JPH0675359A - Mask for exposure and its production - Google Patents

Mask for exposure and its production

Info

Publication number
JPH0675359A
JPH0675359A JP10341693A JP10341693A JPH0675359A JP H0675359 A JPH0675359 A JP H0675359A JP 10341693 A JP10341693 A JP 10341693A JP 10341693 A JP10341693 A JP 10341693A JP H0675359 A JPH0675359 A JP H0675359A
Authority
JP
Japan
Prior art keywords
film
oxide film
semitransparent
thickness
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341693A
Other languages
Japanese (ja)
Other versions
JP3247485B2 (en
Inventor
Takashi Kamo
隆 加茂
Kenji Kawano
健二 川野
Hiroaki Hazama
博顕 間
Takayuki Iwamatsu
孝行 岩松
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10341693A priority Critical patent/JP3247485B2/en
Publication of JPH0675359A publication Critical patent/JPH0675359A/en
Priority to US08/583,857 priority patent/US5629115A/en
Priority to US08/730,017 priority patent/US5728494A/en
Priority to US08/729,592 priority patent/US5907393A/en
Application granted granted Critical
Publication of JP3247485B2 publication Critical patent/JP3247485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To provide a production method for mask for exposure which realizes ideal phase difference and amplitude transmittance of a halftone phase shift mask by preventing the film quality of a translucent film from undergoing secular change. CONSTITUTION:In the production method for a half tone-type phase shift mask having 180 deg. phase difference between the transmitting part and translucent film pattern, an amorphous Si film 102 as a translucent film is formed on a transparent substrate 101, an oxide film 103 is formed by oxidization on the Si film 102 in an atmosphere containing oxygen atoms, and then a resist pattern 104a is formed on the oxide film 103. Then the oxide film 103 and the Si film 102 are etched by using the resist pattern 104a as a mask to obtain a phase shift layer 106 consisting of a laminaer structure of the oxide film 103 and Si film 102.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体リソグラフィー
工程で用いられる露光用マスク及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure mask used in a semiconductor lithography process and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体装置の進歩と共に、半導体
装置ひいては半導体素子の高速化,高集積化が進められ
ている。それに伴い、パターンの微細化の必要性は益々
高くなり、パターン寸法も微細化,高精度化が要求され
るようになっている。この要求を満たす目的で、露光光
源に遠紫外線等、短波長の光が用いられるようになって
きた。
2. Description of the Related Art In recent years, along with the progress of semiconductor devices, the speed and integration of semiconductor devices, and thus semiconductor elements, have been increasing. Along with this, the need for miniaturization of patterns is increasing more and more, and miniaturization and high precision of pattern dimensions are also required. For the purpose of satisfying this requirement, short-wavelength light such as deep ultraviolet rays has come to be used as an exposure light source.

【0003】しかし、次世代の露光光源に用いられよう
としているKrFエキシマレーザの248nmの発振線
を用いたプロセスは、レジスト材料として化学増幅型レ
ジストが開発されつつあるものの研究段階にあり、現時
点での実用化は未だ困難である。このように露光光源の
波長を変えた場合、材料開発から必要となるため実用化
にいたるまでかなりの期間を要することになる。
However, a process using a 248 nm oscillation line of a KrF excimer laser, which is about to be used as a next-generation exposure light source, is still in the research stage, although a chemically amplified resist is being developed as a resist material. It is still difficult to put into practical use. When the wavelength of the exposure light source is changed in this way, it takes a considerable period of time from the material development to the practical use because it is necessary from the material development.

【0004】そこで最近、露光光源を変えずに露光用マ
スクを工夫する、位相シフト法が提案されている。この
位相シフト法は、光透過部に部分的に位相シフタと呼ば
れる位相反転層を設け、隣接するパターンからの光の回
析の影響を除去し、パターン精度の向上を図るものであ
る。この位相シフト法にも幾つかの種類があり、隣接す
る2つの光透過部の位相差を交互に180度違えるレベ
ンソン型位相シフトマスクが特に知られている。
Therefore, recently, a phase shift method has been proposed in which the exposure mask is devised without changing the exposure light source. This phase shift method is intended to improve the pattern accuracy by partially providing a phase inversion layer called a phase shifter in the light transmitting portion to remove the influence of light diffraction from an adjacent pattern. There are several types of this phase shift method, and a Levenson-type phase shift mask in which the phase difference between two adjacent light transmitting portions is alternately different by 180 degrees is particularly known.

【0005】しかし、レベンソン型位相シフトマスクを
用いた方法では、ライン&スペースといった繰り返しの
パターンに対しては解像力の向上効果が大きいものの、
パターンが3つ以上隣接する場合に効果を発揮すること
が難しい。即ち、2つのパターンの光の位相差を180
度とした場合、もう1つのパターンは先の2つのパター
ンの内の一方と同位相となり、その結果、位相差180
度のパターン同士は解像するが位相差0度のパターン同
志では非解像となるという問題点がある。この問題を解
決するためには、デバイス設計を根本から見直す必要が
あり、直ちに実用化するのにかなりの困難を要する。
However, although the method using the Levenson type phase shift mask has a great effect of improving the resolving power for repetitive patterns such as lines and spaces,
It is difficult to exert the effect when three or more patterns are adjacent to each other. That is, the phase difference between the two patterns of light is 180
Degree, the other pattern is in phase with one of the previous two patterns, resulting in a phase difference of 180
However, there is a problem that patterns having a phase difference of 0 degree are not resolved when the patterns have a phase difference of 0 degree. In order to solve this problem, it is necessary to fundamentally rethink the device design, and it is quite difficult to put it into practical use immediately.

【0006】一方、このようなデバイス設計の変更を必
要としない位相シフトマスクとして、ハーフトーン型位
相シフトマスクが知られている。このマスクは、遮光膜
の代わりに半透明膜を用い、半透明部と透明部とを通過
する光の位相差を180度とし、また透過率を調整する
ことで、パターン解像度の低下の原因となる光の干渉を
軽減することができる。
On the other hand, a halftone type phase shift mask is known as a phase shift mask which does not require such a device design change. This mask uses a semi-transparent film instead of the light-shielding film, sets the phase difference of light passing through the semi-transparent portion and the transparent portion to 180 degrees, and adjusts the transmittance to cause a decrease in pattern resolution. It is possible to reduce the interference of light.

【0007】このようなハーフトーン型位相シフトマス
クとして、特開平4-136854号公報に示されるような多層
膜を使い、位相と透過率を調整するものが考えられてい
る。しかしながら、多層膜を用いた場合は、転写工程が
2度にわたり、また下層に欠陥が生じた場合に修正が困
難であるという問題点があった。単層の半透明膜で透過
率と位相差の両者を同時に制御するには、半透明膜とし
て用いるものの組成は限られたものになる。半透明膜中
の分子の結合状態が不安定な場合は特に、膜表面の自然
酸化といった時間経過に伴う膜質の変化が生じ、所望と
する位相差並びに透過率からずれるという弊害が生じて
いた。
As such a halftone type phase shift mask, there has been considered a one using a multilayer film as disclosed in Japanese Patent Laid-Open No. 4-136854 to adjust the phase and the transmittance. However, when a multilayer film is used, there are problems in that the transfer process is performed twice and it is difficult to correct when a defect occurs in the lower layer. In order to simultaneously control both the transmittance and the retardation in a single-layer semitransparent film, the composition used as the semitransparent film is limited. In particular, when the bonding state of the molecules in the semitransparent film is unstable, the film quality changes with the passage of time such as natural oxidation of the film surface, which causes the adverse effect of deviating from the desired phase difference and transmittance.

【0008】例えば、g線を露光光源に用いたマスクで
はアモルファスSiなどが用いられる。この場合、透明
部の透過光と半透明部の透過光の位相差が180度とな
るように半透明膜の膜厚を形成しても、膜表面の自然酸
化等の経時変化により次第に理想的な位相差及び振幅透
過率からずれてしまい、半透明膜として不適切な膜質に
なるという問題があった。
For example, in a mask using g-line as an exposure light source, amorphous Si or the like is used. In this case, even if the film thickness of the semitransparent film is formed so that the phase difference between the light transmitted through the transparent portion and the light transmitted through the semitransparent portion is 180 degrees, the film surface is gradually idealized due to changes with time such as natural oxidation of the film surface. However, there is a problem that the film quality becomes unsuitable as a semi-transparent film because of deviation from the phase difference and the amplitude transmittance.

【0009】[0009]

【発明が解決しようとする課題】上述したように、従来
のハーフトーン型位相シフトマスクでは、半透明膜表面
に自然酸化膜が成長することにより、理想的な位相差及
び振幅透過率の値からずれてしまうという問題点があっ
た。
As described above, in the conventional halftone type phase shift mask, the natural oxide film grows on the surface of the semitransparent film, so that the ideal phase difference and amplitude transmittance values are There was a problem that it would be displaced.

【0010】本発明は上記課題に鑑みてなされたもので
あり、その目的とするところは、半透明膜の膜質の経時
変化を防ぐことにより、ハーフトーン型位相シフトマス
クの理想的な位相差及び振幅透過率を実現し得る露光用
マスク及びその製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to prevent an ideal phase difference of a halftone type phase shift mask by preventing the film quality of a semitransparent film from changing with time. An object of the present invention is to provide an exposure mask that can realize amplitude transmittance and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち、本
発明(請求項1)は、ハーフトーン型位相シフトマスク
を構成する露光用マスクにおいて、透明基板からなる透
過部と、この透明基板上の所定位置に形成された半透明
膜パターンと、この半透明膜パターンの上部にのみ或い
はこの半透明膜パターンを覆うように形成された所望の
厚さの酸化膜とを備え、透過部と半透明膜パターン及び
酸化膜とを透過する光の位相差が180±10度となる
ことを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention (Claim 1) is, in an exposure mask constituting a halftone type phase shift mask, a transmissive part made of a transparent substrate, and a semitransparent film pattern formed at a predetermined position on the transparent substrate, An oxide film having a desired thickness formed only on the upper part of the semitransparent film pattern or so as to cover the semitransparent film pattern is provided, and the position of the light transmitted through the transmissive part, the semitransparent film pattern and the oxide film is provided. The phase difference is 180 ± 10 degrees.

【0012】また、本発明(請求項2)は、上記構成の
露光用マスクの製造方法において、透明基板上に半透明
膜を形成したのち、この半透明膜上に所望の厚さの酸化
膜を形成し、次いでこの酸化膜上に感光性樹脂パターン
を形成し、次いでこの感光性樹脂パターンをマスクに酸
化膜及び半透明膜を選択エッチングして、酸化膜及び半
透明膜の積層構造からなる位相シフト層を形成し、次い
で感光性樹脂パターンを除去するようにした方法であ
る。
According to the present invention (claim 2), in the method of manufacturing an exposure mask having the above-mentioned structure, after forming a semitransparent film on a transparent substrate, an oxide film having a desired thickness is formed on the semitransparent film. Then, a photosensitive resin pattern is formed on this oxide film, and then the oxide film and the semitransparent film are selectively etched using this photosensitive resin pattern as a mask to form a laminated structure of the oxide film and the semitransparent film. In this method, a phase shift layer is formed and then the photosensitive resin pattern is removed.

【0013】また、本発明(請求項3)は、上記構成の
露光用マスクの製造方法において、透明基板上に半透明
膜を形成したのち、この半透明膜上に感光性樹脂パター
ンを形成し、次いでこの感光性樹脂パターンをマスクに
半透明膜をエッチングし、次いでこの感光性樹脂パター
ンを除去し、次いで半透明膜を覆うように所望の厚さの
酸化膜を形成し、この酸化膜及び半透明膜の積層構造か
らなる位相シフト層を形成するようにした方法である。
According to the present invention (claim 3), in the method of manufacturing an exposure mask having the above-mentioned structure, a semitransparent film is formed on a transparent substrate, and then a photosensitive resin pattern is formed on the semitransparent film. Then, the semitransparent film is etched by using this photosensitive resin pattern as a mask, then the photosensitive resin pattern is removed, and then an oxide film having a desired thickness is formed so as to cover the semitransparent film. This is a method for forming a phase shift layer having a laminated structure of a semitransparent film.

【0014】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 酸化膜を形成する工程として、半透明膜を酸素原子
を含む雰囲気中で酸化すること。 (2) 酸化膜を形成する工程として、半透明膜が形成され
た透明基板を酸化性溶液中に浸し、半透明膜の表面を酸
化すること。 (3) 酸化性溶液として、発煙硝酸、又は硫酸と過酸化水
素水の混合液を用いること。 (4) 酸化膜の厚さは、半透明膜の自然酸化による膜厚の
増加が起こらなくなる厚さであること。 (5) 半透明膜を形成する工程として、酸化によって生じ
る酸化膜の膜厚及びそれに伴う半透明膜の膜厚変化を考
慮し、半透明膜の元素組成比を変化させることで屈折率
及び消減係数を同時に制御し、基板に対する振幅透過率
及び位相差を位相シフト効果を最大限に発揮することの
できる条件で形成すること。
Here, the following are preferred embodiments of the present invention. (1) As a step of forming an oxide film, the semitransparent film is oxidized in an atmosphere containing oxygen atoms. (2) As a step of forming an oxide film, the transparent substrate on which the semitransparent film is formed is immersed in an oxidizing solution to oxidize the surface of the semitransparent film. (3) Use fuming nitric acid or a mixture of sulfuric acid and hydrogen peroxide as the oxidizing solution. (4) The thickness of the oxide film should be such that the film thickness does not increase due to natural oxidation of the semitransparent film. (5) In the process of forming the semi-transparent film, the refractive index and the extinction are reduced by changing the element composition ratio of the semi-transparent film in consideration of the film thickness of the oxide film caused by oxidation and the accompanying change in the film thickness of the semi-transparent film. The coefficient should be controlled at the same time, and the amplitude transmittance and the phase difference with respect to the substrate should be formed under the condition that the phase shift effect can be maximized.

【0015】[0015]

【作用】本発明では、Si等からなる半透明膜を形成し
て、このSi膜を酸化することにより、所望の厚さの酸
化膜を形成する。ある一定の厚さ以上の酸化膜は、その
下層のSi膜の自然酸化等により生じる膜厚増加を防ぐ
ことができ、初めに設定した半透明膜の理想的な位相,
透過率等の光学定数を維持することができる。従って、
半透明膜の膜質の経時変化を防ぐことができ、ハーフト
ーン型位相シフトマスクの理想的な位相差及び振幅透過
率を実現することが可能となる。
In the present invention, a semitransparent film made of Si or the like is formed, and the Si film is oxidized to form an oxide film having a desired thickness. An oxide film with a certain thickness or more can prevent an increase in film thickness caused by natural oxidation of the underlying Si film, and the ideal phase of the semi-transparent film initially set,
Optical constants such as transmittance can be maintained. Therefore,
The film quality of the semitransparent film can be prevented from changing with time, and the ideal phase difference and amplitude transmittance of the halftone type phase shift mask can be realized.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は、本発明の第1の実施例に係わる露
光用マスクの製造工程を示す断面図である。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing a manufacturing process of an exposure mask according to a first embodiment of the present invention.

【0017】まず、図1(a)に示すように、透明基板
101上にスパッタリング法により厚さ61nmのSi
膜102を形成する。続いて、流量100sccm,圧力
0.1Torrで酸素アッシングを2分間行うことにより、
Si膜102上に厚さ4nmの酸化膜103を形成す
る。なお、Si膜102表面に自然酸化膜が形成されて
いる場合、上記処理によりこの自然酸化膜上にさらに酸
化膜を形成し、酸化膜全体の厚さを4nmにする。
First, as shown in FIG. 1A, a 61 nm thick Si film is formed on a transparent substrate 101 by a sputtering method.
The film 102 is formed. Subsequently, by performing oxygen ashing for 2 minutes at a flow rate of 100 sccm and a pressure of 0.1 Torr,
An oxide film 103 having a thickness of 4 nm is formed on the Si film 102. When a natural oxide film is formed on the surface of the Si film 102, an oxide film is further formed on this natural oxide film by the above-mentioned process, and the total thickness of the oxide film is set to 4 nm.

【0018】次いで、図1(b)に示すように、酸化膜
103上に電子線用レジスト104を0.5μm程度の
厚さに堆積した後、レジスト104上に導電性膜105
を0.2μm程度の厚さに形成する。
Next, as shown in FIG. 1B, an electron beam resist 104 having a thickness of about 0.5 μm is deposited on the oxide film 103, and then a conductive film 105 is formed on the resist 104.
To a thickness of about 0.2 μm.

【0019】次いで、導電性膜105上から照射量3μ
C/cm2 で、電子線により描画を行い、さらに現像を
行って、図1(c)に示すようにレジストパターン10
4aを形成する。ここで、導電性膜105を形成するの
は、レジスト104が絶縁性であるとき電子線のチャー
ジアップを防ぐためである。
Then, a dose of 3 μm is applied from above the conductive film 105.
At C / cm 2 , electron beam drawing is performed and further development is performed to form a resist pattern 10 as shown in FIG.
4a is formed. Here, the conductive film 105 is formed in order to prevent charge-up of an electron beam when the resist 104 is insulative.

【0020】次いで、図1(d)に示すように、レジス
トパターン104aをマスクとしてCF4 とO2 との混
合ガスによるケミカルドライエッチング(CDE)によ
り、レジストパターン104aから露出する酸化膜10
3及びSi膜102のエッチングを行う。この際、酸化
膜103のエッチング時には、Si膜102のエッチン
グ時に比べてO2 のCF4 に対する流量比を増加させる
2段階エッチングを行う。
Next, as shown in FIG. 1D, the oxide film 10 exposed from the resist pattern 104a is subjected to chemical dry etching (CDE) with a mixed gas of CF 4 and O 2 using the resist pattern 104a as a mask.
3 and the Si film 102 are etched. At this time, when etching the oxide film 103, two-step etching is performed to increase the flow rate ratio of O 2 to CF 4 as compared to when etching the Si film 102.

【0021】最後に、レジストパターン104aを除去
し、図1(e)に示すように酸化膜103及びSi膜1
02よりなる半透明膜パターン(位相シフト層)106
を得る。このようにして、所望の半透明膜からなるハー
フトーン型位相シフトマスクを得ることができる。
Finally, the resist pattern 104a is removed, and the oxide film 103 and the Si film 1 are removed as shown in FIG.
02 semi-transparent film pattern (phase shift layer) 106
To get In this way, a halftone phase shift mask made of a desired semitransparent film can be obtained.

【0022】かくして形成されたマスクにおいて、露光
光にg線を用いた場合、半透明膜としての酸化膜103
及びSi膜102を透過した光と透明基板101を透過
した光との位相差は180度であり、振幅透過率は透明
基板に対し17.4%であった。
In the mask thus formed, when the g-line is used as the exposure light, the oxide film 103 as a semitransparent film is formed.
The phase difference between the light transmitted through the Si film 102 and the light transmitted through the transparent substrate 101 was 180 degrees, and the amplitude transmittance was 17.4% with respect to the transparent substrate.

【0023】なお、本実施例ではSi膜102の形成を
スパッタリングにより行ったが、CVD法や蒸着法等を
用いてもよい。また、酸化膜103及びSi膜102の
膜厚を本発明の趣旨を逸脱しない範囲において適当な厚
さにしてもよい。また、酸化膜を酸素原子を含む雰囲気
中で形成、或いは液相成長法により形成してもよい。さ
らに、酸化膜,Si膜の加工をRIE又はウェットエッ
チングにより行ってもよい。
Although the Si film 102 is formed by sputtering in this embodiment, a CVD method, a vapor deposition method or the like may be used. Further, the thicknesses of the oxide film 103 and the Si film 102 may be set to appropriate values without departing from the spirit of the present invention. Alternatively, the oxide film may be formed in an atmosphere containing oxygen atoms or by a liquid phase growth method. Further, the oxide film and the Si film may be processed by RIE or wet etching.

【0024】本実施例では、Si膜を形成した後、酸素
アッシングによりこのSi膜を酸化してSiO2 膜を形
成している。このように、Si膜の表面に強制的に一定
の膜厚の酸化膜を形成すると、大気中に放置しても自然
酸化膜は生成しない。図2は半透明膜の酸化膜厚の経時
変化を示す図である。
In this embodiment, after the Si film is formed, the Si film is oxidized by oxygen ashing to form the SiO 2 film. As described above, when the oxide film having a constant thickness is forcibly formed on the surface of the Si film, a natural oxide film is not formed even if left in the atmosphere. FIG. 2 is a diagram showing changes with time in the oxide film thickness of the semitransparent film.

【0025】これらの結果より、酸素アッシングをスパ
ッタ後に加えることによって酸化膜厚の経時変化は大幅
に抑えられることが分かる。酸素アッシングを行った場
合、初期膜厚の4nmから殆ど膜厚の変化はないが、ス
パッタしたままの場合は、やはり4nmまで、徐々に酸
化膜の膜厚が増加している。Siの膜質によってこの酸
化膜の上限の厚さは異なるが、ある一定の厚さの酸化膜
をSi膜上に形成しておけば、その後の自然酸化或いは
露光による酸化反応等による膜厚の変化は生じないこと
が分かる。また、このとき形成される酸化膜は、g線に
対し位相差1.6°、i線に対し位相差1.8°、Kr
Fに対し位相差2.9°となるが、この値は位相差に対
する許容量である10°以内であり、実用上差支えな
い。
From these results, it is understood that the change with time of the oxide film thickness can be significantly suppressed by adding oxygen ashing after sputtering. When the oxygen ashing is performed, there is almost no change in the film thickness from the initial film thickness of 4 nm, but when the sputtering is continued, the film thickness of the oxide film is gradually increased up to 4 nm. The upper limit thickness of this oxide film varies depending on the quality of the Si film, but if an oxide film of a certain thickness is formed on the Si film, the film thickness will change due to subsequent natural oxidation or oxidation reaction due to exposure. It turns out that does not occur. Further, the oxide film formed at this time has a phase difference of 1.6 ° with respect to the g-line, a phase difference of 1.8 ° with respect to the i-line, and Kr.
The phase difference is 2.9 ° with respect to F, but this value is within the allowable amount of 10 ° for the phase difference, and there is no practical problem.

【0026】本発明ではこの一定の厚さの酸化膜をSi
膜の表面に形成し、このSi膜と酸化膜との積層膜がハ
ーフトーン型位相シフトマスクの理想的な振幅透過率及
び位相差を持つようにする。
In the present invention, this oxide film having a constant thickness is formed into Si.
It is formed on the surface of the film so that the laminated film of the Si film and the oxide film has the ideal amplitude transmittance and phase difference of the halftone type phase shift mask.

【0027】上述の工程により形成したマスクにおいて
は、自然酸化等の膜質の経時変化は認められず、理想的
な位相差及び振幅透過率を保つことができた。本マスク
を用いて、ウェーハへの転写実験を行った結果、寸法精
度良く良好な形状のパターンが得られた。 (実施例2)図3は、本発明の第2の実施例に係わる露
光用マスクの製造工程を示す断面図でをある。
In the mask formed by the above process, no change in film quality due to natural oxidation or the like was observed, and ideal phase difference and amplitude transmittance could be maintained. As a result of a transfer test to a wafer using this mask, a pattern having a good shape with good dimensional accuracy was obtained. (Embodiment 2) FIG. 3 is a sectional view showing a manufacturing process of an exposure mask according to a second embodiment of the present invention.

【0028】まず、図3(a)に示すように、透明基板
201上にスパッタリング法により膜厚59nmのSi
膜202を形成する。続いて、図3(b)に示すよう
に、電子線用レジスト204を0.5μmの厚さに堆積
した後、さらにレジスト204上に導電性膜205を
0.2μm程度の厚さに形成する。
First, as shown in FIG. 3A, a Si film having a film thickness of 59 nm is formed on a transparent substrate 201 by a sputtering method.
The film 202 is formed. Subsequently, as shown in FIG. 3B, an electron beam resist 204 is deposited to a thickness of 0.5 μm, and a conductive film 205 is further formed on the resist 204 to a thickness of about 0.2 μm. .

【0029】次いで、この導電性膜205上より照射量
3μC/cm2 で電子線による描画を行い、さらに現像
を行って図3(c)に示すようなレジストパターン20
4aを形成する。
Next, an electron beam is drawn on the conductive film 205 at a dose of 3 μC / cm 2 , and further development is performed to form a resist pattern 20 as shown in FIG. 3C.
4a is formed.

【0030】次いで、図3(d)に示すように、レジス
トパターン204aをマスクとしてCF4 とO2 との混
合ガスによるケミカルドライエッチング(CDE)によ
り、レジストパターン204aから露出するSi膜20
2をエッチングにより除去する。次いで、レジストパタ
ーン204aを除去し、Si膜パターン202aを得
る。
Next, as shown in FIG. 3D, the Si film 20 exposed from the resist pattern 204a is subjected to chemical dry etching (CDE) with a mixed gas of CF 4 and O 2 using the resist pattern 204a as a mask.
2 is removed by etching. Then, the resist pattern 204a is removed to obtain the Si film pattern 202a.

【0031】最後に、図3(e)に示すように、酸素ア
ッシングによりSi膜パターン202a上に厚さ4nm
の酸化膜203を形成する。この際に側壁に形成された
酸化膜203によって解像力が低下することが懸念され
るが、この酸化膜203の幅は露光波長436nmと比
較し、4nmと非常に薄いので問題はない。なお、Si
膜202表面に自然酸化膜が形成されている場合、上記
処理によりこの自然酸化膜上にさらに酸化膜を形成し、
酸化膜全体の厚さを4nmにする。
Finally, as shown in FIG. 3E, a thickness of 4 nm is formed on the Si film pattern 202a by oxygen ashing.
Oxide film 203 is formed. At this time, there is a concern that the oxide film 203 formed on the side wall lowers the resolution, but there is no problem because the width of the oxide film 203 is 4 nm, which is very thin as compared with the exposure wavelength of 436 nm. Note that Si
When a natural oxide film is formed on the surface of the film 202, an oxide film is further formed on this natural oxide film by the above treatment,
The thickness of the entire oxide film is set to 4 nm.

【0032】かくして形成されたマスクにおいて、露光
光にg線を用いた場合、半透明膜としての酸化膜203
及びSi膜202を透過した光と透明基板101を透過
した光との位相差は180度であり、振幅透過率は透明
基板に対し17.4%であった。
In the mask thus formed, when the g-line is used as the exposure light, the oxide film 203 as a semitransparent film is formed.
The phase difference between the light transmitted through the Si film 202 and the light transmitted through the transparent substrate 101 was 180 degrees, and the amplitude transmittance was 17.4% with respect to the transparent substrate.

【0033】なお、本実施例ではSi膜202の形成を
スパッタリングにより行ったが、CVD法や蒸着法等を
用いてもよい。また、酸化膜203及びSi膜202の
膜厚を本発明の趣旨を逸脱しない範囲において適当な厚
さにしてもよい。また、酸化膜を酸素原子を含む雰囲気
中で形成、或いは液相成長法により形成してもよい。さ
らに、酸化膜,Si膜の加工をRIE又はウェットエッ
チングにより行ってもよい。
Although the Si film 202 is formed by sputtering in this embodiment, a CVD method, a vapor deposition method or the like may be used. Further, the thicknesses of the oxide film 203 and the Si film 202 may be made appropriate without departing from the spirit of the present invention. Alternatively, the oxide film may be formed in an atmosphere containing oxygen atoms or by a liquid phase growth method. Further, the oxide film and the Si film may be processed by RIE or wet etching.

【0034】上述の工程により形成したマスクにおいて
は、自然酸化等の膜質の経時変化は認められず、理想的
な位相差及び振幅透過率を保つことができた。本マスク
を用いて、ウェーハへの転写実験を行った結果、寸法精
度良く良好な形状のパターンが得られた。 (実施例3)次に、本発明の第3の実施例について説明
する。この実施例は、酸化膜を形成する工程として、半
透明膜を形成した基板を酸化性溶液中に浸し半透明膜の
表面を酸化するようにした方法である。
In the mask formed by the above-mentioned process, no change in film quality due to natural oxidation or the like was observed, and the ideal phase difference and amplitude transmittance could be maintained. As a result of a transfer test to a wafer using this mask, a pattern having a good shape with good dimensional accuracy was obtained. (Embodiment 3) Next, a third embodiment of the present invention will be described. In this embodiment, as a step of forming an oxide film, a substrate on which a semitransparent film is formed is immersed in an oxidizing solution to oxidize the surface of the semitransparent film.

【0035】酸化性の溶液として、硫酸と過酸化水素水
の混合液を用いた場合の反応式は下記に示すようにな
る。 過酸化水素水は、酸化作用が非常に強いため洗浄効果が
高い。半透明位相シフト膜を単層膜として作製する場
合、アモルファスSi,SiNx ,SiOy ,CrOz
,GeOu ,TiOv ,AlOw (u,v,w,x,
y,zは任意の組成比)、或いはこれらの混合物が良く
用いられる。これらの膜は、大気中で容易に酸化される
が、溶液中で酸化することで、半透明膜上に存在する表
面酸化膜が酸化処理後には増加することなく、時間経過
による半透明膜の物性の変化を防ぐことができる。ま
た、酸化によって生じる酸化膜の膜厚及びそれに伴う半
透明膜の膜厚変化を考慮し、半透明膜の屈折率及び消衰
係数を同時に制御することで、基板に対する振幅透過率
及び位相差を位相シフト効果を最大限に発揮することの
できる条件に制御することができる。
The reaction equation when a mixed solution of sulfuric acid and hydrogen peroxide solution is used as the oxidizing solution is as shown below. Hydrogen peroxide water has a strong cleaning effect because it has a very strong oxidizing effect. When the semitransparent phase shift film is formed as a single layer film, amorphous Si, SiNx, SiOy, CrOz
, GeOu, TiOv, AlOw (u, v, w, x,
y and z are arbitrary composition ratios), or a mixture thereof is often used. These films are easily oxidized in the atmosphere, but when oxidized in a solution, the surface oxide film existing on the semitransparent film does not increase after the oxidation treatment, and thus the semitransparent film of the surface is not increased. It is possible to prevent changes in physical properties. Also, by simultaneously controlling the refractive index and extinction coefficient of the semitransparent film in consideration of the thickness of the oxide film caused by oxidation and the accompanying change in the thickness of the semitransparent film, the amplitude transmittance and phase difference with respect to the substrate can be reduced. The conditions can be controlled so that the phase shift effect can be maximized.

【0036】図4は、本発明の第3の実施例に係わる露
光用マスクの製造工程を示す断面図である。露光光源に
KrFレーザを用いた場合、ハーフトーンマスクの半透
明膜にはSiNx を使用することができる。
FIG. 4 is a sectional view showing a manufacturing process of an exposure mask according to the third embodiment of the present invention. When a KrF laser is used as the exposure light source, SiNx can be used for the semitransparent film of the halftone mask.

【0037】まず、図4(a)に示すように、透明基板
301上にスパッタ法により膜厚が96nmのSiNx
膜(半透明膜)302を形成する。この膜厚は後の酸化
を行った後、透明基板301に対する位相差,透過率が
所望の値となるように調整されている。このとき、半透
明膜302の振幅透過率は17.6%であった。
First, as shown in FIG. 4A, a SiNx film having a thickness of 96 nm is formed on a transparent substrate 301 by a sputtering method.
A film (semitransparent film) 302 is formed. This film thickness is adjusted so that the phase difference and the transmittance with respect to the transparent substrate 301 have desired values after the subsequent oxidation. At this time, the amplitude transmittance of the semitransparent film 302 was 17.6%.

【0038】次いで、図4(b)に示すように、過酸化
水素水と硫酸の混合比が1:3となる酸化性溶液305
中に基板を30分間浸し(酸化処理)、表面酸化膜30
3を形成する。この酸化に要する時間は、例えば図5の
ようなデータを求めて算出することができる。図5では
過酸化水素水と硫酸の混合比が1:3となる溶液中に基
板を30分間浸した後の半透明膜の振幅透過率の経時変
化を示す。図5に示すように、過酸化水素水と硫酸の混
合比が1:3となる溶液中に基板を30分間浸した(酸
化処理)後の透過率及び位相差は、時間経過により変化
しないことが分かる。このとき、表面酸化膜303は
4.5nm形成され、振幅透過率は20.2%であっ
た。
Next, as shown in FIG. 4B, an oxidizing solution 305 in which the mixture ratio of hydrogen peroxide solution and sulfuric acid is 1: 3.
The substrate is dipped in it for 30 minutes (oxidation treatment) to form a surface oxide film 30.
3 is formed. The time required for this oxidation can be calculated, for example, by obtaining data as shown in FIG. FIG. 5 shows the change over time in the amplitude transmittance of the semitransparent film after the substrate was immersed in a solution in which the mixture ratio of hydrogen peroxide solution and sulfuric acid was 1: 3 for 30 minutes. As shown in FIG. 5, the transmittance and the phase difference after immersing the substrate in a solution having a mixture ratio of hydrogen peroxide solution and sulfuric acid of 1: 3 for 30 minutes (oxidation treatment) should not change with time. I understand. At this time, the surface oxide film 303 was formed to have a thickness of 4.5 nm, and the amplitude transmittance was 20.2%.

【0039】この基板を十分に水洗し乾燥した後に、図
4(c)に示すように、表面酸化膜303上にEBレジ
スト304を塗布し、さらにEB描画時に生じるチャー
ジアップを防止するために導電性膜を306をEBレジ
スト304上に形成する。そして、図4(d)に示すよ
うに、EB描画により所望のレジストパターン304a
を形成する。
After the substrate is sufficiently washed with water and dried, as shown in FIG. 4C, an EB resist 304 is applied on the surface oxide film 303, and a conductive material is added to prevent charge-up that occurs during EB writing. A conductive film 306 is formed on the EB resist 304. Then, as shown in FIG. 4D, a desired resist pattern 304a is formed by EB drawing.
To form.

【0040】次いで、図4(e)に示すように、レジス
トパターン304aをマスクに、エッチングによりSi
Nx 膜302のパターニングを行う。エッチングにはC
DE(Chemical Dry Etching)や、RIE(反応性イオ
ンエッチング)等を用いればよい。このエッチングによ
りSiNx 膜パターン302aを形成した後、レジスト
304aを除去する。
Next, as shown in FIG. 4 (e), Si is etched by using the resist pattern 304a as a mask.
The Nx film 302 is patterned. C for etching
DE (Chemical Dry Etching), RIE (reactive ion etching), or the like may be used. After forming the SiNx film pattern 302a by this etching, the resist 304a is removed.

【0041】なお、ここでは半透明膜302にSiNx
膜を用いたが、SiNx 膜に限らず他の半透明膜、例え
ばアモルファスSi、SiOy 、CrOz 、GeOu 、
TiOv ,AlOw (u,v,w,x,y,zは任意の
組成比)を用いても同様の効果が得られる。また、半透
明膜の膜厚を本発明の趣旨を逸脱しない範囲において適
当な厚さにしてもよい。また、酸化性溶液は過酸化水素
水と硫酸の混合比が1:3である溶液に限らず他の酸化
作用の強いもの、例えば発煙硝酸を用いてもよい。ま
た、導電性膜を半透明膜上に形成する代わりに、基板に
予め帯電防止の役割をする膜が形成されているものを用
いてもよい。
Here, the semi-transparent film 302 is formed of SiNx.
Although the film is used, it is not limited to the SiNx film, and other semitransparent films such as amorphous Si, SiOy, CrOz, GeOu,
Similar effects can be obtained by using TiOv and AlOw (u, v, w, x, y, and z are arbitrary composition ratios). Further, the thickness of the semitransparent film may be an appropriate thickness without departing from the spirit of the present invention. Further, the oxidizing solution is not limited to a solution in which the mixture ratio of hydrogen peroxide solution and sulfuric acid is 1: 3, but other strong oxidizing action such as fuming nitric acid may be used. Further, instead of forming the conductive film on the semitransparent film, a substrate on which a film serving as an antistatic function is previously formed may be used.

【0042】このように本実施例によれば、半透明膜が
形成された基板を酸化性溶液に浸すことにより、半透明
膜表面に酸化膜を形成することができ、半透明膜の膜質
の経時変化を防止することができ、これによりハーフト
ーン型位相シフトマスクの理想的な位相差及び振幅透過
率を実現することが可能となる。また、安定した物性を
持つ半透明膜を得るためにの工程を酸化性溶液中に基板
を浸すことにより行うため、マスクの洗浄の効果を同時
に持たせることができる。 (実施例4)図6は、本発明の第4の実施例に係わる露
光用マスクの製造工程を示す断面図である。露光光源に
KrFレーザを用いた場合、ハーフトーンマスクの半透
明膜にはSiNx を使用することができる。
As described above, according to the present embodiment, an oxide film can be formed on the surface of the semitransparent film by immersing the substrate on which the semitransparent film is formed in the oxidizing solution, and the quality of the semitransparent film can be improved. It is possible to prevent the change over time, which makes it possible to realize the ideal phase difference and amplitude transmittance of the halftone type phase shift mask. In addition, since the step of obtaining a semitransparent film having stable physical properties is performed by immersing the substrate in an oxidizing solution, the effect of cleaning the mask can be provided at the same time. (Embodiment 4) FIG. 6 is a sectional view showing a manufacturing process of an exposure mask according to a fourth embodiment of the present invention. When a KrF laser is used as the exposure light source, SiNx can be used for the semitransparent film of the halftone mask.

【0043】まず、図6(a)に示すように、透明基板
401上にスパッタ法により膜厚が96nmのSiNx
膜(半透明膜)402を形成する。このとき、半透明膜
402の振幅透過率は17.6%であった。この膜厚は
後の酸化を行った後、透明基板401に対する位相差,
透過率が所望の値となるように調整されている。
First, as shown in FIG. 6A, a SiNx film having a thickness of 96 nm is formed on a transparent substrate 401 by a sputtering method.
A film (semitransparent film) 402 is formed. At this time, the amplitude transmittance of the semitransparent film 402 was 17.6%. This film thickness has a phase difference with respect to the transparent substrate 401 after the subsequent oxidation.
The transmittance is adjusted to a desired value.

【0044】次いで、図6(b)に示すように、SiN
x 膜402上にEBレジスト403を塗布し、さらにE
B描画時に生じるチャージアップを防止するために導電
性の膜404をEBレジスト403上に形成する。そし
て、図6(c)に示すように、EB描画により所望のレ
ジストパターン403aを形成する。
Next, as shown in FIG. 6B, SiN
The EB resist 403 is applied on the x film 402, and further E
A conductive film 404 is formed on the EB resist 403 in order to prevent charge-up that occurs during B writing. Then, as shown in FIG. 6C, a desired resist pattern 403a is formed by EB drawing.

【0045】次いで、図6(d)に示すように、レジス
トパターン403aをマスクとしてエッチングによりS
iNx 膜402のパターニングを行う。エッチングに
は、CDE(Chemical Dry Etching)やRIE(反応性
イオンエッチング)等を用いればよい。
Next, as shown in FIG. 6 (d), the resist pattern 403a is used as a mask to perform etching by etching.
The iNx film 402 is patterned. For the etching, CDE (Chemical Dry Etching), RIE (reactive ion etching), or the like may be used.

【0046】エッチングによりSiNx パターン402
aを形成したのち、図6(e)に示すように、過酸化水
素水と硫酸の混合比が1:3となる溶液405中に基板
を40分間浸すことでレジスト403を除去し、さらに
図6(f)に示すように、所望の表面酸化膜406を形
成する。このとき、半透明膜402の表面酸化膜406
は4.5nmで、振幅透過率は20.2%であった。レ
ジスト403の除去を酸化性溶液中で行ったため、これ
以降の透過率及び位相差の経時変化は見られず、安定し
た膜質の半透明膜を得ることができる。
SiNx pattern 402 by etching
After forming a, as shown in FIG. 6 (e), the resist 403 is removed by immersing the substrate in a solution 405 having a mixture ratio of hydrogen peroxide solution and sulfuric acid of 1: 3 for 40 minutes to remove the resist 403. As shown in 6 (f), a desired surface oxide film 406 is formed. At this time, the surface oxide film 406 of the semitransparent film 402
Was 4.5 nm and the amplitude transmittance was 20.2%. Since the resist 403 was removed in the oxidizing solution, the transmissivity and the phase difference did not change with time, and a semitransparent film with stable film quality could be obtained.

【0047】なお、ここでは半透明膜402にSiNx
膜を用いたが、SiNx 膜に限らず他の半透明膜、例え
ばアモルファスSi,SiOy ,CrOz ,GeOu ,
TiOv ,AlOw (u,v,w,x,y,zは任意の
組成比)を用いても同様の効果が得られる。また、半透
明膜の膜厚を本発明の趣旨を逸脱しない範囲において適
当な厚さにしてもよい。また、酸化性溶液は過酸化水素
水と硫酸の混合比が1:3である溶液に限らず他の酸化
作用の強いもの、例えば発煙硝酸を用いてもよい。ま
た、導電性膜を半透明膜上に形成する代わりに、基板に
予め帯電防止の役割をする膜が形成されているものを用
いてもよい。
Here, the semitransparent film 402 is formed of SiNx.
Although the film is used, it is not limited to the SiNx film, but other semitransparent films such as amorphous Si, SiOy, CrOz, GeOu,
Similar effects can be obtained by using TiOv and AlOw (u, v, w, x, y, and z are arbitrary composition ratios). Further, the thickness of the semitransparent film may be an appropriate thickness without departing from the spirit of the present invention. Further, the oxidizing solution is not limited to a solution in which the mixture ratio of hydrogen peroxide solution and sulfuric acid is 1: 3, but other strong oxidizing action such as fuming nitric acid may be used. Further, instead of forming the conductive film on the semitransparent film, a substrate on which a film serving as an antistatic function is previously formed may be used.

【0048】このような実施例においても、半透明膜が
形成された基板を酸化性溶液に浸すことにより、半透明
膜表面に酸化膜を形成することができ、第3の実施例と
同様の効果が得られる。また、半透明膜のパターン形成
後のレジスト除去を酸化性溶液中に浸すことで行うこと
により、新たに安定した物性を持つ半透明膜を得る工程
が必要なく、マスク作成の上でのコストの削減が可能と
なる。
Also in such an embodiment, an oxide film can be formed on the surface of the semitransparent film by immersing the substrate on which the semitransparent film is formed in an oxidizing solution, which is the same as in the third embodiment. The effect is obtained. Further, by removing the resist after the pattern formation of the semitransparent film by immersing it in an oxidizing solution, there is no need for a step of newly obtaining a semitransparent film having stable physical properties, which reduces the cost for mask production. Reduction is possible.

【0049】[0049]

【発明の効果】以上説明したように本発明によれば、半
透明膜の上に酸化膜を形成することにより、良好な膜質
の半透明膜パターンを備えたハーフトーン型位相シフト
マスクを得ることが可能となる。
As described above, according to the present invention, by forming an oxide film on a semitransparent film, a halftone type phase shift mask having a semitransparent film pattern of good film quality can be obtained. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わる露光用マスクの
製造工程を示す断面図。
FIG. 1 is a sectional view showing a manufacturing process of an exposure mask according to a first embodiment of the present invention.

【図2】第1の実施例における半透明膜の酸化膜厚の経
時変化を示す特性図。
FIG. 2 is a characteristic diagram showing a change with time of an oxide film thickness of a semitransparent film in the first embodiment.

【図3】本発明の第3の実施例に係わる露光用マスクの
製造工程を示す断面図。
FIG. 3 is a sectional view showing a manufacturing process of an exposure mask according to the third embodiment of the present invention.

【図4】本発明の第4の実施例に係わる露光用マスクの
製造工程を示す断面図。
FIG. 4 is a sectional view showing a manufacturing process of an exposure mask according to the fourth embodiment of the present invention.

【図5】第4の実施例における半透明膜の透過率の経時
変化を示す特性図。
FIG. 5 is a characteristic diagram showing the change with time of the transmittance of the semitransparent film in the fourth embodiment.

【図6】本発明の第5の実施例に係わる露光用マスクの
製造工程を示す断面図。
FIG. 6 is a sectional view showing a manufacturing process of an exposure mask according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101,201,301,401…透明基板 102,202…アモルファスSi膜(半透明膜) 103,203,303,406…酸化膜 104,204,304,403…レジスト 105,205,306,404…導電性膜 106…半透明膜パターン(位相シフト層) 302,402…SiNX 膜(半透明膜) 305,405…酸化性溶液 101, 201, 301, 401 ... Transparent substrate 102, 202 ... Amorphous Si film (semi-transparent film) 103, 203, 303, 406 ... Oxide film 104, 204, 304, 403 ... Resist 105, 205, 306, 404 ... Conductivity Film 106 ... Semi-transparent film pattern (phase shift layer) 302, 402 ... SiNX film (semi-transparent film) 305, 405 ... Oxidizing solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩松 孝行 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 伊藤 信一 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Iwamatsu 1 Komukai Toshiba Town, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Toshiba Research & Development Center (72) Inventor Shinichi Ito Komukai, Kawasaki City, Kanagawa Prefecture Toshiba Town No. 1 Inside Toshiba Research and Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】透明基板からなる透過部と、この透明基板
上の所定位置に形成された半透明膜パターンと、少なく
ともこの半透明膜パターンの上部に形成された所望の厚
さの酸化膜とを備え、 前記酸化膜の厚さは、前記半透明膜上で前記酸化膜形成
後の反応により膜厚の増加が起こらなくなる厚さであ
り、前記透過部と前記半透明膜パターン及び酸化膜とを
透過する光の位相差が180±10度となることを特徴
とする露光用マスク。
1. A transparent portion comprising a transparent substrate, a semitransparent film pattern formed at a predetermined position on the transparent substrate, and an oxide film having a desired thickness formed at least on the semitransparent film pattern. The thickness of the oxide film is a thickness at which an increase in film thickness does not occur due to a reaction after the oxide film is formed on the semitransparent film, and the transmissive portion, the semitransparent film pattern, and the oxide film. An exposure mask, wherein the phase difference of light passing through is 180 ± 10 degrees.
【請求項2】透明基板上に半透明膜を形成する工程と、
前記半透明膜上に所望の厚さの酸化膜を形成する工程
と、前記酸化膜上に感光性樹脂パターンを形成する工程
と、前記感光性樹脂パターンをマスクに前記酸化膜及び
半透明膜をエッチングし、該酸化膜及び半透明膜からな
る位相シフト層を形成する工程と、前記感光性樹脂パタ
ーンを除去する工程とを含み、 前記酸化膜の厚さを、前記半透明膜上で該酸化膜形成後
の反応により膜厚の増加が起こらなくなる厚さに形成す
ることを特徴とする露光用マスクの製造方法。
2. A step of forming a semitransparent film on a transparent substrate,
A step of forming an oxide film having a desired thickness on the semi-transparent film; a step of forming a photosensitive resin pattern on the oxide film; and a step of forming the oxide film and the semi-transparent film using the photosensitive resin pattern as a mask. Including a step of forming a phase shift layer composed of the oxide film and a semitransparent film by etching, and a step of removing the photosensitive resin pattern, wherein the thickness of the oxide film is set on the semitransparent film by the oxidation. A method for manufacturing an exposure mask, which is characterized in that the film is formed to a thickness such that the film thickness does not increase due to a reaction after the film formation.
【請求項3】透明基板上に半透明膜を形成する工程と、
前記半透明膜上に感光性樹脂パターンを形成する工程
と、前記感光性樹脂パターンをマスクに前記半透明膜を
エッチングする工程と、前記感光性樹脂パターンを除去
する工程と、前記半透明膜を覆うように所望の厚さの酸
化膜を形成し、該酸化膜及び半透明膜からなる位相シフ
ト層を形成する工程とを含み、 前記酸化膜の厚さを、前記半透明膜上で該酸化膜形成後
の反応により膜厚の増加が起こらなくなる厚さに形成す
ることを特徴とする露光用マスクの製造方法。
3. A step of forming a semitransparent film on a transparent substrate,
A step of forming a photosensitive resin pattern on the semi-transparent film, a step of etching the semi-transparent film using the photosensitive resin pattern as a mask, a step of removing the photosensitive resin pattern, the semi-transparent film A step of forming an oxide film having a desired thickness so as to cover the oxide film, and forming a phase shift layer composed of the oxide film and the semitransparent film. A method for manufacturing an exposure mask, which is characterized in that the film is formed to a thickness such that the film thickness does not increase due to a reaction after the film formation.
【請求項4】前記酸化膜を形成する工程として、前記半
透明膜を酸素原子を含む雰囲気中で酸化することを特徴
とする請求項2又は3に記載の露光用マスクの製造方
法。
4. The method for manufacturing an exposure mask according to claim 2, wherein, in the step of forming the oxide film, the semitransparent film is oxidized in an atmosphere containing oxygen atoms.
【請求項5】前記酸化膜を形成する工程として、前記半
透明膜が形成された透明基板を酸化性溶液中に浸し、半
透明膜の表面を酸化することを特徴とする請求項2又は
3に記載の露光用マスクの製造方法。
5. The step of forming the oxide film, wherein the transparent substrate on which the semitransparent film is formed is immersed in an oxidizing solution to oxidize the surface of the semitransparent film. A method for manufacturing an exposure mask according to [4].
JP10341693A 1992-07-08 1993-04-30 Exposure mask and method of manufacturing the same Expired - Fee Related JP3247485B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10341693A JP3247485B2 (en) 1992-07-08 1993-04-30 Exposure mask and method of manufacturing the same
US08/583,857 US5629115A (en) 1993-04-30 1996-01-11 Exposure mask and method and apparatus for manufacturing the same
US08/730,017 US5728494A (en) 1993-04-30 1996-10-11 Exposure mask and method and apparatus for manufacturing the same
US08/729,592 US5907393A (en) 1993-04-30 1996-10-11 Exposure mask and method and apparatus for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-180226 1992-07-08
JP18022692 1992-07-08
JP10341693A JP3247485B2 (en) 1992-07-08 1993-04-30 Exposure mask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0675359A true JPH0675359A (en) 1994-03-18
JP3247485B2 JP3247485B2 (en) 2002-01-15

Family

ID=26444051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341693A Expired - Fee Related JP3247485B2 (en) 1992-07-08 1993-04-30 Exposure mask and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3247485B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258772A (en) * 1998-03-16 1999-09-24 Toppan Printing Co Ltd Halftone phase shift mask blank and halftone phase shift mask
JP2002251000A (en) * 2001-02-26 2002-09-06 Semiconductor Leading Edge Technologies Inc Method of manufacturing phase shift mask, phase shift mask, phase shift mask blank and method of manufacturing semiconductor device
JP2002258460A (en) * 2000-12-26 2002-09-11 Hoya Corp Halftone phase shift mask blank and mask
KR100733163B1 (en) * 2006-05-08 2007-06-28 대우조선해양 주식회사 Painting work system and method for ship's hull outside area
CN106019810A (en) * 2015-03-31 2016-10-12 信越化学工业株式会社 Halftone phase shift mask blank and halftone phase shift mask
JP2017058703A (en) * 2015-03-27 2017-03-23 Hoya株式会社 Mask blank, phase shift mask, method for manufacturing phase shift mask and method for manufacturing semiconductor device
JP2020166114A (en) * 2019-03-29 2020-10-08 Hoya株式会社 Photomask blank, method for manufacturing photomask, and method for manufacturing display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258772A (en) * 1998-03-16 1999-09-24 Toppan Printing Co Ltd Halftone phase shift mask blank and halftone phase shift mask
JP2002258460A (en) * 2000-12-26 2002-09-11 Hoya Corp Halftone phase shift mask blank and mask
JP2002251000A (en) * 2001-02-26 2002-09-06 Semiconductor Leading Edge Technologies Inc Method of manufacturing phase shift mask, phase shift mask, phase shift mask blank and method of manufacturing semiconductor device
KR100733163B1 (en) * 2006-05-08 2007-06-28 대우조선해양 주식회사 Painting work system and method for ship's hull outside area
JP2017058703A (en) * 2015-03-27 2017-03-23 Hoya株式会社 Mask blank, phase shift mask, method for manufacturing phase shift mask and method for manufacturing semiconductor device
CN106019810A (en) * 2015-03-31 2016-10-12 信越化学工业株式会社 Halftone phase shift mask blank and halftone phase shift mask
JP2020166114A (en) * 2019-03-29 2020-10-08 Hoya株式会社 Photomask blank, method for manufacturing photomask, and method for manufacturing display device

Also Published As

Publication number Publication date
JP3247485B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US9436079B2 (en) Phase shift mask blank, method of manufacturing the same, and phase shift mask
JP6053836B2 (en) Manufacturing method of mask blank and phase shift mask
KR101900548B1 (en) Method for preparing halftone phase shift photomask blank
EP0924567A1 (en) Phase shift mask and phase shift mask blank
JP3036085B2 (en) Optical mask and its defect repair method
KR20170088299A (en) Halftone phase shift photomask blank and making method
KR20160117320A (en) Method for preparing halftone phase shift photomask blank
EP1288717B1 (en) Method of manufacture of a phase shift mask blank and of a phase shift mask
JP2016194626A (en) Method for manufacturing halftone phase shift type photomask blank
JPH0876353A (en) Production of phase shift mask
KR100720334B1 (en) Half-tone type phase shift blank mask and manufacturing method of the same
JP3696320B2 (en) Phase shift mask, phase shift mask blank, and manufacturing method thereof
JP3247485B2 (en) Exposure mask and method of manufacturing the same
JPH0683034A (en) Exposure, mask, exposure mask substrate and its production
JP3913319B2 (en) Method for manufacturing halftone phase shift mask
JP3312702B2 (en) Phase shift photomask and blank for phase shift photomask
TW544549B (en) Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern
JPH08123010A (en) Phase shift mask and mask blank used for the same
JP4076989B2 (en) Phase shift mask blanks and phase shift masks
JP3041802B2 (en) Photomask blank and photomask
JPH1020471A (en) Production of exposure mask
JP3351892B2 (en) Halftone phase shift photomask and blank for halftone phase shift photomask
KR20000006152A (en) Method for fabricating semiconductor devices
JP4654487B2 (en) Method for manufacturing phase shift mask
JP2611734B2 (en) Phase shift mask

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees