JPH0675837B2 - Robot hand - Google Patents

Robot hand

Info

Publication number
JPH0675837B2
JPH0675837B2 JP62262263A JP26226387A JPH0675837B2 JP H0675837 B2 JPH0675837 B2 JP H0675837B2 JP 62262263 A JP62262263 A JP 62262263A JP 26226387 A JP26226387 A JP 26226387A JP H0675837 B2 JPH0675837 B2 JP H0675837B2
Authority
JP
Japan
Prior art keywords
ductile
robot hand
flexible
tendon
airtight bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62262263A
Other languages
Japanese (ja)
Other versions
JPH01109092A (en
Inventor
征四郎 吉原
Original Assignee
征四郎 吉原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 征四郎 吉原 filed Critical 征四郎 吉原
Priority to JP62262263A priority Critical patent/JPH0675837B2/en
Publication of JPH01109092A publication Critical patent/JPH01109092A/en
Publication of JPH0675837B2 publication Critical patent/JPH0675837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロボットハンドに関するものである.特にロボ
ットの骨部材とこれに曲げと捻りを与える筋肉としての
アクチュエータ集合体に関するものである. (従来技術) 従来のロボットの骨格は鉄鋼であり,剛構造に組立てい
たため,大重量でかつ柔軟性を持たず高価でもあった.
その筋肉としてのアクチュエータもまた大型で大重量の
鉄鋼製の油圧シリンダや空圧シリンダや電動機であっ
た.この様なロボットの手部材は自ずから用途が制限さ
れ,特に手や指としては単純かつ不器用な動作しか出来
なかった. (発明が解決しようとする問題点) 本発明は柔軟性のあるロボットハンドを提供することを
第1の目的とする.また簡便で小型軽量のロボットハン
ドを提供することを第2の目的とする.さらに骨部材に
曲げと捻りを同時に加えることによって複雑な動きを可
能とするロボットハンドを提供することを第3の目的と
する. (問題点を解決するための手段,作用) 本発明を詳細に説明すると,第1図ないし第7図は本発
明のロボットハンドの説明図であって,本発明は両極部
C,Dにかけ渡した経線状の複数の非延性補強線材1と一
体的に成形した非延性柔軟膜2とから成る気密袋と,そ
の一極Cから圧力流体を導入し,この極Cと骨部材3と
を連結する非延性管状可とう腱5と,気密袋内の圧力を
制御する制御弁4と,他の一極Dと他の骨部材3とを連
結する非延性可とう腱6により構成することを特徴とす
るロボットハンドである. 本発明の気密袋の横断面は第1図に示すように最も中心
寄りの位置を非延性補強線材1が経線状に両極を結びそ
の間を外側に膨らみ非延性柔軟膜2に連結する気密構造
とし,内部圧力が高くなると第1図Bのように気密袋の
径は膨張して非延性補強線材1は中心から離れて両極の
間隔を縮める.気密袋が延性材料である場合には気密袋
に伸びを生じさせる余分のエネルギを必要とし,また気
密袋の膨出に対する両極の接近する割合が小さくなるた
めに好ましくない.また気密袋の両極に連結する非延性
管状可とう腱5や非延性可とう腱6も延性材料である場
合には,これらに伸びを生じる余分のエネルギを必要と
し,また腱自体が伸びれば骨部材の操作量が小さくなり
好ましくない. このようにアクチュエータ部材としての気密袋や腱を可
とう材料とすることによって気密袋や腱のたわみを許容
し,あるいは積極的にこれを利用し,アクチュエータの
強度を必要最小限に小さくして小型化軽量化すること
や,多数のアクチュエータを骨部材の周りに高密度に集
積することが可能になり,こうすることによって複雑か
つ柔軟な手の動きを可能とする. この腱用材料は細径とするためには高分子材料としては
例えばケブラ,金属材料としては例えばチタン合金ワイ
アや高張力鋼線などが最適である.また気密袋から外側
へ延在する部分の非延性可とう腱6は知覚センサの信号
を伝達するリード線とすることができ,このリード線の
強度上昇が必要ならば前述のような補強材によりリード
線を補強する. 気密袋の材料としては前記非延性腱用材料にゴムや高分
子材料で気密処理をしたものや,ビニールやナイロンな
どの高分子材料や伸びを殆どなくしたゴムや容易に変形
するような薄肉の金属繊維布が最適である. アクチュエータを作動させる圧力配管や操作用電気配線
や骨部材等は金属やセラミックの様な剛体材料とするこ
とができるが,これを高分子材料や薄肉金属のような可
とう材料とすることによってこれらをたわませることを
考慮して関節部7の回転角度を小さく設計し,装置全体
の小型化軽量化をはかることが望ましい.骨部材を長さ
変化の殆どない弾性材料とすれば,初期位置に戻す時に
動作が迅速になり,場合によっては復元用のアクチュエ
ータを省略あるいは小型化でき,装置全体のより一層の
小型化軽量化が可能になる. 骨部材を曲げと回転が自在な杵と臼を合わせた機構や二
つの臼の間に球を挟んだ機構や球面軸受け機構やベロー
やコイルばね等による関節7によって連結することによ
って,骨部材の任意の方向への傾斜が一層容易にかつ自
由になる.なおベロー以外の関節では油圧,水圧,ある
いは空圧などの圧力流体の漏出を防ぐために公知のOリ
ングシール9や密閉膜やジャバラを設けるのがよい. 第2図ないし第4図の例ではアクチュエータは骨部材3
内の圧力流体を制御弁4を経由して気密袋内に導き,こ
の圧力によって非延性可とう腱6,6A,6Bに引張力を与え
る.腱は可とう材料であるので適宜方向に容易に方向変
換できる. 本発明のロボットハンドでは,例えば第2図の例では8
本の気密袋を骨部材の周囲に長さ方向を揃えて並べてお
り,骨材部3に対して互いに逆方向に傾斜せしめた非延
性可とう腱対6A,6Bを装備することによって骨部材3の
関節部7に曲げと同時に積極的に捻りを与えることがで
きる.また骨部材が弾性体である場合にも骨部材に曲げ
と同時に積極的に捻りを与えることができる.これらの
場合に曲げや捻りの間隔を接近させたり,捻り剛性の小
さな骨部材を用いれば,象の鼻や蛇のように螺旋状にも
自由に変化し物体に巻き付けてこれを取り扱うことが可
能になる. 非延性可とう腱6は第5図ないし第7図に示すように関
節を跨いで何個か先に離れた骨部材と連結すれば,アク
チュエータを装着出来ないような狭い場所や細い骨部材
をも種々の操作を可能にできる. 気密袋列はコンパクトにおさまるように腱ガイド11によ
ってその方向を揃えて束ねることが望ましく,気密袋列
を複数層に重ねることもできる.この様な多数のアクチ
ュエータを用意することによって非延性可とう腱6を交
差させて骨部材3に捻りを与えることが容易になるほ
か,アクチュエータの作動数を変化させることによって
作動力を変化させることも可能になる. 第5図ないし第7図にロボットの手及び指に本発明を適
用する場合の概念図を示す.これらの図では何れも指の
先端部には非延性可とう腱6のみが延在し,気密袋はそ
の手前の設置空間が十分な位置にある.例えば第5図で
は板状骨部材10にアクチュエータを集積し,関節部7よ
り先は非延性可とう腱6が延在している.先へ延在する
腱はコンパクトにまとめるために関節部において腱ガイ
ド11によって位置決めしている.指の先端部には知覚セ
ンサ12を設置し,非延性可とう腱6がこの知覚センサの
信号を伝達するリード線を兼ねている.第6図の例では
第4図に示すような管状骨部材3にアクチュエータを集
積し,関節部7より先は弾性体の骨部材で構成してい
る.この骨部材は図示のように可とうアクチュエータと
ともにたわみ,先端部を目標地点に移動させる.この場
合も非延性可とう腱6は知覚センサ12のリード線を兼ね
ている.第6図では腱ガイド11の一部は関節部から先に
離して設置している.第7図にはロボットハンドとして
の別の完成例を示している.またこれらの図には示して
いないが本発明のロボットハンドの手や指はゴムや高分
子材料の弾性体により覆って皮膚とするのが良い. 本発明のロボットハンドでは板状の骨部材等を管状に巻
いてコンパクトで強度の強いロボットハンドとすること
ができる.この場合にアクチュエータや圧力配管や電気
配線や切換弁等は管の内面あるいは外面に集中させても
良い.また気密袋や腱は第2図ないし第4図の関節7の
内部に位置させても良い. 第5図の板状の骨部材の両側に気密袋を配列した例で
は,圧力配管8から制御弁4を経由して気密袋内に導入
した流体圧力によって気密袋を膨出させる.この例では
圧力配管8と制御用配線10は骨部材板3の両端に装備さ
れている.圧力配管は強度部材として設計することがで
きるためその位置はその都度最適な場所に決めるのがよ
い. 以上のようなアクチュエータは束ねあるいは集積して
も,従来のアクチュエータではシリンダチューブ等が変
形あるいは干渉して作動しなかったものが,本発明では
アクチュエータを可とう材料によって構成することによ
り容易に作動できる. 本発明に於て複数のアクチュエータをその方向を交差し
て骨部材上に集積することができる.すなわち気密袋が
外力によってへこんでもこれが可とう材料で構成されて
いるためにその作動に支障をきたすことはなく,気密袋
は種々の集積の仕方が可能となる. (発明の効果) 本発明のロボットハンドによって柔軟性のあるロボット
の手部材が提供できる.またこの装置は簡便で小型軽量
であることは,大重量の金属材料に代わって高分子材料
や金属布や薄肉の金属材料等の可とう材を用いることが
出来ることからも明かである.さらに多数のアクチュエ
ータを集積したことにより複雑微妙な手や指の動きが可
能になる. 本発明のロボットハンドは歩行ロボットの足部材や胴部
材としても用いることができる. 本発明のロボットハンドは視覚センサや触覚センサや視
覚と触覚の中間的な近接覚センサを利用することによっ
て実用化の道が開け,今後急速な発展が期待できる.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a robot hand. In particular, it relates to a robot bone member and an actuator assembly as a muscle that gives bending and twisting to the bone member. (Prior Art) Since the skeleton of a conventional robot is steel and is assembled in a rigid structure, it is heavy and inflexible and expensive.
The actuators as the muscles were also large and heavy steel hydraulic and pneumatic cylinders and electric motors. The use of such hand parts of robots is naturally limited, and especially the hands and fingers can perform only simple and clumsy movements. (Problems to be Solved by the Invention) A first object of the present invention is to provide a flexible robot hand. The second purpose is to provide a simple, compact and lightweight robot hand. A third object of the present invention is to provide a robot hand capable of complex movements by simultaneously bending and twisting a bone member. (Means and Actions for Solving Problems) The present invention will be described in detail. FIGS. 1 to 7 are explanatory views of a robot hand of the present invention, and the present invention refers to a bipolar part.
An airtight bag composed of a plurality of non-ductile reinforcing wire rods 1 in a meridian shape extending over C and D and a non-ductile flexible membrane 2 formed integrally with the same, and a pressure fluid is introduced from one pole C of the bag, and the pole C and the bone. By the non-ductile tubular flexible tendon 5 connecting the member 3, the control valve 4 controlling the pressure in the airtight bag, and the non-ductile flexible tendon 6 connecting the other one pole D and the other bone member 3 It is a robot hand characterized by being configured. As shown in FIG. 1, the cross section of the airtight bag of the present invention has an airtight structure in which the non-ductile reinforcing wire 1 connects the two poles in a meridian shape and bulges outward between them to connect to the non-ductile flexible membrane 2, as shown in FIG. As the internal pressure increases, the diameter of the airtight bag expands as shown in Fig. 1B, and the non-ductile reinforcing wire 1 moves away from the center and the distance between the electrodes is reduced. If the airtight bag is a ductile material, it requires extra energy to cause the airtight bag to expand, and it is not preferable because the ratio of the two electrodes approaching the expansion of the airtight bag becomes small. In addition, if the non-ductile tubular flexible tendon 5 and the non-ductile flexible tendon 6 that are connected to both poles of the airtight bag are also ductile materials, extra energy is required to cause them to stretch. The amount of operation of the member is small, which is not desirable. In this way, by making the airtight bag or the tendon as the actuator member a flexible material, the flexure of the airtight bag or the tendon is allowed or actively used, and the strength of the actuator is minimized to the minimum necessary. It is possible to reduce the weight and weight, and to integrate a large number of actuators around the bone member in high density. By doing so, complex and flexible hand movements are possible. For the tendon material, in order to make the diameter small, for example, Kevlar is optimal as the polymer material, and titanium alloy wire or high-tensile steel wire is optimal as the metal material. Further, the non-ductile flexible tendon 6 extending outward from the airtight bag can be used as a lead wire for transmitting the signal of the sensor, and if the strength of the lead wire needs to be increased, the reinforcing material as described above can be used. Reinforce the lead wire. As the material of the airtight bag, a material obtained by airtightly treating the non-ductile tendon material with rubber or a polymer material, a polymer material such as vinyl or nylon, rubber with almost no elongation, or a thin wall that easily deforms Metal fiber cloth is most suitable. The pressure pipes for operating the actuators, electric wiring for operation, bone members, etc. can be made of rigid materials such as metals and ceramics, but by using them as flexible materials such as polymer materials and thin metal It is desirable to design the rotation angle of the joint 7 to be small in consideration of the bending of the body, and to reduce the size and weight of the entire device. If the bone member is made of an elastic material that hardly changes in length, the operation will be quicker when returning to the initial position, and in some cases, the actuator for restoration can be omitted or downsized, and the entire device can be made even smaller and lighter. Is possible. By connecting the bone members with a mechanism that combines a pestle and a mortar that can be freely bent and rotated, a mechanism that sandwiches a sphere between two dies, a spherical bearing mechanism, and a joint 7 such as a bellow or a coil spring, Inclination in any direction becomes easier and freer. For joints other than bellows, it is advisable to provide a known O-ring seal 9, a sealing film, or a bellows in order to prevent leakage of pressure fluid such as hydraulic pressure, hydraulic pressure, or pneumatic pressure. 2 to 4, the actuator is the bone member 3
The pressure fluid inside is guided into the airtight bag via the control valve 4, and this pressure gives a tensile force to the non-ductile flexible tendons 6, 6A, 6B. Since the tendon is a flexible material, it can be easily turned to an appropriate direction. In the robot hand of the present invention, for example, in the example of FIG.
The airtight bags are arranged around the bone member in the lengthwise direction, and the bone member 3 is equipped with the non-ductile flexible tendon pairs 6A and 6B that are inclined in opposite directions with respect to the aggregate part 3. At the same time as bending, the joint 7 can be positively twisted. Even when the bone member is an elastic body, the bone member can be positively twisted simultaneously with bending. In these cases, if the bending and twisting intervals are made close to each other, or if a bone member with low torsional rigidity is used, it can be freely changed into a spiral shape like an elephant's nose or a snake, and can be wrapped around an object and handled. become. As shown in FIGS. 5 to 7, the non-ductile flexible tendon 6 can be connected to a bone member that is some distance away from the joint, so that a narrow space or a thin bone member where an actuator cannot be mounted is used. Can also perform various operations. It is desirable that the airtight bag rows be bundled in the same direction by the tendon guide 11 so that they can be compactly packed, and the airtight bag rows can be stacked in multiple layers. By preparing such a large number of actuators, it becomes easy to cross the non-ductile flexible tendons 6 to give a twist to the bone member 3, and the actuating force is changed by changing the number of actuating actuators. Is also possible. 5 to 7 show conceptual diagrams when the present invention is applied to the hands and fingers of the robot. In each of these figures, only the non-ductile flexible tendon 6 extends at the tip of the finger, and the airtight bag has a sufficient installation space in front of it. For example, in FIG. 5, actuators are integrated in the plate-shaped bone member 10, and the non-ductile flexible tendon 6 extends beyond the joint 7. The tendon extending forward is positioned by the tendon guide 11 at the joint in order to compact it. A perceptual sensor 12 is installed at the tip of the finger, and the non-ductile flexible tendon 6 also serves as a lead wire for transmitting the signal of the perceptual sensor. In the example of FIG. 6, actuators are integrated in the tubular bone member 3 as shown in FIG. 4, and the joint portion 7 is constituted by an elastic bone member. This bone member bends together with the flexible actuator as shown in the figure, and the tip moves to the target point. Also in this case, the non-ductile flexible tendon 6 also serves as the lead wire of the sensory sensor 12. In Fig. 6, a part of the tendon guide 11 is installed away from the joint. Figure 7 shows another example of completion as a robot hand. Although not shown in these figures, it is preferable to cover the hands and fingers of the robot hand of the present invention with rubber or an elastic body of a polymer material to form the skin. In the robot hand of the present invention, a plate-like bone member or the like can be wound in a tubular shape to form a compact and strong robot hand. In this case, the actuator, pressure piping, electrical wiring, switching valve, etc. may be concentrated on the inner or outer surface of the pipe. Further, the airtight bag or tendon may be located inside the joint 7 in FIGS. 2 to 4. In the example in which the airtight bags are arranged on both sides of the plate-shaped bone member in FIG. 5, the airtight bag is inflated by the fluid pressure introduced into the airtight bag from the pressure pipe 8 via the control valve 4. In this example, the pressure pipe 8 and the control wiring 10 are provided at both ends of the bone member plate 3. Since the pressure pipe can be designed as a strength member, its position should be decided at the optimum place each time. Even if the above-mentioned actuators are bundled or integrated, the conventional actuator does not operate due to deformation or interference of the cylinder tube or the like, but in the present invention, the actuator can be easily operated by being made of a flexible material. . In the present invention, a plurality of actuators can be integrated on the bone member by intersecting the directions. That is, even if the airtight bag is dented by an external force, it is made of a flexible material so that it does not interfere with its operation, and the airtight bag can be accumulated in various ways. (Effect of the Invention) The robot hand of the present invention can provide a flexible robot hand member. It is also clear that this device is simple, compact and lightweight, because flexible materials such as polymer materials, metal cloths and thin metal materials can be used instead of heavy metal materials. Furthermore, by integrating a large number of actuators, complex and subtle hand and finger movements are possible. The robot hand of the present invention can also be used as a foot member or a body member of a walking robot. The robot hand of the present invention opens the way to practical use by utilizing a visual sensor, a tactile sensor, and a proximity sensor between the visual sense and the tactile sense, and rapid development is expected in the future.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第7図は本発明の説明図であり,第1図A
は気密袋内の圧力が低い場合,第1図Bはその圧力が高
くなった場合の気密袋の横断面図,第2図は管状骨部材
と球面関節部の図,第3図は管状骨部材とコイルばね関
節部の図,第4図は管状骨部材とベロー関節部の図,第
5図ないし第7図はロボットハンドとしての組立図例で
ある. 1:非延性補強線材,2:非延性柔軟膜,3:骨部材,4:制御弁,
5:非延性管状可とう腱,6:非延性可とう腱,7:関節部,8:
圧力配管,9:Oリング,10:制御用配線,11:腱ガイド,12:知
覚センサ.
1 to 7 are explanatory views of the present invention, and FIG.
Is a cross-sectional view of the airtight bag when the pressure in the airtight bag is low, Fig. 1B is a cross-sectional view of the airtight bag when the pressure is high, Fig. 2 is a view of tubular bone members and spherical joints, and Fig. 3 is a tubular bone. Members and coil spring joints are shown in Fig. 4, tubular bone members and bellows joints are shown, and Figs. 5 to 7 are examples of assembly drawings as a robot hand. 1: Non-ductile reinforcing wire, 2: Non-ductile flexible membrane, 3: Bone member, 4: Control valve,
5: Non-ductile tubular flexible tendon, 6: Non-ductile flexible tendon, 7: Joint, 8:
Pressure piping, 9: O-ring, 10: control wiring, 11: tendon guide, 12: sensory sensor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】両極部にかけ渡した経線状の複数の非延性
補強線材と一体的に成形した非延性柔軟膜とから成る気
密袋と,その一極から圧力流体を導入し,この極と骨部
材とを連結する非延性管状可とう腱と,気密袋内の圧力
を制御する制御弁と,他の一極と他の骨部材とを連結す
る非延性可とう腱により構成し,気密袋は圧力を導入し
た場合に最も中心寄りの位置を非延性補強線材が経線状
に両極を結び,その間を非延性補強線材よりも外側に膨
らむ非延性柔軟膜により連結する気密構造に構成するこ
とを特徴とするロボットハンド.
1. An airtight bag composed of a plurality of non-ductile reinforcing wire rods in a meridian shape extending over both poles and a non-ductile flexible membrane integrally formed with the air-tight bag, and a pressure fluid is introduced from one pole of the airtight bag, and the pole and the bone. It consists of a non-ductile tubular flexible tendon that connects the members, a control valve that controls the pressure in the airtight bag, and a non-ductile flexible tendon that connects the other pole to other bone members. A non-ductile reinforcement wire connects both poles in a meridian shape at the position closest to the center when pressure is introduced, and a non-ductile flexible membrane that bulges outward from the non-ductile reinforcement wire is connected to form an airtight structure Robot hand.
【請求項2】骨部材を交差する非延性可とう腱対と関節
とによって連結すること,そして非延性可とう腱を関節
部で非延性可とう腱ガイドによって位置決め案内してこ
れより先の関節部へ延在させることを特徴とする特許請
求の範囲第1項記載のロボットハンド.
2. A joint which connects bone members with a pair of non-ductile flexible tendons intersecting with each other, and the non-ductile flexible tendon is positioned and guided by a non-ductile flexible tendon guide at a joint portion and a joint beyond this. The robot hand according to claim 1, wherein the robot hand is extended to a part.
【請求項3】引張力を受け持つ非延性可とう腱の一部が
知覚センサの信号を伝達するリード線であることを特徴
とする特許請求の範囲第1項ないし第2項記載のロボッ
トハンド.
3. The robot hand according to claim 1 or 2, wherein a part of the non-ductile flexible tendon that bears the tensile force is a lead wire for transmitting a signal of the sensor.
JP62262263A 1987-10-18 1987-10-18 Robot hand Expired - Lifetime JPH0675837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262263A JPH0675837B2 (en) 1987-10-18 1987-10-18 Robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262263A JPH0675837B2 (en) 1987-10-18 1987-10-18 Robot hand

Publications (2)

Publication Number Publication Date
JPH01109092A JPH01109092A (en) 1989-04-26
JPH0675837B2 true JPH0675837B2 (en) 1994-09-28

Family

ID=17373353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262263A Expired - Lifetime JPH0675837B2 (en) 1987-10-18 1987-10-18 Robot hand

Country Status (1)

Country Link
JP (1) JPH0675837B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410920B2 (en) * 2000-09-22 2010-02-10 日本ロボティクス株式会社 Pneumatic robot and pneumatic joint drive device
GB0421820D0 (en) * 2004-10-01 2004-11-03 Shadow Robot Company The Ltd Artificial hand/forearm arrangements
WO2014045617A1 (en) * 2012-09-18 2014-03-27 国立大学法人電気通信大学 Human body simulator
JP6817663B1 (en) * 2020-03-31 2021-01-20 株式会社レーベン Robot hand and robot

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598516A (en) * 1982-07-07 1984-01-17 Mazda Motor Corp Room heating device of car mounted with water-cooled engine
JPS5969288A (en) * 1982-10-07 1984-04-19 廣瀬 茂男 Soft gripping mechanism
JPS62127793U (en) * 1986-02-03 1987-08-13

Also Published As

Publication number Publication date
JPH01109092A (en) 1989-04-26

Similar Documents

Publication Publication Date Title
Guan et al. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk
Daerden et al. Pneumatic artificial muscles: actuators for robotics and automation
Tsukagoshi et al. Active hose: An artificial elephant's nose with maneuverability for rescue operation
Grissom et al. Design and experimental testing of the OctArm soft robot manipulator
De Greef et al. Towards flexible medical instruments: Review of flexible fluidic actuators
Guglielmino et al. An octopus anatomy-inspired robotic arm
Pritts et al. Design of an artificial muscle continuum robot
CN113427503B (en) Ripple pneumatic soft driver and soft manipulator
EP0161750B1 (en) Actuator
US11400585B2 (en) Actuator
US9835184B2 (en) Fiber-reinforced actuator
JPH03113104A (en) Bendable actuator
US20050028237A1 (en) Actuator systems
Yukisawa et al. Modeling of extensible pneumatic actuator with bellows (EPAB) for continuum arm
JP2993506B2 (en) Actuator
JPH0448592B2 (en)
JPH0675837B2 (en) Robot hand
CN215848227U (en) Bionic soft finger, soft manipulator and underwater operation robot
US11034017B2 (en) Soft actuators
JPH0224088A (en) Cylinder set device for robot
CN109108958A (en) A kind of folding type flexible bending execution mechanism and its application
Shimooka et al. Development of Portable Rehabilitation Device Using Flexible-Extension-Type Soft Actuator with Built-In Small-Sized Quasi-Servo Valve and Displacement Sensor
JP2002303303A (en) Spiral tube actuator
JP2009024835A (en) Actuator
JPH04304983A (en) In-pipe moving device and method for controlling it