JPH0448592B2 - - Google Patents

Info

Publication number
JPH0448592B2
JPH0448592B2 JP5284A JP5284A JPH0448592B2 JP H0448592 B2 JPH0448592 B2 JP H0448592B2 JP 5284 A JP5284 A JP 5284A JP 5284 A JP5284 A JP 5284A JP H0448592 B2 JPH0448592 B2 JP H0448592B2
Authority
JP
Japan
Prior art keywords
elastic
pressurized fluid
robot hand
finger
gripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5284A
Other languages
Japanese (ja)
Other versions
JPS60146695A (en
Inventor
Takeo Takagi
Juji Sakaguchi
Yoshinori Imamura
Kazuo Pponma
Motoo Uno
Ikuo Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Hitachi Ltd
Original Assignee
Bridgestone Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, Hitachi Ltd filed Critical Bridgestone Corp
Priority to JP5284A priority Critical patent/JPS60146695A/en
Publication of JPS60146695A publication Critical patent/JPS60146695A/en
Publication of JPH0448592B2 publication Critical patent/JPH0448592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は加圧流体の吸排により半径方向に膨径
変形し、軸線方向に収縮力を生起す弾性収縮体を
用いた、対象物を柔らかく把持できる軽量なハン
ド機構に関するものである。
[Detailed Description of the Invention] Technical Field The present invention provides a lightweight hand that can softly grip an object, using an elastic contracting body that expands and deforms in the radial direction by sucking and discharging pressurized fluid, and generates a contraction force in the axial direction. It is about the mechanism.

従来技術とその問題 今日、義手を含めロボツトハンドの普及は目ざ
ましいものがある。これは制御装置及び関連機器
の発達に伴い、従来は手作業で行なわなければな
らなかつた作業を機械化、あるいは自動化できる
ようになつたこと、宇宙空間や原子炉のような直
接に人間が作業できない環境に起因する要求の増
大によるものである。
Prior Art and its Problems Today, robotic hands, including prosthetic hands, are becoming increasingly popular. This is because, with the development of control devices and related equipment, it has become possible to mechanize or automate tasks that previously had to be done manually, and there are situations in which humans cannot directly perform tasks such as outer space or nuclear reactors. This is due to the increasing demands caused by the environment.

このようなロボツトハンドを動力源に着目して
分類すると、電気式と、気圧式と油圧式とに分け
ることができる。なお機械式のものもあるが、同
一の動きしかできないためその利用範囲は限定さ
れている。
If such robot hands are classified based on their power source, they can be divided into electric, pneumatic, and hydraulic types. There are also mechanical types, but their scope of use is limited because they can only perform the same movements.

電気式のロボツトハンドは、関連機器が豊富で
ありシステムの構成や制御系の設計が容易である
反面サーボモータを利用するものが多く装置が高
いものとなる。また減速装置を必要とするため、
ハンドの大きさが限定される他、過負荷が作用す
ると発熱しやすく火炎の恐れがある。さらには、
電力を利用するから、スパークの発生を避けるこ
とはできず、爆発生雰囲気の中では使用できない
という問題があつた。
Electric robot hands have a wide range of related equipment, making it easy to configure the system and design the control system, but many use servo motors, making them expensive. Also, since a reduction gear is required,
In addition to being limited in the size of the hand, overload tends to generate heat and there is a risk of flames. Furthermore,
Since it uses electricity, it is impossible to avoid the generation of sparks, and there is a problem that it cannot be used in an explosive atmosphere.

油圧式のロボツトハンドは、電気式、気圧式の
ものに比べ大出力であり、回転運動も直線運動も
得られると言う利点がある。しかし動力源の占有
面積が大きく配管が複雑であつて高価である上、
作動油の漏洩による周囲への汚染と言う問題があ
る。又、発熱の問題も無視できない。
Hydraulic robot hands have the advantage of higher output than electric or pneumatic ones, and can provide both rotary and linear motion. However, the power source occupies a large area, the piping is complicated, and it is expensive.
There is a problem of contamination of the surrounding area due to leakage of hydraulic oil. Furthermore, the problem of heat generation cannot be ignored.

発明の目的 これに対し、気圧式のロボツトハンドは、大き
な操作力を得ることはできないが、過負荷に対し
ても安全性が大きく発熱の心配がなく、上述した
2方式のものに比べ価格的に有利である。本発明
のロボツトハンドは気圧式のこのような利点を損
うことなく、軽量で簡潔な構造をした、かつ柔ら
かく対象物を把持できる、空気圧シリンダを用い
ない新規なロボツトハンドを提供するにある。
Purpose of the Invention On the other hand, pneumatic robot hands cannot obtain a large operating force, but are highly safe against overload, do not have to worry about heat generation, and are less expensive than the two methods mentioned above. advantageous to The purpose of the robot hand of the present invention is to provide a new robot hand that does not use a pneumatic cylinder, has a lightweight and simple structure, can grip objects softly, and does not lose these advantages of the pneumatic type.

発明の構成 この目的を達成するために、本発明のロボツト
ハンドは、ヒンジ継手にて連結さたフインガ部材
と、この連結されたフインガ部材の自由端に一端
が連結さ、連結されたフインガ部材の固定端に他
端が連結され吸排口より加圧流体を導入すること
によつて膨径変形し軸線方向に収縮力を生起する
弾性収縮体と、フインガ部材の継手部分に配設さ
れその継手部分における弾性収縮体の膨径変形を
抑止するバンド部材と、加圧流体を弾性収縮体か
ら排出する際にフインガ部材を初期位置に復帰さ
せる弾性手段とを具えることを特徴とする。
Structure of the Invention In order to achieve this object, the robot hand of the present invention includes finger members connected by a hinge joint, one end of which is connected to the free end of the connected finger member, and a robot hand of the connected finger member. an elastic contractile body whose other end is connected to the fixed end and which expands and deforms in diameter and generates a contractile force in the axial direction when pressurized fluid is introduced from the suction/discharge port; The present invention is characterized by comprising a band member that suppresses expansion and diameter deformation of the elastic contraction body, and elastic means that returns the finger member to the initial position when the pressurized fluid is discharged from the elastic contraction body.

また、上述の弾性収縮体と、同様に加圧流体を
導入することにより軸線方向に伸長力を生起する
弾性伸長体とを互いに平行に接して配列し接合し
た掴み部材のその一端を保持部材に連結し、この
掴み部材に加圧流体を導入することにより、弾性
収縮体を内側にして湾曲自在に構成したことを特
徴とする。
In addition, one end of the gripping member, which is made by arranging and joining the above-mentioned elastic contractile body and an elastic stretchable body that similarly generates a stretching force in the axial direction by introducing pressurized fluid in parallel to each other, is attached to the holding member. The gripping member is connected to the gripping member and pressurized fluid is introduced into the gripping member so that the elastic contracting member is placed inside and can be bent freely.

実施例 以下図面を参照して本発明を詳細に説明する。Example The present invention will be described in detail below with reference to the drawings.

第1図は本発明のロボツトハンドを手のひらの
側からみた図である。2は人間の手のひらに相当
する保持部材であり、本実施例では手のひらに類
似した形状をしている。4はフインガ部材であ
り、合成樹脂あるいは金属で形成し、ヒンジ継手
6によつて連結することによりフインガ部材は継
手の軸のまわりに自由に回動できる。更にこのヒ
ンジ継手6は、第2図にその一部を示したよう
に、フインガ部材4が継手6を中心に変位した時
に、フインガ部材を初期位置に復帰させる作用を
有する弾性手段7、本実施例ではコイルばねを具
える。好適には、フインガ部材4の少なくともど
ちらか1個の継手端部をチユーブ状に形成しコイ
ルばねを内蔵する構成とする。
FIG. 1 is a view of the robot hand of the present invention viewed from the palm side. Reference numeral 2 denotes a holding member corresponding to a human palm, and in this embodiment, it has a shape similar to the palm. Reference numeral 4 denotes a finger member, which is made of synthetic resin or metal, and is connected by a hinge joint 6, so that the finger member can freely rotate around the axis of the joint. Furthermore, as part of this hinge joint 6 is shown in FIG. The example includes a coil spring. Preferably, at least one joint end of the finger member 4 is formed into a tube shape and has a built-in coil spring.

フインガ部材4を上述した様に適当な数だけ連
結し、その一端を保持部材2にヒンジ連結する。
An appropriate number of finger members 4 are connected as described above, and one end thereof is hinged to the holding member 2.

次にこの連結されたフインガ部材に沿つて弾性
収縮体8を配設し、その一端を連結したフインガ
部材端部10に弾性収縮体8の端部に設けたアイ
又はクレビス12を用いてピン連結する。同じく
アイ又はクレビス12を用いて弾性収縮体8の他
端を保持部材2にピン連結する。ここで弾性収縮
体8は、吸排口14を介して加圧流体を導入する
ことにより半径方向に膨張しつつ、軸方向に収縮
力を生起するものである。
Next, an elastic contraction body 8 is arranged along the connected finger members, and one end thereof is connected to the connected finger member end 10 with a pin using an eye or clevis 12 provided at the end of the elastic contraction body 8. do. Similarly, the eye or clevis 12 is used to connect the other end of the elastic contractile body 8 to the holding member 2 with a pin. Here, the elastic contractile body 8 expands in the radial direction by introducing pressurized fluid through the intake/discharge port 14 and generates a contractile force in the axial direction.

この弾性収縮体8をバンド部材16によつてフ
インガ部材の継手部分に固定する。バンド部材1
6としては、弾性収縮体8が膨径変形する際にこ
の膨径変形を抑止するものであれば良く、金属製
としても良いが、弾性収縮体と頻繁に接触するも
のであるから弾性収縮体を損傷するものは好まし
くない。好適には、弾性収縮体の表面層よりは硬
度の低いものを用いるのが良く、例えば繊維層で
補強され、ほとんど伸長しないよう形成されたゴ
ム状弾性体を用いる。勿論合成樹脂製としても良
い。上述のように構成したロボツトハンドを第3
図に示す。なお連結したフインガ部材端部10
は、図示の如くそのままでも良いが、外周に例え
ば、ゴムやスポンジなどの弾性体(図示せず)層
を貼着し対象物をガロボツトハンガが把持した際
に対象物を損傷しないようにするのが良い。
This elastic contractile body 8 is fixed to the joint portion of the finger member by a band member 16. Band member 1
The material 6 may be any material as long as it suppresses the expansion and diameter deformation when the elastic contraction body 8 expands and deforms, and may be made of metal, but since it comes into frequent contact with the elastic contraction body, the elastic contraction body is not suitable. I don't like things that damage things. Preferably, a material having lower hardness than the surface layer of the elastic contracting body is used, such as a rubber-like elastic body reinforced with a fiber layer and formed so as to hardly stretch. Of course, it may be made of synthetic resin. The third robot hand configured as described above is
As shown in the figure. Note that the connected finger member end portion 10
can be left as is as shown in the figure, but it is recommended to attach a layer of elastic material (not shown) such as rubber or sponge to the outer periphery to prevent damage to the object when the object is gripped by the Garobot hanger. good.

次にこのように構成したロボツトハンドの作動
を説明する。
Next, the operation of the robot hand configured as described above will be explained.

加圧流体を導入するまでは、弾性手段7により
各フインガ部材4は初期位置にある。ここで吸排
口14を介して加圧流体を弾性収縮体8内に導入
すると、弾性収縮体8は軸線方向に収縮力を発生
する。ところでフインガ部材4はヒンジ継手6に
より回動可能に結合されているから、この収縮力
によりロボツトハンドは第4図に示すように屈曲
する。また、弾性収縮体8は継手部分に固定した
バンド部材16により継手部分での膨径運動が抑
止されているので、バンド部材間の間で、第4図
に示すごとく膨脹し変形する。従つて対象物を把
持する際に、まずこの膨脹した部分が対象物に接
触する。なお弾性収縮体は、有機又は無機質高張
力繊維類を耐張強化素子とする編組構造をもつて
外周を補強されたゴム又はゴム状弾性材料より形
成されているから、対象物を損傷することはな
く、軟らかく把持することができる。また把持す
る面が滑りにくい編組み構造をしているので確実
に対象物を掴むことができる。
Until pressurized fluid is introduced, the elastic means 7 keep each finger member 4 in its initial position. When the pressurized fluid is introduced into the elastic contractile body 8 through the suction/discharge port 14, the elastic contractile body 8 generates a contractile force in the axial direction. By the way, since the finger member 4 is rotatably connected by the hinge joint 6, the robot hand is bent as shown in FIG. 4 due to this contraction force. Furthermore, since the elastic contractile body 8 is prevented from expanding in diameter at the joint by the band member 16 fixed to the joint, it expands and deforms between the band members as shown in FIG. 4. Therefore, when gripping an object, this expanded portion first comes into contact with the object. The elastic contracting body is made of rubber or a rubber-like elastic material whose outer periphery is reinforced with a braided structure using organic or inorganic high-strength fibers as tensile reinforcement elements, so it will not damage the object. It is soft and can be held easily. In addition, the gripping surface has a non-slip braided structure, so you can grip the object reliably.

次に例えば、ロボツトハンドが対象物を所望位
置に運んだならば、吸排口を介して弾性収縮体内
より加圧流体を排出させると、弾性収縮体自身の
復元力と継手部に設けた弾性手段の復元力とによ
つてフインガ部材は初期位置に復帰する。
Next, for example, when the robot hand carries the object to a desired position, if the pressurized fluid is discharged from the elastic contracting body through the suction/discharge port, the restoring force of the elastic contracting body itself and the elastic means provided at the joint part are combined. The finger member returns to its initial position by the restoring force.

従つて第1図に示す様に連結したフインガ部材
を複数本又は人間の手の如く5本とし、それぞれ
連結されたフインガ部材の屈曲の度合、又は連結
されたフインガ部材長さを適宜変えたロボツトハ
ンドを用いれば凹凸形状した対象物であつても確
実に包み込むようにして掴むことができる。勿論
1本の連結したフインガ部材より成るロボツトハ
ンドであつても良いことは明らかである。
Therefore, as shown in FIG. 1, a robot can have a plurality of connected finger members or five fingers like a human hand, and the degree of bending of each connected finger member or the length of the connected finger members can be changed as appropriate. By using a hand, even an object with an uneven shape can be grasped by wrapping it securely. Of course, it is obvious that a robot hand consisting of one connected finger member may also be used.

第5図に本発明のロボツトハンドの別の実施例
を示す。本実施例は、上述した実施例と異なり、
ヒンジ継手により連結された比較的剛性の高いフ
インガ部材に代わり、吸排口を介して加圧流体を
導入することにより軸線方向に収縮力を生起する
弾性収縮体8及び軸線方向に伸長力を生起する弾
性伸長体18を互いに平行に接して配列し、接触
部分20を接合したロボツトハンドの一部であ
る。
FIG. 5 shows another embodiment of the robot hand of the present invention. This example differs from the above-mentioned example,
Instead of relatively rigid finger members connected by hinge joints, the elastic contracting body 8 generates a contraction force in the axial direction by introducing pressurized fluid through the suction/discharge port, and the elastic contraction body 8 generates an expansion force in the axial direction. This is a part of a robot hand in which elastic elongated bodies 18 are arranged parallel to each other in contact with each other, and contact portions 20 are joined.

なお、第1〜4図と同一符号の付された要素は
同一の用をなす。
It should be noted that elements given the same reference numerals as in FIGS. 1 to 4 have the same functions.

両弾性体8,18の一端に設けたクレビス12
を用い、両弾性体を保持部材に連結する。連結は
ビン連結とすれば両弾性体が変形する際、余分な
力が両弾性体の端部に作用しないで具合が良い。
両弾性体8,18を接触部分20において互いに
接合するものとする。接合に際しては接触部全長
に亘り、適当な接着剤を用いて接合する。しかし
適当な間隔で接着しても良い。この様にして形成
した掴み部材に適当な間隔ででバンド部材16を
周設する。既述した如く、バンド部材16は、掴
み部材の膨径変形を抑止するものであれば、金属
性のものであつても良いが、掴み部材と頻繁に接
触するものであるため、好適にはほとんど伸長し
ないよう繊維で補強したゴム状弾性体、又は合成
樹脂製とする。
Clevis 12 provided at one end of both elastic bodies 8, 18
to connect both elastic bodies to the holding member. If the connection is a bottle connection, when both elastic bodies are deformed, unnecessary force will not be applied to the ends of both elastic bodies, which is convenient.
It is assumed that both elastic bodies 8 and 18 are joined to each other at a contact portion 20. When joining, a suitable adhesive is used over the entire length of the contact portion. However, they may be bonded at appropriate intervals. Band members 16 are provided around the gripping member formed in this manner at appropriate intervals. As mentioned above, the band member 16 may be made of metal as long as it prevents the gripping member from expanding and deforming, but since it frequently comes into contact with the gripping member, it is preferably made of metal. It is made of rubber-like elastic material reinforced with fibers or synthetic resin so that it hardly stretches.

この掴み部材に吸排口14を介し、加圧流体を
供給すると、掴み部材は接合部を中立面として第
6図に示すように弾性収縮体8を内側にして屈曲
する。これは加圧流体の導入により、弾性収縮体
8は収縮力を、弾性伸長体18は伸張力をそれぞ
れ生起するからである。この時掴み部材は、バン
ド部材16をあたかも関節のようにして屈曲し、
弾性収縮体8の膨脹部分は把持しようとする対象
物に接触する。更に加圧流体を掴み部材、すなわ
ち両弾性体8,18に供給すれば、掴み部材は一
層大きく屈曲し、対象物をさらにしつかりと把持
する。しかもすでに述べたように弾性収縮体表面
は編組構造をしているので確実に対象物を把持で
きる。
When pressurized fluid is supplied to this gripping member through the suction/discharge port 14, the gripping member is bent with the elastic contracting body 8 inside as shown in FIG. 6 with the joint portion as a neutral plane. This is because the introduction of the pressurized fluid causes the elastic contractile body 8 to generate a contraction force and the elastic stretchable body 18 to generate a stretching force. At this time, the gripping member bends the band member 16 as if it were a joint,
The expanded portion of the elastic contractile body 8 comes into contact with the object to be grasped. If pressurized fluid is further supplied to the gripping members, ie both elastic bodies 8, 18, the gripping members will bend even more and grip the object even more firmly. Moreover, as already mentioned, since the surface of the elastic contracting body has a braided structure, the object can be gripped reliably.

これとは逆に、掴み部材に供給された加圧流体
を吸排口14を介して排出すれば両弾性体の復元
力により掴み部材は第5図に示す状態に復帰す
る。勿論バンド部材16を周設しなくとも良いが
屈曲の度合いが一定になり、特に径の大きなもの
を把持するのに適している。したがつてこのよう
に形成した掴み部材を具備するロボツトハンド
は、人間の手が行なう掴む動作にかなり類似した
動作を行なう。
On the contrary, if the pressurized fluid supplied to the gripping member is discharged through the suction/discharge port 14, the gripping member returns to the state shown in FIG. 5 due to the restoring force of both elastic bodies. Of course, it is not necessary to provide the band member 16 around the circumference, but the degree of bending becomes constant, and this is particularly suitable for gripping objects with a large diameter. Therefore, a robot hand equipped with a grasping member formed in this manner performs a grasping motion that is quite similar to the grasping motion performed by a human hand.

これは上記2実施例に共通するものであるが弾
性収縮体の具える特性によるものである。すなわ
ち、弾性収縮体の生起する軸線方向の収縮力F
と、軸線方向の収縮率εとの関係は第7図に示す
関係があり、収縮率εの増加につれて、収縮率F
が指数関数的に減少する。これは、収縮率が小さ
い時にはフインガ部材を屈曲させるために大きな
力が作用し、収縮率がある程度大きくなると、加
圧流体の供給量又は排出量を若干増減しても収縮
力Fは大きく変化しないことを意味している。そ
れゆえ、把持作業が容易にかつ安全に行なえるこ
とになる。
This is common to the above two embodiments and is due to the characteristics of the elastic contractile body. That is, the contraction force F in the axial direction generated by the elastic contraction body
The relationship between the shrinkage rate ε in the axial direction and the shrinkage rate F in the axial direction is as shown in FIG.
decreases exponentially. This is because when the contraction rate is small, a large force acts to bend the finger member, and when the contraction rate increases to a certain extent, the contraction force F does not change significantly even if the supply or discharge amount of pressurized fluid is slightly increased or decreased. It means that. Therefore, the gripping work can be performed easily and safely.

なお、第5図に示す実施例では、弾性収縮体8
及び弾性伸長体18の接合部分が両弾性体8,1
8の軸線に対し、平行に位置しているが、両弾性
体8,18を互いに巻回するよう構成すれば、フ
インガ部先端に回動運動を与えることもできる。
このように本実施例のロボツトハンドは種々の変
形及び変更が可能となる。
In addition, in the embodiment shown in FIG.
and the joint portion of the elastic elongated body 18 is the elastic body 8,1.
Although the elastic bodies 8 and 18 are positioned parallel to the axis of the finger 8, if the elastic bodies 8 and 18 are configured to be wound around each other, rotational movement can be applied to the tip of the finger portion.
In this way, the robot hand of this embodiment can be modified and modified in various ways.

発明の効果 上述したように本発明のロボツトハンドは、加
圧流体を導入することにより膨径変形する弾性収
縮体の収縮力を利用する構成であるため、油圧シ
リンダ、空気シリンダ、電動モータなどを利用す
るものに比して、機械的な損失が少なく、駆動装
置と把持部分とを一体に形成するのでロボツトハ
ンド自体の重量を従来のロボツトハンドに比して
格段に軽量することができる。さらに、把持部分
が弾性に富んでいるから対象物を損傷することが
なく、人間が誤まつて接触しても負傷することの
ない安全性の高いロボツトハンドである。加えて
加圧流体として圧縮空気を用いれば、周囲への汚
染やスパークによる引火の問題のない実用性の高
いロボツトハンドである。しかも把持力の制御が
容易である。
Effects of the Invention As described above, the robot hand of the present invention is configured to utilize the contractile force of an elastic contractile body that expands and deforms when pressurized fluid is introduced, so it can be used with hydraulic cylinders, air cylinders, electric motors, etc. Compared to conventional robot hands, there is less mechanical loss, and since the drive device and the gripping portion are integrally formed, the weight of the robot hand itself can be significantly reduced compared to conventional robot hands. Furthermore, since the gripping portion is highly elastic, the robot hand does not damage the object, and is highly safe as it will not cause injury even if a human touches it accidentally. In addition, if compressed air is used as the pressurized fluid, the robot hand will be highly practical without problems of contamination of the surrounding area or ignition caused by sparks. Moreover, the gripping force can be easily controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のロボツトハンドの好適な実
施例を示す全体的な平面図、第2図は、第1図に
示すロボツトハンドの一部斜視図、第3図は、第
1図においてA−A線に沿つて見た図、第4図
は、第3図に示すフインガ部の作動を示す説明
図、第5図は、本発明のロボツトハンドの他の好
適な実施例を示す平面図、第6図は、第5図に示
す実施例の作動を示す説明図、第7図は、本発明
のロボツトハンドに用いる弾性収縮体の収縮力と
収縮率との関係を示す図である。 2…保持部材、4…フインガ部材、6…継手、
7…弾性手段、8…弾性収縮体、10…フインガ
部端部、12…クレビス、14…吸排口、16…
バンド部材、18…弾性伸長体、20…接触部
分。
FIG. 1 is an overall plan view showing a preferred embodiment of the robot hand of the present invention, FIG. 2 is a partial perspective view of the robot hand shown in FIG. 1, and FIG. 3 is a partial perspective view of the robot hand shown in FIG. 4 is an explanatory view showing the operation of the finger portion shown in FIG. 3, and FIG. 5 is a plan view showing another preferred embodiment of the robot hand of the present invention. 6 is an explanatory diagram showing the operation of the embodiment shown in FIG. 5, and FIG. 7 is a diagram showing the relationship between the contraction force and contraction rate of the elastic contractile body used in the robot hand of the present invention. . 2... Holding member, 4... Finger member, 6... Joint,
7... Elastic means, 8... Elastic contraction body, 10... Finger portion end, 12... Clevis, 14... Suction/exhaust port, 16...
Band member, 18... Elastic extension body, 20... Contact portion.

Claims (1)

【特許請求の範囲】 1 ヒンジ継手にて連結され一端を保持部材に結
合したフインガ部材と、吸排口を介して加圧流体
を導入することによつて膨径変形し軸線方向に収
縮力を生起する弾性収縮体と、前記フイング部材
の継手部分に配設され前記継手部分における前記
弾性収縮体の膨径変形を抑止するバンド部材と、
前記加圧流体を前記弾性収縮体から排出する際に
前記フインガ部材を初期位置に復帰させる弾性手
段とを具え、前記弾性収縮体の一端を前記連結さ
れたフインガ部材の一端に連結し、前記弾性収縮
体の他端を前記連結されたフインガ部材の他端に
連結し、前記加圧流体を吸排することにより前記
フインガ部材を屈曲させ、又は前記初期位置に復
帰させることを特徴とするロボツトハンド。 2 前記弾性手段は前記ヒンジ継手の軸に配設し
たねじりばねである特許請求の範囲第1項に記載
のロボツトハンド。 3 吸排口より加圧流体を導入することによつて
膨径変形し軸線方向に収縮力を生起する弾性収縮
体及び軸線方向に伸長力を生起する弾性伸長体を
互いに平行に接して配列し接合した掴み部材を具
え、前記掴み部材の一端を保持部材に連結し、前
記掴み部材への前記加圧流体の吸排により前記弾
性収縮体を内側にして湾曲自在に構成したことを
特徴とするロボツトハンド。 4 前記掴み部材は、離間して周設され、前記掴
み部材の膨径変形を抑止するバンド部材を具える
特許請求の範囲第3項に記載のロボツトハンド。
[Scope of Claims] 1 A finger member connected by a hinge joint and having one end connected to a holding member and a pressurized fluid introduced through a suction/discharge port, which expands and deforms in diameter and generates a contractile force in the axial direction. a band member disposed at a joint portion of the wing member to suppress expansion and diameter deformation of the elastic contraction body at the joint portion;
elastic means for returning the finger member to the initial position when the pressurized fluid is discharged from the elastic contracting body, one end of the elastic contracting body is connected to one end of the connected finger member, and the elastic means A robot hand characterized in that the other end of the contracting body is connected to the other end of the connected finger member, and the finger member is bent or returned to the initial position by sucking and discharging the pressurized fluid. 2. The robot hand according to claim 1, wherein the elastic means is a torsion spring disposed on the shaft of the hinge joint. 3. An elastic contracting body that expands and deforms in diameter by introducing pressurized fluid from the suction/discharge port and generates a contraction force in the axial direction, and an elastic stretchable body that generates a stretching force in the axial direction are arranged and joined in parallel with each other. A robot hand, comprising: a gripping member, one end of the gripping member being connected to a holding member, and configured to be bendable with the elastic contracting body inside by sucking and discharging the pressurized fluid into the gripping member. . 4. The robot hand according to claim 3, wherein the gripping member includes a band member disposed around the gripping member at a distance to prevent expansion and deformation of the gripping member.
JP5284A 1984-01-05 1984-01-05 Robot hand Granted JPS60146695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284A JPS60146695A (en) 1984-01-05 1984-01-05 Robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5284A JPS60146695A (en) 1984-01-05 1984-01-05 Robot hand

Publications (2)

Publication Number Publication Date
JPS60146695A JPS60146695A (en) 1985-08-02
JPH0448592B2 true JPH0448592B2 (en) 1992-08-07

Family

ID=11463474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284A Granted JPS60146695A (en) 1984-01-05 1984-01-05 Robot hand

Country Status (1)

Country Link
JP (1) JPS60146695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284924A (en) * 2008-05-27 2009-12-10 Tokyo Institute Of Technology Object holding device
US10195742B2 (en) 2015-12-25 2019-02-05 Kabushiki Kaisha Toshiba Driving apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003702B2 (en) * 1987-11-13 2000-01-31 株式会社東芝 Actuator
NO163518C (en) * 1987-12-21 1990-06-13 Michelsens Chr Inst DEVICE FOR PRESSURE-OPERATED BODY
JPH0373290A (en) * 1989-08-08 1991-03-28 Fuji Electric Co Ltd Holding device
JP3793785B2 (en) * 2001-08-31 2006-07-05 広島県 Multi-finger movable robot hand and its grip control method
JP2005155764A (en) * 2003-11-25 2005-06-16 Rikogaku Shinkokai Actuator and omnidirectional traveling vehicle
WO2006080088A1 (en) * 2005-01-31 2006-08-03 Squse Inc. Actuator, drive device, and hand device
JP4643429B2 (en) * 2005-12-13 2011-03-02 本田技研工業株式会社 Hand device
JP2008194788A (en) * 2007-02-14 2008-08-28 Shin Meiwa Ind Co Ltd Holding mechanism and robot hand equipped therewith
JP5692781B2 (en) * 2010-10-13 2015-04-01 国立大学法人東京工業大学 Actuator
GB2518340A (en) * 2011-03-15 2015-03-25 Barts & London Nhs Trust Steerable element for use in surgery
AT516782B1 (en) * 2015-02-06 2017-01-15 Fh Campus Wien Forschungs- Und Entw Gmbh Elastic gripper finger
JP6792851B2 (en) * 2016-05-13 2020-12-02 国立大学法人東京工業大学 Robot hand and flying robot
CN106965155A (en) * 2017-03-22 2017-07-21 袁建新 A kind of elastomeric hydraulic muscle
JP2024039555A (en) * 2022-09-09 2024-03-22 株式会社ブリヂストン robot hand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284924A (en) * 2008-05-27 2009-12-10 Tokyo Institute Of Technology Object holding device
US10195742B2 (en) 2015-12-25 2019-02-05 Kabushiki Kaisha Toshiba Driving apparatus

Also Published As

Publication number Publication date
JPS60146695A (en) 1985-08-02

Similar Documents

Publication Publication Date Title
JPH0448592B2 (en)
Guan et al. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk
JP7402882B2 (en) Robotic end effector with rear-supported actuator mechanism
Daerden et al. Pneumatic artificial muscles: actuators for robotics and automation
Kim et al. Design of a tubular snake-like manipulator with stiffening capability by layer jamming
JP5265635B2 (en) Tendon-driven finger actuation system
US20050121929A1 (en) Humanoid robotics
JPH0512116B2 (en)
US3561330A (en) Fluid operable motor
US6312398B1 (en) Actuator for flexing a resilient covering
JPWO2004085856A1 (en) Fluid pressure actuator and continuous passive motion apparatus using the same
US20050028237A1 (en) Actuator systems
US10618182B2 (en) Underactuated mechanical finger capable of linear motion with compensatory displacement, mechanical gripper and robot containing the same
Yukisawa et al. Ceiling continuum arm with extensible pneumatic actuators for desktop workspace
JP5503702B2 (en) Low stroke operation for serial robots
Chen et al. A robotic manipulator design with novel soft actuators
US20170355084A1 (en) Robot hand apparatus and robot arm for same
Salomonski et al. Light robot arm based on inflatable structure
CN209755262U (en) Self-adaptive variable-rigidity soft hand grab
CN113967922B (en) Full-flexible pneumatic soft bionic manipulator
Yamane et al. Development of a flexible manipulator with changing stiffness by granular jamming
CN114434471A (en) Rigid-flexible bionic hand and bionic robot
Al-Ibadi et al. A robot continuum arm inspired by the human upper limb: The pronation and supination rotating behaviour
US10527072B1 (en) Actuator for rotating members
CN111390963B (en) Base joint of robot humanoid dexterous finger