JPH067488B2 - Gas diffusion electrode - Google Patents

Gas diffusion electrode

Info

Publication number
JPH067488B2
JPH067488B2 JP60294429A JP29442985A JPH067488B2 JP H067488 B2 JPH067488 B2 JP H067488B2 JP 60294429 A JP60294429 A JP 60294429A JP 29442985 A JP29442985 A JP 29442985A JP H067488 B2 JPH067488 B2 JP H067488B2
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
layer
current
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294429A
Other languages
Japanese (ja)
Other versions
JPS62154571A (en
Inventor
長一 古屋
哲 本尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP60294429A priority Critical patent/JPH067488B2/en
Publication of JPS62154571A publication Critical patent/JPS62154571A/en
Publication of JPH067488B2 publication Critical patent/JPH067488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電池、二次電池、電気化学的リアクター、
各種電解用陽極、めっき用陽極等に用いるガス拡散電極
の改良に関する。
The present invention relates to a fuel cell, a secondary battery, an electrochemical reactor,
The present invention relates to improvement of gas diffusion electrodes used for various electrolytic anodes, plating anodes, and the like.

(従来の技術とその問題点) 従来、ガス拡散層として、Pt、カーボンブラック、ポ
リ四弗化エチレンより成る微細な親水部と疎水部を有す
る反応層に、カーボンブラック、ポリ四弗化エチレンよ
り成る疎水性のガス拡散層を接合し、そのガス拡散層の
前記反応層とは反対側の表面に、Cu線材の網より成る
集電材を接合して成るものがある。
(Prior art and its problems) Conventionally, as a gas diffusion layer, a reaction layer having a fine hydrophilic portion and a hydrophobic portion made of Pt, carbon black, and polytetrafluoroethylene has been used. There is a method in which a hydrophobic gas diffusion layer is formed, and a current collector made of a net of Cu wire is joined to the surface of the gas diffusion layer opposite to the reaction layer.

このガス拡散電極は、燃料電池、二次電池、電気化学的
リアクター等に使用した場合、電解液は反応層を透過す
るが、ガス拡散層を透過せず、ガスのみガス拡散層を拡
散透過する。この場合、電解液からの分解ガスや供給ガ
スとしてのCl2やSO2ガスが水蒸気と共にガス拡散層
の集電材側に存在してHClやH2SO3が生成される
と、これらの酸によりCu線材の網より成る集電材がお
かされるので、経時的に集電電流が低下するものであ
る。
When this gas diffusion electrode is used in a fuel cell, a secondary battery, an electrochemical reactor, etc., the electrolyte permeates the reaction layer, but does not permeate the gas diffusion layer, only the gas diffuses and permeates the gas diffusion layer. . In this case, when decomposition gas from the electrolytic solution or Cl 2 or SO 2 gas as a supply gas is present together with water vapor on the current collector side of the gas diffusion layer to generate HCl or H 2 SO 3 , these acids generate Since the current collector made of a net of Cu wire is placed, the current collection current decreases with time.

この為、Cu線材に代えて酸におかされないTi、T
a、ステンレス鋼、カーボンクロスより成る集電材をガ
ス拡散層の表面に接合した。
Therefore, instead of Cu wire, Ti, T which is not exposed to acid
A current collector made of a, stainless steel, and carbon cloth was bonded to the surface of the gas diffusion layer.

然し乍ら、Ti、Ta、ステンレス鋼等の網とすると表
面に高抵抗の酸化被膜が生成するため集電電流が著しく
小さく、また酸化被膜のできないカーボンクロスより成
る集電材も抵抗が大きい為、Cu線材の網より成る電極
に比べ集電電流の低いものである。
However, when a net made of Ti, Ta, stainless steel, etc. is used, a high resistance oxide film is formed on the surface, so the current collecting current is extremely small, and the current collector made of carbon cloth, which cannot form an oxide film, also has a high resistance. The current collecting current is lower than that of the electrode composed of the net.

そこで本発明は、酸におかされず、集電する際の抵抗が
小さくて集電電流の高い集電材を備えたガス拡散電極を
提供しようとするものである。
Therefore, the present invention is intended to provide a gas diffusion electrode provided with a current collecting material which is not exposed to acid and has a low resistance when collecting current and a high current collecting current.

(問題点を解決するための手段) 上記問題点を解決するための本発明のガス拡散電極は、
白金族金属又はその酸化物若しくはそれら両方とカーボ
ンブラックとポリ四弗化エチレンより成る微細な親水部
と疎水部を有する反応層に、カーボンブラックとポリ四
弗化エチレンより成る疎水性のガス拡散層が接合され、
前記反応層とは反対側のガス拡散層の表面に、Ti又は
Ta若しくはTi又はTa被覆のCuより成る線材にて
編組した網又は多数の線若しくは多数の透孔を有する板
の少なくとも前記ガス拡散電極と接する部分に白金族金
属又はその酸化物若しくはそれら両方をコーティングし
た集電材が接合又は埋込まれて成るものである。
(Means for Solving Problems) The gas diffusion electrode of the present invention for solving the above problems is
Hydrophobic gas diffusion layer composed of carbon black and polytetrafluoroethylene on a reaction layer having a fine hydrophilic part and a hydrophobic part composed of platinum group metal or its oxide or both, carbon black and polytetrafluoroethylene Are joined,
At least the gas diffusion of a net braided with a wire made of Ti or Ta or Cu coated with Ti or Ta or Ta or a plate having a large number of wires or a large number of through holes on the surface of the gas diffusion layer opposite to the reaction layer. A current collector coated with a platinum group metal or an oxide thereof or both is bonded or embedded in a portion in contact with the electrode.

(作用) 上記の如く構成された本発明のガス拡散電極は、ガス拡
散層の表面に接合又は埋込まれた集電材が、Ti又はT
a若しくはTi又はTa被覆のCuより成る線材にて編
組した網、又は多数の線若しくは多数の透孔を有する板
の少なくとも前記拡散層に接する部分に例えばPt、P
uO2、IrO2、PdO、RuO2+IrO2、Pt+I
rO2のいずれかをコーティングしたものより成るの
で、燃料電池、二次電池、電気化学的リアクター等に使
用した場合、反応により生成したガスあるいは供給ガス
が水蒸気と共にガス拡散層の集電材側に存在し酸が生成
されても、集電材は耐酸性を有していて浸食されること
がなく、また電気抵抗が小さくて集電電流の高いもので
ある。
(Operation) In the gas diffusion electrode of the present invention configured as described above, the current collector joined or embedded in the surface of the gas diffusion layer is Ti or T.
a, a net braided with a wire made of Cu coated with Ti or Ta, or a plate having a large number of wires or a large number of through holes, for example Pt, P
uO 2 , IrO 2 , PdO, RuO 2 + IrO 2 , Pt + I
Since made than those coated with either and rO 2, the fuel cell, present in the secondary battery, when used in electrochemical reactors such as the current collector side of the gas diffusion layer the gas produced or supplied gas with water vapor by reaction Even if oxalic acid is generated, the current collector has acid resistance and is not corroded, and has low electric resistance and high current collection.

本発明のガス拡散電極の実施例を図面によって (実施例1) 説明する。An example of a gas diffusion electrode of the present invention will be described with reference to the drawings (Example 1).

第1図に示すガス拡散電極1は平均粒径250ÅのRuO2
+IrO2触媒と平均粒径450Åの疎水性カーボンブラッ
クと平均粒径0.3μのポリ四弗化エチレンとが3:3:
2の割合から成る厚さ0.1mm、幅120mm、長さ120mmの微
細な親水部と疎水部を有する反応層2に、平均粒径420
Åの疎水性カーボンブラックと平均粒径0.3μのポリ四
弗化エチレンとが7:3の割合から成る厚さ0.5mmのガ
ス拡散層3を接合し、前記反応層2とは反対側のガス拡
散層3の表面に、第2図に示す如く直径0.3mmのTi線
4にPt5を5μコーティングした線材6にて第1図に
示す如く目合0.5mmで編組した幅120mm、長さ120mmの鋼
の集電材7を接合して成るものである。
The gas diffusion electrode 1 shown in FIG. 1 is made of RuO 2 having an average particle size of 250 Å.
3: IrO 2 catalyst, hydrophobic carbon black having an average particle size of 450 Å, and polytetrafluoroethylene having an average particle size of 0.3 μ are 3: 3:
The average particle size is 420 in the reaction layer 2 having a fine hydrophilic portion and a hydrophobic portion having a thickness of 0.1 mm, a width of 120 mm, and a length of 120 mm and having a ratio of 2.
Å Hydrophobic carbon black and polytetrafluoroethylene having an average particle size of 0.3μ are joined together to form a gas diffusion layer 3 having a thickness of 0.5 mm and having a thickness of 0.5 mm. On the surface of the diffusion layer 3, as shown in FIG. 2, a Ti wire 4 having a diameter of 0.3 mm and 5 μm of Pt 5 coated with 5 μm were braided with a mesh of 0.5 mm as shown in FIG. 1 to have a width of 120 mm and a length of 120 mm. It is formed by joining steel current collectors 7.

(実施例2) 第3図に示すガス拡散電極8はガス拡散層3の厚さが0.
8mm以外前記と同一寸法、同一材質の反応層2とガス拡
散層3とを接合し、反応層2とは反対側のガス拡散層3
の表面に、第4図に示す如く直径0.3mmのCu線9に厚
さ0.1mmのTi10を被覆したクラッド線11にRuO212を
2μコーティングした線13が80本より成る集電材14を第
3図に示す如く幅方向に1.5mm間隔に埋込んで成るもの
である。
(Example 2) In the gas diffusion electrode 8 shown in FIG. 3, the gas diffusion layer 3 has a thickness of 0.
Other than 8 mm, the reaction layer 2 and the gas diffusion layer 3 having the same dimensions and the same material as those described above are joined, and the gas diffusion layer 3 on the side opposite to the reaction layer 2 is joined.
As shown in FIG. 4, a current collector 14 consisting of 80 wires 13 having a Cu wire 9 having a diameter of 0.3 mm and a Ti wire 10 having a thickness of 0.1 mm and a RuO 2 12 coating of 2 μ was formed on the surface of the first wire 14 as shown in FIG. As shown in FIG. 3, it is embedded at intervals of 1.5 mm in the width direction.

これらのガス拡散電極1、8と集電材が直径8μのカー
ボン繊維にて編組した幅120mm、長さ120mmのクロスであ
る第1図と同一寸法の従来のガス拡散電極とを夫々電解
液ZnCl2+KCl+NaClの二次電池に使用した
処、従来例のガス拡散電極のカーボンより成る集電材
は、充電時の反応により生成されたCl2ガスが水蒸気
と共にガス拡散層3を拡散透過してHClが生成されて
もそのHClに浸食されないが、電気抵抗が大きい為、
集電電流が50mA/cm2と低かったのに対し、実施例の
ガス拡散電極1、8の集電材7、14は共に充電時の反応
により生成されたCl2ガスが水蒸気と共にガス拡散層
3を拡散透過してHClが生成されてもそのHClに浸
食されず、しかも電気抵抗が小さい為、集電電流が500
mA/cm2と高く、時間経過後も殆ど大差がなく高いも
のであった。
These gas diffusion electrodes 1 and 8 and a conventional gas diffusion electrode having the same dimensions as in FIG. 1, which is a cloth having a width of 120 mm and a length of 120 mm, in which a current collector is braided with carbon fiber having a diameter of 8 μ, are used as electrolytes ZnCl 2 When used in a + KCl + NaCl secondary battery, the current collector made of carbon of the gas diffusion electrode of the conventional example, Cl 2 gas generated by the reaction during charging diffuses and permeates the gas diffusion layer 3 along with water vapor to generate HCl. Even if it is done, it is not eroded by the HCl, but due to its large electrical resistance,
The current collecting current was as low as 50 mA / cm 2 , whereas the current collecting materials 7 and 14 of the gas diffusion electrodes 1 and 8 of the examples were both the Cl 2 gas generated by the reaction during charging and the gas diffusion layer 3 together with water vapor. Even if HCl is generated by diffusion and permeation through, it is not eroded by HCl and its electrical resistance is small.
It was as high as mA / cm 2 , which was high with almost no difference even after the passage of time.

また反応層にRuO2を担持した以外は実施例1及び従
来例と夫々同一寸法、同一材質のガス拡散電極を食塩電
解の塩素発生極に用いて、25%NaClを90℃で電解し
たところ、本発明の電極では2A/cm2の電流密度で35
mVという低過電圧で電解が可能であり、経時変化もな
く安定していたのに対し、従来例のガス拡散電極は経時
変化はなく安定であったが、0.5A/cm2の電極密度にお
いて200mVと過電圧が高かった。
When 25% NaCl was electrolyzed at 90 ° C. using a gas diffusion electrode having the same dimensions and the same material as in Example 1 and the conventional example, except for supporting RuO 2 in the reaction layer, for the chlorine generation electrode of salt electrolysis. With the electrode of the present invention, a current density of 2 A / cm 2
Electrolysis was possible at a low overvoltage of mV and was stable without change over time, whereas the conventional gas diffusion electrode was stable without change over time, but was 200 mV at an electrode density of 0.5 A / cm 2. And the overvoltage was high.

尚、上記実施例1では集電材として網を1枚使用した例
について述べたが、これに限るものではなく、例えば網
を複数枚重ねて用いたり、板状のものを用いて電極自体
を補強するようにしてもよいものである。
In addition, although the example in which one net is used as the current collector has been described in the first embodiment, the present invention is not limited to this. For example, a plurality of nets may be stacked or a plate-like member may be used to reinforce the electrode itself. You may choose to do this.

(発明の効果) 以上の説明で判るように本発明のガス拡散電極は、その
ガス拡散層の表面に接合又は埋込んだ集電材は耐酸性を
有するので、燃料電池、二次電池、電気化学的リアクタ
ー、各種電解用陽極、めっき用陽極等に使用した際、生
成された酸に浸食されることがないので経時的に集電電
流が低下するようなことはなく、また集電材の電気抵抗
が小さいので、大きな電流を集電することができ、その
実用上の効果極めて大なるものがある。
(Effects of the Invention) As can be seen from the above description, in the gas diffusion electrode of the present invention, the current collector that is bonded or embedded in the surface of the gas diffusion layer has acid resistance, so that the fuel cell, the secondary battery, the electrochemical When used as a catalytic reactor, various electrolysis anodes, plating anodes, etc., it does not corrode with the generated acid, so the current collection current does not decrease over time, and the electrical resistance of the current collector Since it is small, a large amount of current can be collected, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるガス拡散電極の一実施例を示す一
部破断斜視図、第2図はそのガス拡散電極に於ける集電
材を作る線材の拡大断面図、第3図は本発明によるガス
拡散電極の他の実施例を示す一部破断斜視図、第4図は
そのガス拡散電極に於ける集電材を作る線材の拡大断面
図である。
FIG. 1 is a partially cutaway perspective view showing an embodiment of a gas diffusion electrode according to the present invention, FIG. 2 is an enlarged sectional view of a wire for forming a current collector in the gas diffusion electrode, and FIG. 3 is according to the present invention. FIG. 4 is a partially cutaway perspective view showing another embodiment of the gas diffusion electrode, and FIG. 4 is an enlarged cross-sectional view of a wire rod that forms a current collector in the gas diffusion electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】白金族金属又はその酸化物若しくはそれら
両方、カーボンブラック、ポリ四弗化エチレンより成る
微細な親水部と疎水部を有する反応層に、カーボンブラ
ック、ポリ四弗化エチレンより成る疎水性のガス拡散層
が接合され、前記反応層とは反対側のガス拡散層の表面
に、Ti又はTa若しくはTi又はTa被覆のCuより
成る線材にて編組した網又は多数の線若しくは多数透孔
を有する板の少なくとも前記ガス拡散層と接する部分に
白金族金属又はその酸化物若しくはそれら両方をコーテ
ィングした集電材が接合又は埋込まれて成るガス拡散電
極。
1. A reaction layer having a fine hydrophilic portion and a hydrophobic portion made of a platinum group metal or an oxide thereof or both thereof, carbon black and polytetrafluoroethylene, and a hydrophobic layer made of carbon black and polytetrafluoroethylene. Gas diffusion layer is joined, and the surface of the gas diffusion layer opposite to the reaction layer is braided with a wire made of Ti or Ta or Cu coated with Ti or Ta or a net or a large number of wires or a large number of through holes. A gas diffusion electrode formed by joining or embedding a current collector coated with a platinum group metal or an oxide thereof or both of them at least in a portion in contact with the gas diffusion layer.
JP60294429A 1985-12-27 1985-12-27 Gas diffusion electrode Expired - Lifetime JPH067488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294429A JPH067488B2 (en) 1985-12-27 1985-12-27 Gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294429A JPH067488B2 (en) 1985-12-27 1985-12-27 Gas diffusion electrode

Publications (2)

Publication Number Publication Date
JPS62154571A JPS62154571A (en) 1987-07-09
JPH067488B2 true JPH067488B2 (en) 1994-01-26

Family

ID=17807647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294429A Expired - Lifetime JPH067488B2 (en) 1985-12-27 1985-12-27 Gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH067488B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753208A1 (en) * 1994-03-31 1997-01-15 Motorola Energy Systems Inc. Improved metal hydride hydrogen storage electrodes
AUPN876896A0 (en) * 1996-03-18 1996-04-18 Ceramic Fuel Cells Limited An electrical interconnect for a planar fuel cell
US6838205B2 (en) 2001-10-10 2005-01-04 Lynntech, Inc. Bifunctional catalytic electrode
JP3747888B2 (en) * 2002-06-24 2006-02-22 日本電気株式会社 FUEL CELL, FUEL CELL ELECTRODE AND METHOD FOR PRODUCING THE SAME
FR2857162B1 (en) * 2003-07-01 2014-04-11 Commissariat Energie Atomique FUEL CELL COMPRISING INTEGRATED CURRENT COLLECTORS IN THE ELECTRODE-MEMBRANE-ELECTRODE STACK.
US7608358B2 (en) 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance

Also Published As

Publication number Publication date
JPS62154571A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
Watanabe et al. Electrocatalysis by ad-atoms: Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells
EP0026994B1 (en) Carbon-cloth-based electrocatalytic gas diffusion electrodes, assembly and electrochemical cells comprising the same
EP0026995B1 (en) Thin carbon-cloth-based electrocatalytic gas diffusion electrodes, processes, and electrochemical cells comprising the same
RU2237317C2 (en) Bipolar plate for fuel elements
US20100252422A1 (en) Carbon fiber-electrocatalysts for the oxidation of ammonia and ethanol in alkaline media and their application to hydrogen production, fuel cells, and purification processes
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
GB2085031A (en) Modified lead electrode for electrowinning metals
US4167607A (en) Halogen electrodes and storage batteries
EP3587622B1 (en) Positive electrode, positive electrode for water electrolysis, electrolysis cell, and method for producing hydrogen
Savinell et al. Discharge Characteristics of a Soluble Iron‐Titanium Battery System
Kessler et al. A catalytic platinum–ruthenium–polyaniline electrode for methanol oxidation
Cornell et al. The effect of addition of chromate on the hydrogen evolution reaction and on iron oxidation in hydroxide and chlorate solutions
JPH067488B2 (en) Gas diffusion electrode
US4748091A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
US4470894A (en) Nickel electrodes for water electrolyzers
JPH05106075A (en) Insoluble anode for electrolysis in aqueous solution
Pavlović et al. On the use of platinized and activated titanium anodes in some electrodeposition processes
EP0029279A1 (en) Material for electrodes and electrolytic cells with anodes consisting of this material
US20090145781A1 (en) Method of treating nanoparticles using a proton exchange membrane and liquid electrolyte cell
JPH045493B2 (en)
JP2520266B2 (en) Oxygen electrode Reaction electrode
US4092461A (en) Electrochemical generators with a sedimentation bed
JPH02250994A (en) Gas diffusion electrode
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure
JPH1021934A (en) Electrode for fuel cell