrobenzene 50g, spray dried KF40g,
Charge tetra (n-butyl) phosphonium bromide 5g and sulfolane 100g and stir vigorously at 200 ℃
And reacted for 15 hours.

反応液をガスクロで分析したところ、原料の反応率は81
%、3−クロロ−4,5−ジフルオロニトロベンゼンへの
選択率は65%であった。
When the reaction solution was analyzed by gas chromatography, the reaction rate of the raw materials was 81.
%, The selectivity to 3-chloro-4,5-difluoronitrobenzene was 65%.

この反応液を蒸留精製して得た3−クロロ−4,5−ジフ
ルオロニトロベンゼンを出発物質として用いるほかは、
実施例3と同様にして塩素化反応を行ったところ、3−
クロロ−4,5−ジフルオロニトロベンの反応率は96%、
1,3−ジフルオロベンゼンの選択率は90%であった。
3-chloro-4,5-difluoronitrobenzene obtained by distilling and purifying this reaction solution was used as a starting material,
When the chlorination reaction was carried out in the same manner as in Example 3, 3-
The reaction rate of chloro-4,5-difluoronitroben is 96%,
The selectivity of 1,3-difluorobenzene was 90%.

[発明の効果] 本発明に従えば、医農薬中間体、特に抗菌剤用中間体の
原料として有用な、1,3−ジクロロ−4−フルオロベン
ゼンや、3,4−ジフルオロクロロベンゼン等を工業的に
有利に得ることが出来る。
[Effects of the Invention] According to the present invention, 1,3-dichloro-4-fluorobenzene, 3,4-difluorochlorobenzene, and the like, which are useful as raw materials for intermediates for medical and agricultural chemicals, particularly for antibacterial agents, can be industrially produced. Can be obtained in an advantageous manner.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】下記一般式(1)で表わされる含フッ素ニ
トロベンゼン類と塩素ガスを反応せしめ、下記一般式
(2)で表わされるクロロフルオロベンゼン類を得るこ
とを特徴とするクロロフルオロベンゼン類の製造方法。 (式中、n,mは1≦n≦3,0≦m≦2,1≦n+m≦3を満
足する整数。)
1. A chlorofluorobenzene represented by the following general formula (1) is obtained by reacting a fluorine-containing nitrobenzene represented by the following general formula (1) with chlorine gas to obtain a chlorofluorobenzene represented by the following general formula (2). Production method. (In the formula, n and m are integers satisfying 1 ≦ n ≦ 3, 0 ≦ m ≦ 2, 1 ≦ n + m ≦ 3.)
【請求項2】含フッ素ニトロベンゼン類と塩素ガスとの
反応を300〜600℃から選ばれる反応温度の気相反応で行
なう請求項1に記載の製造方法。
2. The method according to claim 1, wherein the reaction between the fluorine-containing nitrobenzene and chlorine gas is carried out by a gas phase reaction at a reaction temperature selected from 300 to 600 ° C.
【請求項3】塩素ガスの使用量が含フッ素ニトロベンゼ
ン1モルに対して、0.1〜20倍モルである請求項1に記
載の製造方法。
3. The production method according to claim 1, wherein the amount of chlorine gas used is 0.1 to 20 times mol per mol of fluorine-containing nitrobenzene.
【請求項4】含フッ素ニトロベンゼン類が下記一般式
(3)で表わされ、クロロフルオロベンゼン類が下記一
般式(4)で表わされる請求項1に記載の製造方法。 (式中、n,mは1≦n≦3,0≦m≦2,1≦n+m≦3を満
足する整数。)
4. The production method according to claim 1, wherein the fluorinated nitrobenzenes are represented by the following general formula (3) and the chlorofluorobenzenes are represented by the following general formula (4). (In the formula, n and m are integers satisfying 1 ≦ n ≦ 3, 0 ≦ m ≦ 2, 1 ≦ n + m ≦ 3.)
【請求項5】下記一般式(5)で表わされる芳香族ニト
ロ化合物を、フッ素化剤と反応させ、下記一般式(6)
で表わされる含フッ素ニトロベンゼン類を得、次いでこ
れと塩素ガスを反応させることにより、下記一般式
(7)で表わされるクロロフルオロベンゼン類を得るこ
とを特徴とするクロロフルオロベンゼン類の製造方法。 (式中、X1,X2はそれぞれH,Cl又はF、Y1,Y2はそれぞ
れH,Cl又はF。但し、X1,X2がH又はFの時X1=Y1,X2
=Y2であり、X1,X2がClの時、Y1,Y2はそれぞれCl又は
Fである。)
5. An aromatic nitro compound represented by the following general formula (5) is reacted with a fluorinating agent to give the following general formula (6):
The method for producing chlorofluorobenzenes is characterized in that the fluorinated nitrobenzenes represented by the formula (1) are obtained, and then this is reacted with chlorine gas to obtain the chlorofluorobenzenes represented by the following general formula (7). (In the formula, X 1 and X 2 are H, Cl or F, and Y 1 and Y 2 are H, Cl or F, respectively, provided that when X 1 and X 2 are H and F, X 1 = Y 1 , X 2
= Y 2 , and when X 1 and X 2 are Cl, Y 1 and Y 2 are Cl or F, respectively. )
【請求項6】芳香族ニトロ化合物類とフッ素化剤との反
応を100〜300℃から選ばれる反応温度で行なう請求項5
に記載の製造方法。
6. The reaction between the aromatic nitro compound and the fluorinating agent is carried out at a reaction temperature selected from 100 to 300 ° C.
The manufacturing method described in.
【請求項7】フッ素化剤の使用量が、芳香族ニトロ化合
物中のフッ素置換すべき塩素がフッ素化されるのに必要
な反応理論量の1〜3倍である請求項5に記載の製造方
法。
7. The process according to claim 5, wherein the amount of the fluorinating agent used is 1 to 3 times the stoichiometric amount necessary for fluorinating the chlorine to be fluorine-substituted in the aromatic nitro compound. Method.
【請求項8】フッ素化剤がアルカリ金属フッ化物である
請求項5に記載の製造方法。
8. The method according to claim 5, wherein the fluorinating agent is an alkali metal fluoride.
【請求項9】含フッ素ニトロベンゼン類と塩素ガスとの
反応を300〜600℃から選ばれる反応温度の気相反応で行
なう請求項5に記載の製造方法。
9. The production method according to claim 5, wherein the reaction between the fluorine-containing nitrobenzene and chlorine gas is carried out by a gas phase reaction at a reaction temperature selected from 300 to 600 ° C.
【請求項10】塩素ガスの使用量が含フッ素ニトロベン
ゼン1モルに対して、0.1〜20倍モルである請求項5に
記載の製造方法。
10. The production method according to claim 5, wherein the amount of chlorine gas used is 0.1 to 20 times mol per mol of fluorine-containing nitrobenzene.
JP21143889A 1988-08-26 1989-08-18 Method for producing chlorofluorobenzenes Expired - Fee Related JPH0676344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21143889A JPH0676344B2 (en) 1988-08-26 1989-08-18 Method for producing chlorofluorobenzenes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-210805 1988-08-26
JP21080588 1988-08-26
JP21143889A JPH0676344B2 (en) 1988-08-26 1989-08-18 Method for producing chlorofluorobenzenes

Publications (2)

Publication Number Publication Date
JPH02131441A JPH02131441A (en) 1990-05-21
JPH0676344B2 true JPH0676344B2 (en) 1994-09-28

Family

ID=26518276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21143889A Expired - Fee Related JPH0676344B2 (en) 1988-08-26 1989-08-18 Method for producing chlorofluorobenzenes

Country Status (1)

Country Link
JP (1) JPH0676344B2 (en)

Also Published As

Publication number Publication date
JPH02131441A (en) 1990-05-21

Similar Documents

Publication Publication Date Title
JP2014159457A (en) Method for producing poly(pentafluorosulfanyl)aromatic compound
EP0180057B1 (en) Process for the preparation of halo aromatic compounds
EP0355719B1 (en) Process for producing chlorofluorobenzenes
JPS6117530A (en) Manufacture of alpha,alpha-difluoroalkylphenyl ether and alpha-chloro-alpha-fluoroalkylphenyl ether and alpha-chloro-alpha-fluoroalkylphenyl ether derivative
US7595426B2 (en) Method for the production of 1,3,5-trifluoro-2,4,6-trichlorobenzene from fluorobenzene derivatives
US5208394A (en) Process for producing chlorofluorobenzenes
JPH0676344B2 (en) Method for producing chlorofluorobenzenes
JP3367861B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JP4104317B2 (en) Method for producing fluoroalkylamine
US4952719A (en) Process for the preparation of halo aromatic compounds
WO1988007519A1 (en) Process for preparing 3-chloro-4-fluoronitrobenzene
JPS6365051B2 (en)
JPH0892148A (en) Method for preventing dehalogenation in producing fluorinated benzaldehydes
JPH0648991A (en) Production of chlorinated and brominated benzene compounds by selective nucleophilic fluorination and denitration
US6333434B1 (en) Preparation of trifluoromethylanilines
EP0038223B1 (en) Process for the preparation of trifluoromethylbenzoyl halides
JPH11246450A (en) Production of 2,3,4,5-tetrafluorobenzene derivative
JPS60228436A (en) Fluorination of aromatic compound
JPS617217A (en) Novel method for preparating fluorinated aromatic compound
JPH04305544A (en) Method of preparing paradichlorobenzene
JP2993877B2 (en) Method for producing halogen-containing aromatic nitrile compound
JPH0149338B2 (en)
JP3664259B2 (en) Preparation of halomethylbenzoyl cyanide
JPH03275647A (en) Production of fluorobenzene acids
JPS6350339B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees