JPH0674965A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH0674965A
JPH0674965A JP23036992A JP23036992A JPH0674965A JP H0674965 A JPH0674965 A JP H0674965A JP 23036992 A JP23036992 A JP 23036992A JP 23036992 A JP23036992 A JP 23036992A JP H0674965 A JPH0674965 A JP H0674965A
Authority
JP
Japan
Prior art keywords
light
acceleration
magnetic fluid
magnetic field
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23036992A
Other languages
Japanese (ja)
Other versions
JP3199859B2 (en
Inventor
Toshimi Okazaki
俊実 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP23036992A priority Critical patent/JP3199859B2/en
Publication of JPH0674965A publication Critical patent/JPH0674965A/en
Application granted granted Critical
Publication of JP3199859B2 publication Critical patent/JP3199859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a compact and lightweight acceleration sensor having high reliability and environmental compatibility by using the dynamics amount sensitivity of magnetic fluid, and also the the interaction of magnetism and light for a detecting section. CONSTITUTION:This sensor has magnetic fluid 1 movably housed in a case 2, magnets 3 and 4 laid in such a way as clamping the fluid 1 and giving a magnetic field gradient in the movable direction of the fluid 1, an illuminant for projecting light, and the first deflection plate 6 laid between the illuminant 5 and fluid 1. In addition, the sensor is provided with an analyzer 10 for detecting light intensity, the second deflection plate 8 laid between the fluid 1 and the analyzer 10, and having a deflection plane roughly orthogonal with the deflection plane of the first deflection plate 6, and an acceleration computation means to calculate acceleration from the output of the analyzer 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速度センサ、特に自動
車等の移動体で姿勢制御や運動制御に使用される小型軽
量の加速度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to a small and lightweight acceleration sensor used for attitude control and motion control in a moving body such as an automobile.

【0002】[0002]

【従来の技術】加えられた加速度を磁性流体の移動量に
よって検出する加速度センサは、その特徴として機械的
可動部分や支持部分を持たないことから、加速度検出の
信頼性が向上し、かつその構成を小型軽量にすることが
できる。このような例としては、特開昭60−1333
70号がある。
2. Description of the Related Art An acceleration sensor for detecting an applied acceleration based on the amount of movement of a magnetic fluid has no mechanically movable parts or supporting parts as its characteristic. Therefore, the reliability of acceleration detection is improved and the structure thereof is improved. Can be made smaller and lighter. As such an example, Japanese Patent Laid-Open No. 60-1333
There is number 70.

【0003】上記特開昭60−133370号には加速
度による磁性流体の変位を、差動トランスあるいは磁気
発生コイルにより検出するものが開示されている。ま
た、磁気検出素子(ホール素子,磁気抵抗素子)で検出
する構成のものもある。しかしながら、これら磁気変化
をそのまま検出する構成では、外部磁場や外部電磁波の
影響を受けやすく、電磁環境の悪い条件ではその使用が
困難になる。
Japanese Unexamined Patent Publication (Kokai) No. 60-133370 discloses a device in which the displacement of a magnetic fluid due to acceleration is detected by a differential transformer or a magnetic generation coil. There is also a structure in which detection is performed by a magnetic detection element (hall element, magnetic resistance element). However, the configuration in which these magnetic changes are detected as they are is likely to be affected by an external magnetic field or an external electromagnetic wave, and is difficult to use in a poor electromagnetic environment.

【0004】実開平1−180664号には、磁気変化
を検出せずに、加速度による磁性流体の移動による板部
材の変位を、従来の金属歪ゲージにより検出するものが
開示されている。ここでは、温度補正のために磁性流体
が使用される。しかし、金属歪ゲージによる板部材の変
位検出には、上記のような信頼性や小型軽量化の面で問
題がある。
Japanese Utility Model Laid-Open No. 1-180664 discloses a conventional metal strain gauge that detects a displacement of a plate member due to movement of a magnetic fluid due to acceleration without detecting a magnetic change. Here, a magnetic fluid is used for temperature compensation. However, the detection of the displacement of the plate member by the metal strain gauge has a problem in terms of reliability and reduction in size and weight as described above.

【0005】一方、光を使用した加速度センサとして
は、実開昭63−150376号のように、粘性液体内
での光源の変位を光位置検出装置で検出するものがあ
る。しかしながら、上記同様に信頼性や小型軽量化の面
で問題がある。
On the other hand, as an acceleration sensor using light, there is a sensor which detects displacement of a light source in a viscous liquid by an optical position detecting device, as in Japanese Utility Model Laid-Open No. 63-150376. However, similar to the above, there are problems in terms of reliability and reduction in size and weight.

【0006】[0006]

【発明が解決しようとしている課題】本発明は、磁性流
体の力学量感受性と検出部には磁気と光の相互作用を用
いることで、信頼性,対環境性が高く、小型で軽量な加
速度センサを提供する。
DISCLOSURE OF THE INVENTION The present invention uses a mechanical quantity sensitivity of a magnetic fluid and an interaction of magnetism and light in a detection part, so that the acceleration sensor has high reliability and environmental resistance, and is small and lightweight. I will provide a.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明の加速度センサは、加速度方向に移動可能に
配置された磁性流体と、前記加速度方向に磁場配向密度
の勾配ができるように、前記磁性流体に外部磁界を印加
する磁界印加手段と、前記磁性流体の磁場と略鉛直方向
に直線偏光された光を前記磁性流体に入射する光入射手
段と、前記磁性流体を通過後の出射光を検出する光検出
手段と、検出された前記出射光の変化から加速度を算出
する加速度算出手段とを備える。ここで、前記光検出手
段は、前記出射光から入射光の偏光面と異なる偏光面の
光を分離する分離手段と、分離された偏光面の光の強度
を検出する光強度検出手段とを含む。
In order to solve this problem, the acceleration sensor of the present invention has a magnetic fluid arranged so as to be movable in the acceleration direction and a gradient of magnetic field orientation density in the acceleration direction. A magnetic field applying means for applying an external magnetic field to the magnetic fluid, a light incident means for making light linearly polarized in a direction substantially perpendicular to the magnetic field of the magnetic fluid enter the magnetic fluid, and an output after passing through the magnetic fluid. A light detection unit that detects the emitted light and an acceleration calculation unit that calculates the acceleration from the detected change in the emitted light are provided. Here, the light detecting unit includes a separating unit that separates the light having a polarization plane different from the polarization plane of the incident light from the emitted light, and a light intensity detecting unit that detects the intensity of the light having the separated polarization plane. .

【0008】また、本発明の加速度センサは、ケース内
に移動可能に収納された磁性流体と、前記磁性流体を挟
んで配設され、前記磁性流体の移動可能な方向に磁界勾
配をつける磁石と、光を入射するための光源と、前記光
源と前記磁性流体間に配設された第1偏光板と、光強度
を検出する検光子と、前記磁性流体と前記検光子間に配
設され、前記第1偏光板の偏光面と略直交する偏光面の
第2偏光板と、前記検光子の出力から加速度を算出する
加速度算出手段とを備える。ここで、前記加速度算出手
段は、前記検光子により検出された光強度と加速度との
関係を記憶するテーブルを含む。
Further, the acceleration sensor of the present invention comprises a magnetic fluid movably housed in a case, and a magnet which is disposed so as to sandwich the magnetic fluid and which gives a magnetic field gradient in the movable direction of the magnetic fluid. A light source for injecting light, a first polarizing plate arranged between the light source and the magnetic fluid, an analyzer for detecting light intensity, and arranged between the magnetic fluid and the analyzer, A second polarization plate having a polarization plane substantially orthogonal to the polarization plane of the first polarization plate, and an acceleration calculation means for calculating acceleration from the output of the analyzer are provided. Here, the acceleration calculating means includes a table that stores the relationship between the light intensity detected by the analyzer and the acceleration.

【0009】[0009]

【実施例】まず、本発明の加速度センサの測定原理を簡
単に説明する。本発明では、磁性流体に外部磁界を磁気
勾配ができるように加えて、磁性流体の磁場配向密度に
勾配をつける構成をとる。磁場を与えた磁性流体は、そ
の磁場と鉛直方向にある偏光面をもった光を透過させる
と、磁界の強さに応じて光に複屈折作用を及ぼす性質が
ある。偏光面を磁界方向からある角度ずれた光を透過さ
せると、磁気光学効果(複屈折)により透過光は楕円偏
光となる。この楕円偏光は磁界の強さに応じてその楕円
率が変化する。したがって、加速度が加わると磁性流体
は移動して、外部磁界の磁気勾配に対応して磁性流体に
加わる磁界の強度が変化し、透過光の楕円偏光の状態が
かわる。この楕円偏光した透過光を、ある特定の角度で
配置した偏光板を透過させてその光強度を検出すること
により、加速度を測定することができる。
First, the measurement principle of the acceleration sensor of the present invention will be briefly described. In the present invention, an external magnetic field is applied to the magnetic fluid so that a magnetic gradient can be created, and a gradient is given to the magnetic field orientation density of the magnetic fluid. A magnetic fluid to which a magnetic field is applied has a property of causing a birefringent action on the light depending on the strength of the magnetic field when the light having a plane of polarization perpendicular to the magnetic field is transmitted. When light whose angle of polarization deviates from the direction of the magnetic field is transmitted, the transmitted light becomes elliptically polarized light due to the magneto-optical effect (birefringence). The ellipticity of this elliptically polarized light changes according to the strength of the magnetic field. Therefore, when acceleration is applied, the magnetic fluid moves, the strength of the magnetic field applied to the magnetic fluid changes corresponding to the magnetic gradient of the external magnetic field, and the elliptically polarized state of the transmitted light changes. The acceleration can be measured by transmitting the elliptically polarized transmitted light through a polarizing plate arranged at a specific angle and detecting the light intensity thereof.

【0010】以下、本発明の加速度センサの一実施例を
示す。図1は本実施例の加速度センサを側面から見た概
略の構成図である。強磁性材料の微粒子(マグネタイト
等で粒子の径が100Å以下)を溶媒中に均一に分散さ
せた磁性流体1を中空構造体2の中に封入させる。中空
構造体2の上下方向の位置に磁界勾配のある外部磁界を
印加するための強磁性磁石3,4を配設する。本例で
は、この強磁性磁石3,4は、突端を境に左右対照の構
造のものを用いて、中心を境界とする強度勾配が発生し
ている。そして、この中心部分に磁性流体を位置させ
る。また、強磁性磁石3,4による磁界は、本加速度セ
ンサで測定する最大加速度においても磁性流体1が磁場
内から逸脱しない大きさとする。
An embodiment of the acceleration sensor of the present invention will be described below. FIG. 1 is a schematic configuration diagram of the acceleration sensor of this embodiment as viewed from the side. A magnetic fluid 1 in which fine particles of a ferromagnetic material (particle diameter of 100 Å or less made of magnetite or the like) is uniformly dispersed in a solvent is enclosed in a hollow structure 2. Ferromagnetic magnets 3 and 4 for applying an external magnetic field having a magnetic field gradient are arranged in the vertical position of the hollow structure 2. In this example, the ferromagnetic magnets 3 and 4 have a symmetrical structure with the tip as a boundary, and an intensity gradient is generated with the center as a boundary. Then, the magnetic fluid is positioned at this central portion. Further, the magnetic field generated by the ferromagnetic magnets 3 and 4 has such a magnitude that the magnetic fluid 1 does not deviate from the magnetic field even at the maximum acceleration measured by the acceleration sensor.

【0011】一方、中空構造体2の一端に、発光素子5
(半導体レーザ,LDE)と、コリメートレンズ6と、
光を直線偏光にするための偏光板7とを配設する。他端
には、磁性流体1中を透過した光の楕円偏光の変調度を
取り出するための偏光板8と、コリメートレンズ9と、
光検出器10(フォトダイオード等)とを配設する。発
光素子5には光発生手段11、光検出器10には信号増
幅器12がそれぞれ設けてある。尚、信号増幅器12の
出力値は、図示しないがAD変換されて以下の図3に示
す光強度と加速度との関係から加速度の値に変換され
る。
On the other hand, at one end of the hollow structure 2, the light emitting element 5 is provided.
(Semiconductor laser, LDE), collimating lens 6,
A polarizing plate 7 for converting the light into linearly polarized light is provided. At the other end, a polarizing plate 8 for taking out the degree of modulation of the elliptically polarized light of the light transmitted through the magnetic fluid 1, a collimating lens 9,
A photodetector 10 (photodiode or the like) is provided. The light emitting element 5 is provided with light generating means 11, and the photodetector 10 is provided with a signal amplifier 12. Although not shown, the output value of the signal amplifier 12 is AD-converted and converted into an acceleration value from the relationship between the light intensity and the acceleration shown in FIG. 3 below.

【0012】以下に、図2の上記加速度センサ各部での
光の偏光面の模式図に従って、上記実施例の加速度セン
サの作動例を示す。図2においては、上下が磁界方向
で、紙面の前後が加速度方向である。例えば、図2の
(a)に示すように、偏光板7により磁石のバイアス磁
界の方向から45°の方向に直線偏光された光を磁性流
体1に入射すると、加速度が印加されない場合には、光
は磁性流体1を通過することにより、図2の(b)に示
すような楕円偏光の光となって出射される。この光か
ら、偏光板8により(本例では偏光板7の偏光面に対し
て90°偏光面をずらして配置)、図2の(c)に示す
ような入射光と直角の偏光面の成分だけを取り出し、光
検出器12に入射して光強度として出力する。
An example of the operation of the acceleration sensor of the above embodiment will be described below with reference to the schematic view of the plane of polarization of light at each part of the acceleration sensor shown in FIG. In FIG. 2, the upper and lower sides are magnetic field directions, and the front and rear sides of the drawing are acceleration directions. For example, as shown in FIG. 2A, when light linearly polarized in the direction of 45 ° from the direction of the bias magnetic field of the magnet by the polarizing plate 7 is incident on the magnetic fluid 1, when acceleration is not applied, The light passes through the magnetic fluid 1 and is emitted as elliptically polarized light as shown in FIG. From this light, a component of the polarization plane perpendicular to the incident light as shown in FIG. 2C is provided by the polarization plate 8 (in this example, the polarization plane of the polarization plate 7 is shifted by 90 °). Only the light is taken out, is incident on the photodetector 12, and is output as the light intensity.

【0013】ここで本加速度センサに図1の左右方向に
加速度が印加された場合には、磁性流体1は印加加速度
とバイアス磁界の引力とが平衡するところまで移動する
ことになる。この移動によって磁性流体1に加わる磁界
強度が変化し磁化状態がかわる。磁性流体1を通過する
偏光板7によりの直線偏光波(図2の(a)参照)は、
磁化状態によりその楕円偏光する度合いが、例えば図2
の(d)のように変るので、加速度による磁性流体1の
移動量に応じて、図2の(e)のように偏光板8からで
る光の強度が一意的に決まることになる。
When acceleration is applied to the acceleration sensor in the left-right direction in FIG. 1, the magnetic fluid 1 moves to a point where the applied acceleration and the attractive force of the bias magnetic field are in equilibrium. This movement changes the strength of the magnetic field applied to the magnetic fluid 1 and changes the magnetized state. The linearly polarized wave (see (a) of FIG. 2) by the polarizing plate 7 that passes through the magnetic fluid 1 is
The degree of elliptically polarized light depending on the magnetized state is, for example, as shown in FIG.
2 (d), the intensity of light emitted from the polarizing plate 8 is uniquely determined according to the amount of movement of the magnetic fluid 1 due to acceleration as shown in FIG. 2 (e).

【0014】図3に本実施例において検出される光強度
と加速度の大きさとの関係を示す。これは予め測定して
テーブル(マップ)等に記憶されているのが好ましい。
更に、経年変化等を考慮して更新する(学習機能)もの
であれば、なお好ましい。尚、本実施例では磁界方向と
45°傾いて直線偏光された光を入射したが、実際には
磁界方向と一致しなければよい。また、検出側では、入
射と直角の偏光を行ったが、これは直角方向の変化が大
きいために精度を上げることができるからであって、こ
れも限定されない。
FIG. 3 shows the relationship between the light intensity detected in this embodiment and the magnitude of acceleration. This is preferably measured in advance and stored in a table (map) or the like.
Furthermore, it is more preferable if it is updated (learning function) in consideration of changes over time. In this embodiment, linearly polarized light that is inclined by 45 ° with respect to the magnetic field direction is incident, but it does not have to coincide with the magnetic field direction in practice. Further, on the detection side, polarization perpendicular to the incident is performed, but this is because the accuracy can be improved because the change in the perpendicular direction is large, and this is not limited.

【0015】このように、光の偏向面の磁界中での楕円
偏光により加速度を測定するので、従来の磁性流体の移
動量によって加速度を検出する加速度センサのように、
外部磁場や外部電磁波の影響を受けることなく、自動車
内のような電磁環境の悪い条件下でも使用が可能にな
る。また、光の偏向面の変化に基づく検出であるので、
精度の良い検出が可能となる。
As described above, since the acceleration is measured by the elliptically polarized light in the magnetic field of the deflecting surface of the light, like the conventional acceleration sensor which detects the acceleration by the moving amount of the magnetic fluid,
It can be used even under a bad electromagnetic environment such as in a car without being affected by an external magnetic field or an external electromagnetic wave. Further, since the detection is based on the change of the deflection surface of the light,
Highly accurate detection is possible.

【0016】[0016]

【発明の効果】本発明によれば、磁性流体の力学量感受
性と検出部には磁気と光の相互作用を用いることで、信
頼性,対環境性が高く、小型で軽量な加速度センサを提
供することができる。
According to the present invention, a small and lightweight acceleration sensor with high reliability and high environmental resistance is provided by using the interaction between magnetism and light in the detection part and the dynamic quantity sensitivity of magnetic fluid. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の加速度センサを側面から見た概略構
成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an acceleration sensor according to a present embodiment as viewed from a side surface.

【図2】本実施例の加速度センサの各点での光の偏光面
を模式的に示す図である。
FIG. 2 is a diagram schematically showing polarization planes of light at respective points of the acceleration sensor of this embodiment.

【図3】本実施例の加速度センサにおける光強度と加速
度の大きさとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the light intensity and the magnitude of acceleration in the acceleration sensor of this embodiment.

【符号の説明】[Explanation of symbols]

1…磁性流体、2…中空構造体、3,4…強磁性磁石、
5…発光素子、6…コリメートレンズ、7…光を直線偏
光にするための偏光板、8…光の楕円偏光の変調度を取
り出するための偏光板、9…コリメートレンズ、10…
光検出器、11…光発生手段、12…信号増幅器
1 ... Magnetic fluid, 2 ... Hollow structure, 3, 4 ... Ferromagnetic magnet,
5 ... Light emitting element, 6 ... Collimating lens, 7 ... Polarizing plate for making light linearly polarized light, 8 ... Polarizing plate for taking out degree of modulation of elliptically polarized light, 9 ... Collimating lens, 10 ...
Photodetector, 11 ... Light generating means, 12 ... Signal amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加速度方向に移動可能に配置された磁性
流体と、 前記加速度方向に磁場配向密度の勾配ができるように、
前記磁性流体に外部磁界を印加する磁界印加手段と、 前記磁性流体の磁場と略鉛直方向に直線偏光された光を
前記磁性流体に入射する光入射手段と、 前記磁性流体を通過後の出射光を検出する光検出手段
と、 検出された前記出射光の変化から加速度を算出する加速
度算出手段とを備えることを特徴とする加速度センサ。
1. A magnetic fluid movably arranged in an acceleration direction, and a magnetic field orientation density gradient in the acceleration direction,
Magnetic field applying means for applying an external magnetic field to the magnetic fluid, light incident means for making light linearly polarized in a direction substantially perpendicular to the magnetic field of the magnetic fluid enter the magnetic fluid, and outgoing light after passing through the magnetic fluid. An acceleration sensor, comprising: a light detection unit that detects the acceleration and an acceleration calculation unit that calculates the acceleration from the detected change in the emitted light.
【請求項2】 前記光検出手段は、前記出射光から入射
光の偏光面と異なる偏光面の光を分離する分離手段と、
分離された偏光面の光の強度を検出する光強度検出手段
とを含むことを特徴とする請求項1記載の加速度セン
サ。
2. The separation means for separating the light having a polarization plane different from the polarization plane of the incident light from the emitted light,
The acceleration sensor according to claim 1, further comprising: a light intensity detection unit that detects the intensity of the separated light on the polarization plane.
【請求項3】 ケース内に移動可能に収納された磁性流
体と、 前記磁性流体を挟んで配設され、前記磁性流体の移動可
能な方向に磁界勾配をつける磁石と、 光を入射するための光源と、 前記光源と前記磁性流体間に配設された第1偏光板と、 光強度を検出する検光子と、 前記磁性流体と前記検光子間に配設され、前記第1偏光
板の偏光面と略直交する偏光面の第2偏光板と、 前記検光子の出力から加速度を算出する加速度算出手段
とを備えることを特徴とする加速度センサ。
3. A magnetic fluid movably housed in a case, a magnet arranged to sandwich the magnetic fluid, and a magnetic field gradient in a movable direction of the magnetic fluid, and a magnet for injecting light. A light source, a first polarizing plate disposed between the light source and the magnetic fluid, an analyzer for detecting light intensity, and a polarization of the first polarizing plate disposed between the magnetic fluid and the analyzer. An acceleration sensor comprising: a second polarizing plate having a polarization plane that is substantially orthogonal to the plane; and an acceleration calculation unit that calculates acceleration from the output of the analyzer.
【請求項4】 前記加速度算出手段は、前記検光子によ
り検出された光強度と加速度との関係を記憶するテーブ
ルを含むことを特徴とする請求項3記載の加速度セン
サ。
4. The acceleration sensor according to claim 3, wherein the acceleration calculation means includes a table that stores the relationship between the light intensity detected by the analyzer and the acceleration.
JP23036992A 1992-08-28 1992-08-28 Acceleration sensor Expired - Fee Related JP3199859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23036992A JP3199859B2 (en) 1992-08-28 1992-08-28 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23036992A JP3199859B2 (en) 1992-08-28 1992-08-28 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH0674965A true JPH0674965A (en) 1994-03-18
JP3199859B2 JP3199859B2 (en) 2001-08-20

Family

ID=16906783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23036992A Expired - Fee Related JP3199859B2 (en) 1992-08-28 1992-08-28 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP3199859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110102320A (en) 2008-12-12 2011-09-16 교와 메덱스 가부시키가이샤 Feces sampling container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110102320A (en) 2008-12-12 2011-09-16 교와 메덱스 가부시키가이샤 Feces sampling container
US8562919B2 (en) 2008-12-12 2013-10-22 Kyowa Medex Co., Ltd. Feces sampling container

Also Published As

Publication number Publication date
JP3199859B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
CN111337019B (en) Quantum sensing device for combined navigation
US6407545B1 (en) Apparatus and method for measuring remanence curve of a magnetic material
Stewart et al. Use of magnetic forces to control distance in a surface force apparatus
JPH0674965A (en) Acceleration sensor
US3316768A (en) Magnetic angular velocity indicating system
CN207395750U (en) Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face
US7183765B2 (en) Micro-position sensor using faraday effect
JPH0718971Y2 (en) Magnetic circuit
JP3194838B2 (en) Magnetic field measuring method and magnetic field measuring device
JP2805881B2 (en) Vibration detector
JPH10325719A (en) Sensor for inclination and acceleration
JPS63163209A (en) Acceleration sensor
JP2770538B2 (en) Magnetic fluid magnetic sensor
JP2932079B2 (en) Geomagnetic sensor device
JPH0421050Y2 (en)
Hauser et al. Measurement of small distances between light spots by domain wall displacements
JPS6151245B2 (en)
Didosyan et al. Magneto-optical method for measuring mechanical quantities
JPH0432786A (en) Earth magnetism sensor
Acharya Dual Beam Detection Technique to Study Magneto-Optical Kerr Effect
JPH0612540Y2 (en) Sensor
Didosyan et al. Magnetooptical measurements of mechanical quantities
JP3203567B2 (en) Accelerometer
JPH03209172A (en) Acceleration detector
Oh Optical fiber Fabry-Perot interferometer-based sensor instrumentation system for low magnetic field measurement

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010514

LAPS Cancellation because of no payment of annual fees