JPH06752A - Positioning control method and device - Google Patents

Positioning control method and device

Info

Publication number
JPH06752A
JPH06752A JP16462792A JP16462792A JPH06752A JP H06752 A JPH06752 A JP H06752A JP 16462792 A JP16462792 A JP 16462792A JP 16462792 A JP16462792 A JP 16462792A JP H06752 A JPH06752 A JP H06752A
Authority
JP
Japan
Prior art keywords
signal
command signal
movement
movement mechanism
fine movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16462792A
Other languages
Japanese (ja)
Other versions
JP3243520B2 (en
Inventor
Yuichi Okazaki
祐一 岡崎
Shin Asano
伸 浅野
Satoshi Tawara
諭 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP16462792A priority Critical patent/JP3243520B2/en
Publication of JPH06752A publication Critical patent/JPH06752A/en
Application granted granted Critical
Publication of JP3243520B2 publication Critical patent/JP3243520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Positioning Apparatuses (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To perform stable and high-precise positioning of a high movement amount without being influenced by disturbance even when disturbance occurs. CONSTITUTION:A control method and a device wherein a correction signal R matching with distance is inputted to a micromovement compensating command signal E for a micromovement mechanism 2, incapable of absorbing disturbance, of a positioning control system comprising a system related to a coarse movement mechanism 1 and a system related to the micromovement mechanism 2 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、位置決め制御方法及び
装置に関し、大移動量で高精度な位置決めを必要とする
位置決め装置及び移動装置に適用して有用なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning control method and device, and is useful when applied to a positioning device and a moving device that require highly accurate positioning with a large amount of movement.

【0002】[0002]

【従来の技術】図8は、粗動機構と微動機構を組み合わ
せて大移動量を高精度に位置決めするための位置決め装
置における、従来技術に係る制御装置を示すブロック線
図である。図8において、信号発生器104は、位置決
め対象の移動指令信号A5を発生するもので、コンピュ
ータ若しくはアナログ回路で構成してある。絶対位置検
出手段105は、例えばレーザ干渉計で形成したセンサ
であり、位置決め対象の絶対変位量H5を検出して、変
位信号B5を出力するものである。相対位置検出手段1
03は、例えば静電容量型変位計で形成したセンサであ
り、粗動機構101に対する微動機構102の相対変位
を検出し、その出力信号K5を制御演算部108に送出
する。制御演算部108は、例えば積分器のようにゲイ
ン及び周波数特性が調整できるもので、出力信号L5を
送出する。
2. Description of the Related Art FIG. 8 is a block diagram showing a control device according to a prior art in a positioning device for positioning a large movement amount with high accuracy by combining a coarse movement mechanism and a fine movement mechanism. In FIG. 8, a signal generator 104 generates a movement command signal A5 for positioning and is composed of a computer or an analog circuit. The absolute position detection means 105 is a sensor formed of, for example, a laser interferometer, detects an absolute displacement amount H5 of a positioning target, and outputs a displacement signal B5. Relative position detection means 1
Reference numeral 03 denotes a sensor formed of, for example, a capacitance type displacement meter, which detects a relative displacement of the fine movement mechanism 102 with respect to the coarse movement mechanism 101, and outputs the output signal K5 to the control calculation unit 108. The control calculation unit 108, which has an adjustable gain and frequency characteristic, such as an integrator, sends an output signal L5.

【0003】一方、粗動機構101は、駆動源として、
例えばDCサーボモータ、ステッピングモータ等のアク
チュエータを用い、案内要素として、例えば転がり、摩
擦を用いたもので、応答速度は比較的遅く、位置決め精
度は比較的低いが、移動量は大きなものとなっている。
この粗動機構101は、粗動補償回路106の出力信号
である粗動補償指令信号D5に基づき粗動変位量F5だ
け移動する。粗動補償回路106は、移動指令信号A5
と変位信号B5とからなる偏差信号C5に、相対変位量
G5に基づく出力信号L5を加算して生成される粗動移
動指令信号M5に基づき前記粗動補償指令信号D5を生
成する。
On the other hand, the coarse movement mechanism 101, as a drive source,
For example, an actuator such as a DC servo motor or a stepping motor is used, and rolling or friction is used as a guide element. The response speed is relatively slow, the positioning accuracy is relatively low, but the movement amount is large. There is.
The coarse motion mechanism 101 moves by a coarse motion displacement amount F5 based on a coarse motion compensation command signal D5 which is an output signal of the coarse motion compensation circuit 106. The coarse motion compensation circuit 106 uses the movement command signal A5.
The coarse motion compensation command signal D5 is generated based on the coarse motion command signal M5 generated by adding the output signal L5 based on the relative displacement amount G5 to the deviation signal C5 including the displacement signal B5.

【0004】他方、微動機構102は、駆動源として高
速応答が可能で高変位分解能を有し、発生力の大きなえ
ば圧電素子、磁歪素子等のアクチュエータを用い、案内
要素として、例えばヒンジばね、板ばね等を用いた物
で、応答速度は速く、位置決め精度は高いが移動量は数
十μm程度と小さい。この微動機構102は、微動補償
回路107の出力信号である微動補償指令信号E5に基
づき相対変位量G5だけ移動する。微動補償回路107
は、前記偏差信号C5に基づき前記微動補償指令信号E
5を生成する。
On the other hand, the fine movement mechanism 102 uses a actuator such as a piezoelectric element or a magnetostrictive element, which can respond at high speed and has a high displacement resolution and has a large generated force as a driving source, and uses, for example, a hinge spring or a plate as a guide element. It uses a spring or the like and has a high response speed and high positioning accuracy, but the amount of movement is small, about several tens of μm. The fine movement mechanism 102 moves by a relative displacement amount G5 based on a fine movement compensation command signal E5 which is an output signal of the fine movement compensation circuit 107. Fine motion compensation circuit 107
Is the fine movement compensation command signal E based on the deviation signal C5.
5 is generated.

【0005】かかる従来の方法によれば、移動指令信号
A5から変位信号B5を差し引いて偏差信号C5を生成
し、この偏差信号C5を微動補償回路107に直接に及
び相対変位量G5に基づく出力信号をL5を加味して粗
動補償回路106側へ夫々供給することになる。つま
り、粗動補償回路106側へ供給された偏差信号C5
が、微動機構102の粗動機構101に対する相対変位
量G5を検出する相対位置検出手段103からの出力信
号K5に基づく出力信号L5に加え合わされて粗動移動
指令信号M5(=C5+L5)を生成し、その後粗動移
動指定信号M5が粗動補償回路106を通ることで粗動
補償指令信号D5を生成する。
According to such a conventional method, the displacement signal B5 is subtracted from the movement command signal A5 to generate the deviation signal C5, and the deviation signal C5 is directly output to the fine motion compensation circuit 107 and an output signal based on the relative displacement amount G5. Is added to the coarse motion compensation circuit 106 side by adding L5. That is, the deviation signal C5 supplied to the coarse motion compensation circuit 106 side
Is added to the output signal L5 based on the output signal K5 from the relative position detection means 103 for detecting the relative displacement amount G5 of the fine movement mechanism 102 with respect to the coarse movement mechanism 101 to generate the coarse movement movement command signal M5 (= C5 + L5). After that, the coarse movement movement designation signal M5 passes through the coarse movement compensation circuit 106 to generate the coarse movement compensation command signal D5.

【0006】他方、微動補償回路107に送られた偏差
信号C5は、この微動補償回路107を通過後、微動補
償指令信号E5を発生する。かくして、粗動補償指令信
号D5及び微動補償指令信号E5により、粗動機構10
1及び微動機構102を、それぞれ粗動変位量F5及び
相対変位量G5だけ移動する。
On the other hand, the deviation signal C5 sent to the fine movement compensating circuit 107 generates a fine movement compensating command signal E5 after passing through the fine movement compensating circuit 107. Thus, the coarse movement mechanism 10 is controlled by the coarse movement compensation command signal D5 and the fine movement compensation command signal E5.
1 and the fine movement mechanism 102 are moved by the coarse movement displacement F5 and the relative displacement G5, respectively.

【0007】粗動機構101は、粗動補償指令信号D5
を受け、移動指令信号A5に対して一致するように粗動
変位量F5だけ常に移動しようとするが、粗動機構10
1は精度が悪いため、移動指令信号A5と変位信号B5
とを差し引いた偏差信号C5を零にできず、完全な位置
決めができずに残った偏差を、微動機構102が相対移
動量G5だけ移動することで位置決め対象の固定位置に
対する絶対変位量H5がH5=F5+G5となり大移動
量かつ高精度に位置決めされる。この場合、絶対変位量
H5は、絶対位置検出手段105によって検出され、こ
の時の検出信号である変位信号B5を信号発生器104
の移動指令信号A5から差し引くことで偏差信号C5を
生成し、クローズドフィードバック制御を行う。
The coarse movement mechanism 101 has a coarse movement compensation command signal D5.
In response to the movement command signal A5, the coarse movement mechanism 10 always tries to move by the coarse movement displacement amount F5.
1 has poor accuracy, so movement command signal A5 and displacement signal B5
The deviation signal C5 obtained by subtracting and cannot be made to be zero, and the deviation that remains after complete positioning cannot be moved by the fine movement mechanism 102 by the relative movement amount G5 so that the absolute displacement amount H5 relative to the fixed position of the positioning target is H5. = F5 + G5, and a large amount of movement and high-precision positioning are performed. In this case, the absolute displacement amount H5 is detected by the absolute position detecting means 105, and the displacement signal B5 which is the detection signal at this time is converted into the signal generator 104.
The deviation signal C5 is generated by subtracting from the movement command signal A5 of (1) to perform closed feedback control.

【0008】また、微動機構102が移動することによ
って蓄積していく微動変位量G5を相対位置検出手段1
03で微動機構102と粗動機構101の相対変位量と
して検出し、この相対変位量に対する出力信号K5を制
御演算部108に通し、ここで発生した信号L5を偏差
信号C5に加え合わせた結果生成される粗動移動指令信
号M5を粗動補償回路106に供給している。この結
果、生成された粗動補償指令信号D5によって、粗動機
構101が移動する。このため、粗動機構101が、常
に微動変位量G5を観測し、微動機構102がある特定
の変位になると移動する結果、微動機構102は常にあ
る特定の範囲内で移動できる。この際の微動機構102
の可動範囲の設定は制御演算部108のゲイン調整によ
り行われる。かくして、微動機構102は、常時可動範
囲内で動くことが可能となる。以上の動作により、長い
距離にわたり、高精度に位置決めがなされる。
Further, the relative position detecting means 1 detects the amount of fine movement displacement G5 accumulated as the fine movement mechanism 102 moves.
In 03, the relative displacement amount of the fine movement mechanism 102 and the coarse movement mechanism 101 is detected, the output signal K5 corresponding to this relative displacement amount is passed to the control calculation unit 108, and the signal L5 generated here is added to the deviation signal C5 to generate the result. The coarse movement command signal M5 is supplied to the coarse movement compensation circuit 106. As a result, the coarse movement compensation command signal D5 generated causes the coarse movement mechanism 101 to move. Therefore, the coarse movement mechanism 101 always observes the fine movement displacement amount G5 and moves when the fine movement mechanism 102 reaches a certain specific displacement, and as a result, the fine movement mechanism 102 can always move within a certain specific range. Fine movement mechanism 102 at this time
The movable range is set by adjusting the gain of the control calculation unit 108. Thus, the fine movement mechanism 102 can always move within the movable range. With the above operation, positioning is performed with high accuracy over a long distance.

【0009】[0009]

【発明が解決しようとする課題】上述の如き方式により
大移動量かつ高精度の位置決めが可能であるが、かかる
位置決め制御装置を使用して、例えばX−Y平面内の広
い範囲にわたり、位置決め対象を、目標とする軌跡に追
従させようとする場合、従来の制御装置を二軸以上組み
合わせて制御することが必要になる。そのためには、図
7に示すように従来の位置決め制御装置を二組、組み合
わせてX−Y二軸の制御装置を構成する。かかる場合、
組み立て誤差、あるいはX軸に移動指令信号A5を加え
たにもかかわらず直交するY軸にも変位が発生する軸間
干渉などの移動指令信号A5に起因しない変位量によっ
て、位置決め精度が悪化すると同時に制御系が発振する
等の問題があった。また、移動指令信号A5に起因しな
い変位量としては、位置決め対象に振動、衝撃、温度変
化等の外乱が加わった時も生じ、同様に位置決め精度の
悪化や制御系の発振のおそれがある。
Although a large amount of movement and high-precision positioning can be performed by the above-mentioned method, by using such a positioning control device, for example, a positioning target can be positioned over a wide range in the XY plane. In order to follow the target locus, it is necessary to combine conventional control devices with two or more axes for control. For that purpose, as shown in FIG. 7, two sets of conventional positioning control devices are combined to form an XY biaxial control device. In such cases,
Positioning accuracy deteriorates at the same time due to an assembly error or a displacement amount not caused by the movement command signal A5 such as inter-axis interference in which a displacement is generated in the Y axis which is orthogonal even though the movement command signal A5 is added to the X axis. There was a problem such as the control system oscillating. Further, a displacement amount not caused by the movement command signal A5 is generated even when a disturbance such as vibration, impact, or temperature change is applied to the positioning target, and similarly, the positioning accuracy may be deteriorated and the control system may be oscillated.

【0010】本発明は、前述の従来技術の問題点に鑑み
なされたものであり、移動指令信号に起因しない制御対
象の変位を抑制し、位置決め対象を高精度にかつ安定に
追従させるような制御が行える位置決め制御方法及び装
置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is a control that suppresses the displacement of the controlled object that is not caused by the movement command signal and that follows the positioning object with high accuracy and stability. It is an object of the present invention to provide a positioning control method and device capable of performing the above.

【0011】[0011]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、(1)大移動量を有するが位置決め精度の
低い粗動機構と、小移動量ではあるが位置決め精度の高
い微動機構とから成る移動装置の前記微動機構上に搭載
した位置決め対象の位置を制御する位置決め制御方法に
おいて、位置決め対象の固定位置に対する変位量を表す
変位量信号と移動指令信号との差から成る偏差信号を、
微動機構の粗動機構に対する相対変位量に加え合わせて
粗動移動指令信号を生成し、この粗動移動指令信号を粗
動機構へ入力し、前記偏差信号と前記相対変位量の差か
ら成る微動指令信号を生成し、さらに移動指令信号に起
因しない制御対象の変位量から補正信号を生成し、前記
微動指令信号と前記補正信号の差から成る信号を微動機
構へ入力することを特徴とし、(2)また、大移動量を
有するが位置決め精度の低い粗動機構と、小移動量では
あるが位置決め精度の高い微動機構とから成る移動装置
の前記微動機構上に搭載した位置決め制御装置におい
て、前記位置決め対象の移動指令信号を発生する信号発
生器と、前記位置決め対象の固定位置に対する絶対位置
を検出してこのときの変位量を表わす変位信号を送出す
る絶対位置検出手段と、前記微動機構の前記粗動機構に
対する相対変位量を検出する相対位置検出手段と、前記
位置決め対象に生じた相対変位量から補正信号を出力す
る手段と、前記移動指令信号と前記変位信号との差を表
わす偏差信号を出力する手段と、前記偏差信号と前記相
対位置検出手段との差を表す微動指令信号を出力する手
段と、前記微動指令信号と前記補正信号との差を表す微
動補正指令信号に基づき制御される前記微動機構と、前
記偏差信号に前記相対位置検出手段の出力信号を加算し
た粗動移動指令信号に基づき制御される前記粗動機構と
を有することを特徴とする。
The structure of the present invention which achieves the above object is (1) a coarse movement mechanism having a large movement amount but low positioning accuracy, and a fine movement mechanism having a small movement amount but high positioning accuracy. In the positioning control method for controlling the position of the positioning target mounted on the fine movement mechanism of the moving device consisting of, a deviation signal composed of the difference between the displacement amount signal and the movement command signal, which represents the displacement amount of the positioning target with respect to the fixed position, ,
A coarse movement movement command signal is generated in addition to the relative displacement amount of the fine movement mechanism with respect to the coarse movement mechanism, the coarse movement movement command signal is input to the coarse movement mechanism, and the fine movement composed of the difference between the deviation signal and the relative displacement amount is generated. A command signal is generated, a correction signal is further generated from a displacement amount of the controlled object that is not caused by the movement command signal, and a signal including a difference between the fine motion command signal and the correction signal is input to the fine motion mechanism, 2) Further, in a positioning control device mounted on the fine movement mechanism of a moving device including a coarse movement mechanism having a large movement amount but low positioning accuracy and a fine movement mechanism having a small movement amount but high positioning accuracy, A signal generator for generating a movement command signal for a positioning object, and an absolute position detecting means for detecting an absolute position of the positioning object with respect to a fixed position and transmitting a displacement signal representing a displacement amount at this time. A relative position detection means for detecting a relative displacement amount of the fine movement mechanism with respect to the coarse movement mechanism, a means for outputting a correction signal from the relative displacement amount generated in the positioning target, and the movement command signal and the displacement signal. Means for outputting a deviation signal indicating a difference, means for outputting a fine movement command signal indicating a difference between the deviation signal and the relative position detecting means, and a fine movement correction instruction indicating a difference between the fine movement command signal and the correction signal The fine movement mechanism is controlled based on a signal, and the coarse movement mechanism is controlled based on a coarse movement command signal obtained by adding an output signal of the relative position detecting means to the deviation signal.

【0012】[0012]

【作用】上記本発明によれば、移動指令信号に起因しな
い制御対象の変位量が生じた場合でも、この変位量から
補正信号を生成する手段を付設する構成としたため、こ
の補正信号と微動補償信号の差からなる信号を微動機構
に入力することによって前記の移動指令信号に起因しな
い制御対象の変位量を抑制することができる。
According to the present invention, even if a displacement amount of the controlled object that is not caused by the movement command signal is generated, a means for generating a correction signal from the displacement amount is additionally provided. By inputting a signal consisting of the signal difference to the fine movement mechanism, it is possible to suppress the amount of displacement of the controlled object that is not caused by the movement command signal.

【0013】[0013]

【実施例】ここで、図1〜図6を参照して本発明の実施
例を説明する。図1は従来技術図8に対応する実施例の
ブロック線図である。同図に示す信号発生器4は、位置
決め対象の移動指令信号Aを発生するもので、コンピュ
ータ若しくはアナログ回路で構成してある。絶対位置検
出手段5は、例えばレーザ干渉計で形成したセンサであ
り、位置決め対象の固定位置に対する変位である絶対変
位量Hに基づき絶対位置を検出して、このときの変位量
を表す変位信号Bを出力するものである。相対位置検出
手段3は、例えば静電容量型変位計で形成したセンサで
あり、粗動機構1に対する微動機構2の相対変位を検出
し、その出力信号Kを制御演算部8に供給する。制御演
算部8は、積分器のようなゲイン及び周波数特性を調整
するもので、出力信号Lを送出する。
EXAMPLES Examples of the present invention will now be described with reference to FIGS. FIG. 1 is a block diagram of an embodiment corresponding to prior art FIG. A signal generator 4 shown in the figure generates a movement command signal A for positioning, and is composed of a computer or an analog circuit. The absolute position detecting means 5 is, for example, a sensor formed by a laser interferometer, detects an absolute position based on an absolute displacement amount H which is a displacement of a positioning target with respect to a fixed position, and a displacement signal B representing the displacement amount at this time. Is output. The relative position detecting means 3 is, for example, a sensor formed of a capacitance type displacement gauge, detects the relative displacement of the fine movement mechanism 2 with respect to the coarse movement mechanism 1, and supplies the output signal K thereof to the control calculation section 8. The control calculator 8 adjusts the gain and frequency characteristics like an integrator, and sends an output signal L.

【0014】粗動機構1は、駆動源として、例えばDC
サーボモータ、ステッピングモータ等のアクチュエータ
を用い、案内要素として、例えば転がり、摩擦を用いた
もので、応答速度は比較的遅く、位置決め精度は比較的
低いが、移動量は大きなものとなっている。この粗動機
構1は、粗動補償回路6の出力信号である粗動補償指令
信号Dに基づき粗動変位量Fだけ移動する。粗動補償回
路6は、移動指令信号Aと変位信号Bとの偏差信号C
に、相対変位量Gに基づく出力信号Lを加算して生成さ
れる粗動移動指令信号Mに基づき前記粗動補償指令信号
Dを生成する。
The coarse movement mechanism 1 uses, for example, DC as a drive source.
For example, an actuator such as a servo motor or a stepping motor is used, and rolling or friction is used as a guide element. The response speed is relatively slow, the positioning accuracy is relatively low, but the amount of movement is large. The coarse motion mechanism 1 moves by a coarse motion displacement amount F based on a coarse motion compensation command signal D which is an output signal of the coarse motion compensation circuit 6. The coarse motion compensation circuit 6 detects a deviation signal C between the movement command signal A and the displacement signal B.
In addition, the coarse motion compensation command signal D is generated based on the coarse motion movement command signal M generated by adding the output signal L based on the relative displacement amount G.

【0015】微動機構2は、駆動源として高速応答が可
能で、高変位分解能、大発生力を有する、例えば圧電素
子、磁歪素子等のアクチュエータを用い、案内要素とし
て、例えばヒンジばね、板ばね等を用いた物で、応答速
度は速く、位置決め精度は高いが、移動量は数十μm程
度と小さい。この微動機構2が移動した時の粗動機構に
対する微動機構の変位量は、相対変位量Gとなる。
The fine movement mechanism 2 uses an actuator such as a piezoelectric element or a magnetostrictive element capable of high-speed response as a drive source and having a high displacement resolution and a large generated force, and a guide element such as a hinge spring or a leaf spring. Although the response speed is fast and the positioning accuracy is high, the movement amount is small, about several tens of μm. The displacement amount of the fine movement mechanism with respect to the coarse movement mechanism when the fine movement mechanism 2 moves is the relative displacement amount G.

【0016】以上の構成にあって、本実施例では、外乱
等に対する補正手段を付加する構成をとる。すなわち、
相対変位量Gに基づき得られる相対位置検出手段出力信
号Kを偏差信号Cから差し引いて微動補償回路7への微
動指令信号Nを得る接続構成とする。また、相対位置検
出手段3は演算手段21に接続され、この演算手段21
では微動変位信号Pを得る。フィルタ22は、例えばロ
ーパスフィルタで、微動変位信号Pより微動補正指令信
号Sを差し引いて得られた微動補正信号Qから雑音成分
を除去して補正信号Rを得る。そして、フィルタ22の
出力である補正信号Rを微動補償指令信号Eより差し引
き微動補正指令信号Sを得る。かくして、微動補償指令
信号Eから補正信号Rを差し引いた微動補正指令信号S
に基づき微動機構2が移動する。
In the above-mentioned structure, the present embodiment adopts a structure in which a correcting means for disturbance or the like is added. That is,
The relative position detecting means output signal K obtained based on the relative displacement amount G is subtracted from the deviation signal C to obtain a fine movement command signal N to the fine movement compensating circuit 7. Further, the relative position detecting means 3 is connected to the calculating means 21, and the calculating means 21
Then, the fine displacement signal P is obtained. The filter 22 is, for example, a low-pass filter and removes a noise component from the fine movement correction signal Q obtained by subtracting the fine movement correction command signal S from the fine movement displacement signal P to obtain the correction signal R. Then, the correction signal R output from the filter 22 is subtracted from the fine movement compensation instruction signal E to obtain the fine movement correction instruction signal S. Thus, the fine motion compensation command signal S obtained by subtracting the correction signal R from the fine motion compensation command signal E
The fine movement mechanism 2 moves based on.

【0017】ここで、外乱が加わった場合の状態を鑑み
て図1を更に詳細に説明する。粗動機構1及び微動機構
2に、振動、衝撃、温度変化、あるいは、位置決め装置
を多軸化した時に生じる軸間干渉等の外乱が加わると、
この外乱の影響を受けて粗動補償指令信号D及び微動補
償指令信号Eに起因しない変位量が発生するため、絶対
位置量Hに位置決め誤差が生じてしまう。この場合、外
乱によって生じる変位量のうち、粗動補償指令信号Dに
起因しない変位量は、本位置決め装置が、粗動機構1の
上に微動機構2が搭載された構成となっているため、微
動機構2が前記粗動補償信号Dに起因しない変位量を吸
収し、問題とならない。一方、微動補償指令信号Eに起
因しない変位量は、本位置決め装置が、これを吸収でき
る構成となっていないため、微動機構2には、微動補償
指令信号Eに起因しない変位量が残ってしまう。
Here, FIG. 1 will be described in more detail in view of a state in which a disturbance is applied. When vibration, shock, temperature change, or disturbance such as inter-axis interference that occurs when the positioning device is multi-axised is applied to the coarse movement mechanism 1 and the fine movement mechanism 2,
Due to the influence of this disturbance, a displacement amount that is not caused by the coarse motion compensation command signal D and the fine motion compensation command signal E is generated, so that a positioning error occurs in the absolute position amount H. In this case, of the displacement amounts caused by the disturbance, the displacement amount not caused by the coarse motion compensation command signal D is configured such that the fine movement mechanism 2 is mounted on the coarse movement mechanism 1 in the present positioning device. The fine movement mechanism 2 absorbs the amount of displacement that is not caused by the coarse movement compensation signal D, and there is no problem. On the other hand, since the positioning device is not configured to absorb the displacement amount that is not caused by the fine movement compensation command signal E, the displacement amount that is not caused by the fine movement compensation command signal E remains in the fine movement mechanism 2. .

【0018】図2に外乱Tが加わった時の微動機構2に
おける入出力信号の流れを示す。図2に示すように外乱
Tが加わると微動入力信号Uは、微動補償指令信号Eに
外乱Tが加え合わされた信号となる。このような、微動
入力信号Uが微動機構2に入力されることによって、微
動機構2は、相対変位量Gだけ移動する。この時、相対
変位量Gには、微動補償指令信号Eに起因しない外乱T
による変位量が含まれている。そこで、図3に示すよう
に、外乱Tを打ち消すような補正信号Rを微動補償指令
信号Eから予め差し引き、この結果得られた信号を微動
補正信号Sとすれば、微動補正信号Sに外乱Tが加え合
わされた時、補正信号Rと外乱Tが互いに打ち消しあう
結果、生成された微動入力信号Uには外乱Tが含まれな
くなる。したがって、微動入力信号Uが微動機構2に入
力された結果生じる相対変位量Gには、微動補償指令信
号Eに起因しない変位量は含まれていないことになる。
FIG. 2 shows the flow of input / output signals in the fine movement mechanism 2 when a disturbance T is applied. As shown in FIG. 2, when the disturbance T is applied, the fine movement input signal U becomes a signal obtained by adding the disturbance T to the fine movement compensation command signal E. By inputting such a fine movement input signal U to the fine movement mechanism 2, the fine movement mechanism 2 moves by the relative displacement amount G. At this time, the relative displacement amount G includes the disturbance T not caused by the fine movement compensation command signal E.
The displacement amount due to is included. Therefore, as shown in FIG. 3, if the correction signal R for canceling the disturbance T is subtracted from the fine movement compensation command signal E in advance and the signal obtained as a result is set as the fine movement correction signal S, the disturbance T is converted into the fine movement correction signal S. , The correction signal R and the disturbance T cancel each other, so that the generated fine movement input signal U does not include the disturbance T. Therefore, the relative displacement amount G resulting from the input of the fine movement input signal U to the fine movement mechanism 2 does not include the displacement amount which is not caused by the fine movement compensation command signal E.

【0019】ここで、図4に基づいてこの補正信号Rの
導出過程を説明する。まず、微動入力信号Uは、S+T
となり、微動機構2に入力され相対変位量Gだけ移動す
る。このときの相対変位量Gを相対位置検出手段3によ
って検出し、相対位置検出手段出力Kが得られる。ここ
で、相対位置検出手段出力Kは、微動機構2、相対位置
検出手段3を通ったことによってK=αU=α(S+
T)となる。なお、αは、微動機構2、相対位置検出手
段3の特性により決定される任意の係数である。ここ
で、演算手段21は、入力信号を1/α倍する機能を持
っており、相対位置検出手段出力Kが演算手段21に入
力されると、その出力信号である微動変位信号Pは、P
=S+Tとなる。さらに、前記微動変位信号Pから微動
補正指令信号Sを図4に示すように、差し引いてやれ
ば、その結果生成される微動補正信号Qは、 Q=P−S=(S+T)−S=T となる。
The process of deriving the correction signal R will be described with reference to FIG. First, the fine movement input signal U is S + T
Then, it is input to the fine movement mechanism 2 and moved by the relative displacement amount G. The relative displacement amount G at this time is detected by the relative position detecting means 3, and the relative position detecting means output K is obtained. Here, the output K of the relative position detecting means is K = αU = α (S + by passing through the fine movement mechanism 2 and the relative position detecting means 3.
T). Note that α is an arbitrary coefficient determined by the characteristics of the fine movement mechanism 2 and the relative position detection means 3. Here, the calculating means 21 has a function of multiplying the input signal by 1 / α, and when the relative position detecting means output K is input to the calculating means 21, the fine movement displacement signal P which is the output signal thereof is P
= S + T. Further, if the fine movement correction command signal S is subtracted from the fine movement displacement signal P as shown in FIG. 4, the fine movement correction signal Q generated as a result is: Q = P-S = (S + T) -S = T Becomes

【0020】次に、この微動補正信号Qに含まれている
例えば電源ノイズ等の雑音を、フィルタ22に通して、
減衰または遮断することで、補正信号Rが得られる。前
記補正信号Rは、微動補正信号Qから雑音成分のみを除
去したものであり、基本的には、微動補正信号Qと等し
い。従って、補正信号Rは、R=Tとなる。
Next, noise such as power supply noise contained in the fine movement correction signal Q is passed through the filter 22,
The correction signal R is obtained by damping or blocking. The correction signal R is obtained by removing only the noise component from the fine movement correction signal Q, and is basically equal to the fine movement correction signal Q. Therefore, the correction signal R is R = T.

【0021】以上のようにして得られた補正信号Rを微
動補償指令信号Eから予め差し引くと、微動補正指令信
号Sは、S=E−Rとなる。次に、外乱Tが微動補正指
令信号Sに加わるため微動入力信号Uは、U=S+T=
E−R+Tとなる。ここで、前述したように、R=Tで
あるため、U=Eとなり、微動機構2には、微動補償指
令信号Eに起因しない変位量は生じなくなる。
When the correction signal R obtained as described above is subtracted from the fine motion compensation command signal E in advance, the fine motion correction command signal S becomes S = ER. Next, since the disturbance T is added to the fine movement correction command signal S, the fine movement input signal U is U = S + T =
It becomes ER + T. Here, as described above, since R = T, U = E, and the fine movement mechanism 2 does not generate a displacement amount that is not caused by the fine movement compensation command signal E.

【0022】図5は、従来の制御方法において、位置決
め対象に外乱を加えた時の位置決め対象の変位量を示し
たグラフである。同図を参照すれば、30nmの変位量
が発生していることがわかる。これに対し、図6の本実
施例による方法では、図5と同様の外乱を加えた場合で
も位置決め対象の変位量は2nmとなっており、本実施
例により、外乱に起因する位置決め対象の変位量が抑制
されていることがわかる。
FIG. 5 is a graph showing the displacement amount of the positioning target when a disturbance is applied to the positioning target in the conventional control method. Referring to the figure, it can be seen that a displacement amount of 30 nm is generated. On the other hand, in the method according to the present embodiment of FIG. 6, the displacement amount of the positioning target is 2 nm even when the same disturbance as in FIG. 5 is applied, and according to the present embodiment, the displacement of the positioning target caused by the disturbance is It can be seen that the amount is suppressed.

【0023】[0023]

【発明の効果】以上、実施例をあげて詳細に説明したよ
うに、本発明による制御によれば、制御対象に外乱等の
移動指令信号に起因しない変位が加わったとしても、こ
れを抑制することができるため、広範囲を高精度に安定
して位置決めすることが可能となる。
As described above in detail with reference to the embodiments, according to the control of the present invention, even if a displacement such as a disturbance that is not caused by a movement command signal is applied to the controlled object, it is suppressed. Therefore, it is possible to position a wide range with high accuracy and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック線図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】微動機構における入出力信号の流れを示すブロ
ック線図である。
FIG. 2 is a block diagram showing a flow of input / output signals in the fine movement mechanism.

【図3】外乱を制御する原理を示したブロック線図であ
る。
FIG. 3 is a block diagram showing the principle of controlling disturbance.

【図4】実施例に基づく微動機構の制御方法を示したブ
ロック線図である。
FIG. 4 is a block diagram showing a control method of a fine movement mechanism based on the embodiment.

【図5】従来の制御方法を適用した場合、制御対象に外
乱を与えた時の変位量を示すグラフである。
FIG. 5 is a graph showing a displacement amount when a disturbance is applied to a controlled object when a conventional control method is applied.

【図6】本発明の実施例における制御方法を適用した場
合、制御対象に外乱を与えた時の変位量を示すグラフで
ある。
FIG. 6 is a graph showing a displacement amount when a disturbance is applied to a controlled object when the control method in the example of the present invention is applied.

【図7】従来の制御方法を組み合わせてX−Y平面の制
御を行う場合の概念図である。
FIG. 7 is a conceptual diagram in the case of controlling the XY plane by combining conventional control methods.

【図8】従来の技術に係る位置決め制御装置を示すブロ
ック線図である。
FIG. 8 is a block diagram showing a positioning control device according to a conventional technique.

【符号の説明】 1 粗動機構 2 微動機構 3 相対位置検出手段 4 信号発生器 5 絶対位置検出手段 6 粗動補償回路 7 微動補償回路 8 制御演算部 21 演算手段 22 フィルタ A 移動指令信号 B 変位信号 C 偏差信号 D 粗動補償指令信号 E 微動補償指令信号 F 粗動変位量 G 相対変位量 H 絶対変位量 K 相対位置検出手段出力信号 L 制御演算部出力信号 M 粗動指令信号 N 微動指令信号 P 微動変位信号 Q 微動補正信号 R 補正信号 S 微動補正指令信号 T 外乱 U 微動入力信号[Description of symbols] 1 coarse movement mechanism 2 fine movement mechanism 3 relative position detection means 4 signal generator 5 absolute position detection means 6 coarse movement compensation circuit 7 fine movement compensation circuit 8 control calculation unit 21 calculation means 22 filter A movement command signal B displacement Signal C Deviation signal D Coarse motion compensation command signal E Fine motion compensation command signal F Coarse motion displacement amount G Relative displacement amount H Absolute displacement amount K Relative position detection means output signal L Control calculation unit output signal M Coarse movement command signal N Fine motion command signal P fine movement displacement signal Q fine movement correction signal R correction signal S fine movement correction command signal T disturbance U fine movement input signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 伸 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 田原 諭 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobu Shin Asano, 1-8, Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Mitsubishi Heavy Industries, Ltd. Basic Technology Research Institute (72) Inventor, Satoshi Tahara, 1-chome, Koura, Kanazawa-ku, Yokohama, Kanagawa Address 1 Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 大移動量を有するが位置決め精度の低い
粗動機構と、小移動量ではあるが位置決め精度の高い微
動機構とから成る移動装置の前記微動機構上に搭載した
位置決め対象の位置を制御する位置決め制御方法におい
て、 位置決め対象の固定位置に対する変位量を表す変位量信
号と移動指令信号との差から成る偏差信号を、微動機構
の粗動機構に対する相対変位量に加え合わせて粗動移動
指令信号を生成し、この粗動移動指令信号を粗動機構へ
入力し、前記偏差信号と前記相対変位量の差から成る微
動指令信号を生成し、さらに移動指令信号に起因しない
制御対象の変位量から補正信号を生成し、前記微動指令
信号と前記補正信号の差から成る信号を微動機構へ入力
することを特徴とする位置決め制御方法。
1. A position of a positioning object mounted on the fine movement mechanism of a moving device comprising a coarse movement mechanism having a large movement amount but a low positioning precision and a fine movement mechanism having a small movement amount but a high positioning precision. In the positioning control method for controlling, the deviation signal, which is the difference between the displacement amount signal indicating the displacement amount of the positioning target with respect to the fixed position and the movement command signal, is added to the relative displacement amount of the fine movement mechanism with respect to the coarse movement mechanism to perform coarse movement. A command signal is generated and the coarse movement command signal is input to the coarse movement mechanism to generate a fine movement command signal composed of the difference between the deviation signal and the relative displacement amount, and further the displacement of the controlled object not caused by the movement command signal. A positioning control method, wherein a correction signal is generated from an amount, and a signal including a difference between the fine movement command signal and the correction signal is input to a fine movement mechanism.
【請求項2】 大移動量を有するが位置決め精度の低い
粗動機構と、小移動量ではあるが位置決め精度の高い微
動機構とから成る移動装置の前記微動機構上に搭載した
位置決め制御装置において、 前記位置決め対象の移動指令信号を発生する信号発生器
と、 前記位置決め対象の固定位置に対する絶対位置を検出し
てこのときの変位量を表わす変位信号を送出する絶対位
置検出手段と、 前記微動機構の前記粗動機構に対する相対変位量を検出
する相対位置検出手段と、 前記位置決め対象に生じた相対変位量から補正信号を出
力する手段と、 前記移動指令信号と前記変位信号との差を表わす偏差信
号を出力する手段と、 前記偏差信号と前記相対位置検出手段との差を表す微動
指令信号を出力する手段と、 前記微動指令信号と前記補正信号との差を表す微動補正
指令信号に基づき制御される前記微動機構と、 前記偏差信号に前記相対位置検出手段の出力信号を加算
した粗動移動指令信号に基づき制御される前記粗動機構
とを有することを特徴とする位置決め制御装置。
2. A positioning control device mounted on the fine movement mechanism of a moving device comprising a coarse movement mechanism having a large movement amount but low positioning accuracy and a fine movement mechanism having a small movement amount but high positioning accuracy, A signal generator that generates a movement command signal for the positioning target; an absolute position detection unit that detects an absolute position of the positioning target with respect to a fixed position and sends a displacement signal that represents a displacement amount at this time; Relative position detection means for detecting the relative displacement amount with respect to the coarse movement mechanism, means for outputting a correction signal from the relative displacement amount generated in the positioning target, and a deviation signal representing the difference between the movement command signal and the displacement signal. A means for outputting, a means for outputting a fine movement command signal representing a difference between the deviation signal and the relative position detection means, and a means for outputting the fine movement command signal and the correction signal. And a coarse movement mechanism controlled based on a coarse movement movement command signal obtained by adding an output signal of the relative position detecting means to the deviation signal. Characteristic positioning control device.
JP16462792A 1992-06-23 1992-06-23 Positioning control method and device Expired - Lifetime JP3243520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16462792A JP3243520B2 (en) 1992-06-23 1992-06-23 Positioning control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16462792A JP3243520B2 (en) 1992-06-23 1992-06-23 Positioning control method and device

Publications (2)

Publication Number Publication Date
JPH06752A true JPH06752A (en) 1994-01-11
JP3243520B2 JP3243520B2 (en) 2002-01-07

Family

ID=15796801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16462792A Expired - Lifetime JP3243520B2 (en) 1992-06-23 1992-06-23 Positioning control method and device

Country Status (1)

Country Link
JP (1) JP3243520B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032544A (en) * 1997-12-10 2010-02-12 Peter Heiland Device for scanning in raster mode with compensation of disturbing effect of mechanical vibration on scanning process
WO2016051542A1 (en) * 2014-09-30 2016-04-07 株式会社牧野フライス製作所 Feed shaft control method and numerically controlled machine tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032544A (en) * 1997-12-10 2010-02-12 Peter Heiland Device for scanning in raster mode with compensation of disturbing effect of mechanical vibration on scanning process
WO2016051542A1 (en) * 2014-09-30 2016-04-07 株式会社牧野フライス製作所 Feed shaft control method and numerically controlled machine tool
JPWO2016051542A1 (en) * 2014-09-30 2017-04-27 株式会社牧野フライス製作所 Feed axis control method and numerical control machine tool
US10437225B2 (en) 2014-09-30 2019-10-08 Makino Milling Machine Co., Ltd. Feed shaft control method and numerically controlled machine tool

Also Published As

Publication number Publication date
JP3243520B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JP2721757B2 (en) Positioning control method and device
Okazaki A micro-positioning tool post using a piezoelectric actuator for diamond turning machines
Yong et al. Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning
JP3217522B2 (en) Precision positioning device
De Wit et al. Adaptive eccentricity compensation
JP3087305B2 (en) Stage equipment
CN107532894B (en) Method for controlling a measuring device and providing active damping, coordinate measuring machine and storage medium
JP2000250614A (en) Backlash correction device and numerical control system
US4986150A (en) Micro-positioning tool post
Wang et al. Study on application of model reference adaptive control in fast steering mirror system
US6703603B2 (en) Controller for optical scanner
Lim et al. Torsional displacement compensation in position control for machining centers
KR20020082753A (en) Servo control method
JP2003005838A (en) Method for servo control
JP4104306B2 (en) Scanner device
Abir et al. Virtual metrology frame technique for improving dynamic performance of a small size machine tool
JP2003294434A (en) Contact type probe
JPH06752A (en) Positioning control method and device
US6448723B1 (en) Stage system and exposure apparatus
JP3986241B2 (en) Control device for optical scanner device
JP3943061B2 (en) Servo control device
Horsley et al. Closed-loop control of a microfabricated actuator for dual-stage hard disk drive servo systems
Gorman et al. Multiloop control of a nanopositioning mechanism for ultraprecision beam steering
Cai et al. Fourier series based learning control and application to positioning table
JP2002040358A (en) Control device for optical scanner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11