JPH0674887A - Process viscosity measuring device - Google Patents

Process viscosity measuring device

Info

Publication number
JPH0674887A
JPH0674887A JP22708892A JP22708892A JPH0674887A JP H0674887 A JPH0674887 A JP H0674887A JP 22708892 A JP22708892 A JP 22708892A JP 22708892 A JP22708892 A JP 22708892A JP H0674887 A JPH0674887 A JP H0674887A
Authority
JP
Japan
Prior art keywords
differential pressure
black liquor
pipe
measured
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22708892A
Other languages
Japanese (ja)
Inventor
Kikuo Tokunaga
喜久男 徳永
Masakazu Tateishi
正和 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22708892A priority Critical patent/JPH0674887A/en
Publication of JPH0674887A publication Critical patent/JPH0674887A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To obtain the device capable of measuring the process viscosities of a non-Newtonian fluid at different shear retes and capable of always controlling the fuel state in a furnace to the optimum state. CONSTITUTION:Three kinds of differential pressure measuring pipings 13a, 13b, 13c mutually different in diameter are provided in series and the differential pressures of a black liquor generated in those pipings are measured by differential pressure gauges 14a, 14b, 14c and the flow rate of the black liquor at this time is measured by a black liquor flowmeter 16. From these measured values, process viscosities at shear rates different at every differential pressure measuring pipings are calculated on-line and a combustion control signal is formed on the basis of the calculation result to be fed back to a fuel control system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回収ボイラ等において
燃焼に用いられる燃料の粘度物性を測定するためのプロ
セス粘度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process viscosity measuring device for measuring the viscosity physical properties of fuel used for combustion in a recovery boiler or the like.

【0002】[0002]

【従来の技術】従来、回収ボイラ等において燃料の粘度
を測定するためのプロセス粘度計としては、例えば細管
式粘度計や回転式粘度計が使用されている。このうち細
管式粘度計は、細管内に被測定燃料を一定流量で流して
流量および圧力差を測定し、これらの測定値からハーゲ
ンポアズイユの法則に基づいてプロセス粘度を計算によ
り求めるものである。このようなプロセス粘度計によっ
て求められたプロセス粘度値は、例えば電気信号として
所定の信号処理が施された後、燃焼制御系にフィードバ
ックされて燃焼制御に供される。
2. Description of the Related Art Conventionally, for example, a capillary viscometer or a rotary viscometer has been used as a process viscometer for measuring the viscosity of fuel in a recovery boiler or the like. Among them, the capillary viscometer is one in which the fuel to be measured is flown at a constant flow rate in the capillary to measure the flow rate and the pressure difference, and the process viscosity is calculated from these measured values based on Hagen-Poiseuille's law. The process viscosity value obtained by such a process viscometer is subjected to predetermined signal processing as, for example, an electric signal, and then fed back to the combustion control system for combustion control.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述したプ
ロセス粘度計においては、一般に被測定流体における特
定のずり速度でのプロセス粘度しか測定することができ
ない。このため、例えばCOM(Cool Oil Mixture)や
CWM(Cool Water Mixture)のようなスラリ燃料、ま
たパルプ蒸解廃液(一般に黒液と呼ばれる)等のように
燃料中に固体粒子を含む非ニュートン流体の粘度測定を
行なう場合には、当該非ニュートン流体のずり速度の変
化に対する粘度測定は行なえず、この結果炉内の燃焼状
態を最適な状態に制御することができないという問題が
あった。
By the way, the above-mentioned process viscometer can generally measure only the process viscosity at a specific shear rate in the fluid to be measured. Therefore, for example, the viscosity of non-Newtonian fluids containing solid particles in the fuel such as slurry fuels such as COM (Cool Oil Mixture) and CWM (Cool Water Mixture), and pulp cooking waste liquid (generally called black liquor). When performing the measurement, there is a problem that the viscosity cannot be measured with respect to the change in the shear rate of the non-Newtonian fluid, and as a result, the combustion state in the furnace cannot be controlled to the optimum state.

【0004】本発明は上記事情を考慮してなされたもの
であり、その目的とするところは、非ニュートン流体の
異なるずり速度でのプロセス粘度の測定を可能とし、こ
れにより炉内の燃料状態を常に最適な状態に制御するこ
とができるプロセス粘度測定装置を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and an object thereof is to make it possible to measure a process viscosity of a non-Newtonian fluid at different shear rates, thereby making it possible to measure a fuel state in a furnace. An object of the present invention is to provide a process viscosity measuring device that can always control the optimum state.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、管径が異なると共に、管径の大きい順に直列
に接続される複数の差圧測定用配管と、この差圧測定用
配管のうち管径の大きい側が上流となるように当該差圧
測定用配管内に被測定流体を流動させるための手段と、
この手段により流動される上記被測定流体の流量を測定
する流量計と、上記差圧測定用配管内で生じる圧力損失
を各差圧測定用配管ごとに測定する差圧計と、上記被測
定流体の温度を一定とするための流体温度調整器とを備
えるようにしたものである。
In order to achieve the above object, the present invention provides a plurality of differential pressure measuring pipes which are different in pipe diameter and are connected in series in descending order of pipe diameter, and the differential pressure measuring pipes. A means for causing the fluid to be measured to flow in the differential pressure measurement pipe so that the side with the larger pipe diameter is upstream,
A flow meter that measures the flow rate of the fluid to be measured flowed by this means, a differential pressure gauge that measures the pressure loss that occurs in the differential pressure measurement piping for each differential pressure measurement piping, and the fluid to be measured. And a fluid temperature controller for keeping the temperature constant.

【0006】[0006]

【作用】上記手段を講じた結果、次のような作用が生じ
る。すなわち、管径が異なる複数の差圧測定用配管が直
列に設けられ、これらの差圧測定用配管内で生じる被測
定流体の圧力損失を各差圧測定用配管ごとに測定すると
ともに、この時の流体流量を流量計で測定するようにし
たことにより、被ニュートン流体のずり速度を変化させ
た場合のプロセス粘度を求めることができる。そして、
この求めたずり速度とプロセス粘度との関係から任意の
ずり速度での粘度推定が可能となり、これにより炉内の
燃料状態を常に最適な状態に制御することができる。
As a result of taking the above-mentioned means, the following effects occur. That is, a plurality of differential pressure measurement pipes having different pipe diameters are provided in series, and the pressure loss of the fluid to be measured generated in these differential pressure measurement pipes is measured for each differential pressure measurement pipe, and at this time, Since the flow rate of the fluid is measured by the flow meter, the process viscosity when the shear rate of the Newtonian fluid is changed can be obtained. And
From the relationship between the calculated shear rate and the process viscosity, it is possible to estimate the viscosity at an arbitrary shear rate, which allows the fuel state in the furnace to be always controlled to the optimum state.

【0007】また、複数の差圧測定用配管をその管径の
大きい順に直列に接続すると共に、管径の大きい側を流
体の上流に配置したことにより、粘度測定に際してはず
り速度の低いものから順にプロセス粘度の測定が行なわ
れることになる。一般に、高いずり速度を受けた流体が
これより低いずり速度に移行した場合には、低いずり速
度での流体粘度はこれを精度良く測定することができな
い。したがって、差圧測定用配管を上述のように配する
ことにより各差圧測定用配管でのプロセス粘度をそれぞ
れ精度よく測定することが可能となる。
Further, since a plurality of differential pressure measuring pipes are connected in series in the order of large pipe diameter and the large pipe diameter side is arranged upstream of the fluid, it is possible to reduce the shear rate at the time of viscosity measurement. The process viscosity is sequentially measured. Generally, when a fluid subjected to a high shear rate shifts to a lower shear rate, the fluid viscosity at a lower shear rate cannot accurately measure this. Therefore, by arranging the differential pressure measuring pipes as described above, it becomes possible to accurately measure the process viscosity in each differential pressure measuring pipe.

【0008】さらに、粘度測定時の流体の温度を一定と
するための流体温度調整器を備えたことにより、流体の
温度変化による粘度変化を効果的に抑制できる。これに
より、各差圧測定用配管でのプロセス粘度を精度よく測
定することができる。
Further, since the fluid temperature controller for keeping the temperature of the fluid at the time of viscosity measurement constant is provided, the viscosity change due to the temperature change of the fluid can be effectively suppressed. Thereby, the process viscosity in each differential pressure measuring pipe can be accurately measured.

【0009】[0009]

【実施例】図1は、本発明の一実施例に係わるプロセス
粘度計をその周辺装置とともに示す概略構成図である。
なお本実施例では、製紙工場のソーダ回収ボイラにおい
て黒液の粘度測定を行なう装置について説明する。
FIG. 1 is a schematic configuration diagram showing a process viscometer according to an embodiment of the present invention together with its peripheral devices.
In this example, an apparatus for measuring the viscosity of black liquor in a soda recovery boiler of a paper manufacturing factory will be described.

【0010】同図において、1は黒液タンク、2は黒液
噴射ポンプ、3は黒液ヒータ、4は黒液メイン配管、5
は回収ボイラである。また10はプロセス粘度計であ
り、このプロセス粘度計10は黒液温度調節器12と、
管径がそれぞれ異なる複数の差圧測定用配管13a,1
3b,13cと、これらの差圧測定用配管13a〜13
cの各差圧を測定するための差圧計14a,14b,1
4cと、定量ポンプ15と、黒液流量計16とを備えて
いる。
In the figure, 1 is a black liquor tank, 2 is a black liquor injection pump, 3 is a black liquor heater, 4 is black liquor main piping, 5
Is a recovery boiler. Further, 10 is a process viscometer, and the process viscometer 10 includes a black liquor temperature controller 12,
Plural differential pressure measuring pipes 13a, 1 having different pipe diameters
3b and 13c, and these differential pressure measuring pipes 13a to 13
differential pressure gauges 14a, 14b, 1 for measuring each differential pressure of c
4c, a metering pump 15, and a black liquor flow meter 16 are provided.

【0011】燃焼過程において、黒液は黒液タンク1か
ら黒液噴射ポンプ2を通って黒液ヒータ3へ送られ、こ
こで所定温度に加熱されたのち黒液メイン配管4を通っ
て回収ボイラ5の炉内に噴射されて燃焼される。一方、
プロセス粘度測定過程では、黒液タンク1と黒液噴射ポ
ンプ2との間に設けられた測定用配管11から黒液を分
岐し、この測定用配管11を通じてプロセス粘度計10
に黒液を送っている。プロセス粘度計10では、送られ
た黒液が先ず黒液温度調節器12で一定温度に調整され
た後、差圧測定用配管13a,13bおよび13cを順
に通過して定量ポンプ15に送られる。この定量ポンプ
15は、配管内の黒液を一定流量で循環させるためのも
ので、図示のごとく差圧測定用配管13a〜13cの下
流側に設けられている。定量ポンプ15を通過した黒液
は、例えば電磁流量計からなる黒液流量計16を経て黒
液タンク1に戻される。
In the combustion process, the black liquor is sent from the black liquor tank 1 through the black liquor injection pump 2 to the black liquor heater 3, where it is heated to a predetermined temperature and then through the black liquor main pipe 4 to recover the recovery boiler. 5 is injected into the furnace and burned. on the other hand,
In the process viscosity measuring process, the black liquor is branched from the measuring pipe 11 provided between the black liquor tank 1 and the black liquor injection pump 2, and the process viscometer 10 is branched through this measuring pipe 11.
Sending black liquor to. In the process viscometer 10, the sent black liquor is first adjusted to a constant temperature by the black liquor temperature controller 12 and then sent to the metering pump 15 through the differential pressure measuring pipes 13a, 13b and 13c in order. The metering pump 15 is for circulating the black liquor in the pipe at a constant flow rate, and is provided on the downstream side of the differential pressure measuring pipes 13a to 13c as illustrated. The black liquor that has passed through the metering pump 15 is returned to the black liquor tank 1 through the black liquor flow meter 16 which is, for example, an electromagnetic flow meter.

【0012】上記差圧測定用配管13a,13bおよび
13cにおける各差圧ΔP1 〜ΔP3 [Pa]は、各々
に設けられた差圧計14a,14bおよび14cで測定
される。また上記黒液流量計16では黒液の流量V[m
3 /s]が測定され、これらの差圧ΔP1 〜ΔP3 およ
び流量Vから差圧測定用配管毎に異なるずり速度D1
3 における粘度η1 〜η3 [Pa・s]を求めること
ができる。すなわち、一般に直径d0 [m]、長さl0
[m]の配管内を粘度η[Pa・s]の流体が平均流速
u′[m/s]の層流状態で流れる場合の摩擦による圧
力損失ΔP[Pa]は、 ΔP=32η・l0 ・u′/d0 2 …(1) で表される。一方、流体が管内を層流で流れている時の
管中心からの距離r[m]の位置での流体流速uとの関
係は、 u=umax (1−r2 /r0 2 ) …(2) となる。なおr0 は管の半径、umax は最高流速であ
る。ここで、管内壁から流体までの距離をyとすると、 r=r0 −y …(3) であり、これを(2)式に代入すると、 u=umax (2y/r0 −y2 /r0 2 ) …(4) となる。ずり速度Dはdu/dyだから、 D=du/dy=2umax (1/r0 −y/r0 2 ) …(5) また、最高流速umax と平均流速u′との間には、 umax =2u′ …(6) の関係があり、これを(5)式に代入すると、 D=du/dy=4u(1/r0 −y/r0 2 ) …(7) が得られる。ここで、ずり速度をy=r0 /2の位置で
のずり速度とすると、上記(7)式から、 D=du/dy=2u′/r0 …(8) が求まる。また、管の直径d0 =2r0 なので、(8)
式は次のようになる。 D=du/dy=4u′/d0 …(9)
The differential pressures ΔP 1 to ΔP 3 [Pa] in the differential pressure measuring pipes 13a, 13b and 13c are measured by the differential pressure gauges 14a, 14b and 14c provided respectively. In the black liquor flow meter 16, the black liquor flow rate V [m
3 / S] is measured, and the shear rates D 1 to D that are different for each differential pressure measurement pipe from the differential pressures ΔP 1 to ΔP 3 and the flow rate V are measured.
The viscosities η 1 to η 3 [Pa · s] at D 3 can be obtained. That is, generally, the diameter d 0 [m] and the length l 0
The pressure loss ΔP [Pa] due to friction when a fluid having a viscosity η [Pa · s] flows in a laminar flow state with an average flow velocity u ′ [m / s] in a pipe [m] is ΔP = 32η · l 0・ U '/ d 0 2 ... (1) On the other hand, when the fluid is laminarly flowing in the pipe, the relationship with the fluid flow velocity u at the position of the distance r [m] from the pipe center is u = u max (1-r 2 / R 0 2 )… (2) Note that r 0 is the radius of the tube and u max is the maximum flow velocity. Here, if the distance from the inner wall of the pipe to the fluid is y, then r = r 0 −y (3), and by substituting this into equation (2), u = u max (2y / r 0 −y 2 / R 0 2 )… (4) Since the shear rate D is du / dy, D = du / dy = 2u max (1 / r 0 −y / r 0 2 ) (5) Further, between the maximum flow velocity u max and the average flow velocity u ', there is a relation of u max = 2u' ... (6). Substituting this into the equation (5), D = du / dy = 4u (1 / r 0 −y / r 0 2 ) (7) is obtained. Here, when the shear rate and shear rate at the position of y = r 0/2, from equation (7), D = du / dy = 2u '/ r 0 ... (8) is obtained. Also, since the diameter d 0 = 2r 0 of the pipe, (8)
The formula looks like this: D = du / dy = 4u ′ / d 0 (9)

【0013】黒液の流量V[m3 /s]が測定により求
まれば、各差圧測定用配管13a〜13cでの平均流速
1 ′〜u3 ′[m/s]が得られる。一方、前述のご
とく差圧計14a,14bおよび14cでは差圧測定用
配管毎の差圧ΔP1 〜ΔP3[Pa]が測定されてお
り、差圧測定用配管13a,13b,13cの長さをそ
れぞれl1 ,l2 ,l3 [m]、またこれらの各管径を
それぞれd1 ,d2 ,d3 とすると、(1)式および
(9)式により差圧測定用配管毎のずり速度D1 〜D3
における粘度η1 〜η3 [Pa・s]を求めることがで
きる。
Flow rate of black liquor V [m 3 / S] is obtained by measurement, the average flow velocities u 1 ′ to u 3 ′ [m / s] in the differential pressure measuring pipes 13 a to 13 c can be obtained. On the other hand, as described above, the differential pressure gauges 14a, 14b, and 14c measure the differential pressures ΔP 1 to ΔP 3 [Pa] for each differential pressure measurement pipe, and the lengths of the differential pressure measurement pipes 13a, 13b, and 13c are measured. L 1 each , L 2 , L 3 [M], and each of these pipe diameters is d 1 , d 2 , D 3 , the shear rates D 1 to D 3 for each differential pressure measurement pipe are calculated by the equations (1) and (9).
The viscosity η 1 to η 3 [Pa · s] can be obtained.

【0014】図2の(a)は、上述した手順により求め
たずり速度Dおよび粘度ηの測定結果を示す図であり、
同図には別途サンプリングした黒液を回転式(ハーケ)
粘度計により測定した場合の各ずり速度での粘度測定値
も示した。また、図2の(b)3には上記測定結果をグ
ラフで表した。この結果、本実施例による測定値は手分
析値と比較して±5%程度の誤差であり、オンライン粘
度測定装置として十分に満足のいく精度のものである。
FIG. 2A is a diagram showing the measurement results of the shear rate D and the viscosity η obtained by the above-mentioned procedure,
In the figure, separately sampled black liquor is rotated (Haake)
Also shown are the viscosity measurements at each shear rate as measured by a viscometer. In addition, the above measurement result is shown in a graph in FIG. As a result, the measured value according to this example has an error of about ± 5% as compared with the manual analysis value, and the accuracy is sufficiently satisfactory as an online viscosity measuring device.

【0015】なお、本実施例におけるプロセス粘度測定
は以下に示す条件で行なった。ここで、測定に用いる差
圧測定用配管の数やそれらの管径、および各配管の長さ
は、被測定流体の粘度特性や含有される固体粒子径にも
よるが、一般に管径の種類は3つ以上で、それらの管径
はそれぞれ10mm以上、また管径の異なる全ての配管
を足した長さは0.3m以上であることが望ましい。各
配管の管径を10mm以上としたのは、黒液中の固体粒
子による閉塞の恐れを防止するためである。また、粘度
測定時の被測定流体の温度は一定に保持することが望ま
しく、測定前に温度調節器12で調節後は保温等を強化
し、できる限り被測定流体の温度変化を抑制することが
必要である。 2)黒液流量;0.70[m3 /Hr] 3)黒液温度;120℃ 4)差圧測定時の流速とずり速度 流速u′[m/sec ] ずり速度D[1/S] 配管13a 0.194 21.8 配管13b 0.325 47.1 配管13c 0.531 98.3 5)差圧ΔP[kg/m2 ] 配管13a 869 配管13b 1065 配管13c 1320
The process viscosity in this example was measured under the following conditions. Here, the number of differential pressure measurement pipes used for measurement and their pipe diameters, and the length of each pipe depend on the viscosity characteristics of the fluid to be measured and the solid particle size contained, but generally the type of pipe diameter It is desirable that the number is three or more, the diameter of each of which is 10 mm or more, and the total length of all pipes having different diameters is 0.3 m or more. The pipe diameter of each pipe is set to 10 mm or more in order to prevent the possibility of blockage due to solid particles in the black liquor. In addition, it is desirable to keep the temperature of the fluid to be measured at the time of viscosity measurement constant, and after the temperature is adjusted by the temperature controller 12 before the measurement, the temperature retention of the fluid to be measured is strengthened to suppress the temperature change of the fluid to be measured as much as possible. is necessary. 2) Black liquor flow rate: 0.70 [m 3 / Hr] 3) Black liquor temperature; 120 ° C 4) Flow velocity and shear velocity during differential pressure measurement Flow velocity u '[m / sec] Shear velocity D [1 / S] Pipe 13a 0.194 21.8 Pipe 13b 0. 325 47.1 Piping 13c 0.531 98.3 5) Differential pressure ΔP [kg / m 2 ] Pipe 13a 869 Pipe 13b 1065 Pipe 13c 1320

【0016】図3は、粘度計算に係わる基本的な計算制
御系ブロックダイヤグラムを示す図である。図中、二重
枠は入力データを示し、またCM1〜CM3およびCM
Rは計算制御系を示す。CM1は、既知データである配
管の半径r0 と、測定により得た流体流量Vとが入力さ
れた場合に平均流速u′を計算して出力する。また、こ
の平均流速u′をCM2に入力すれば、ずり速度Dが算
出される。一方、配管の半径r0 とその長さl0 ,およ
び平均流速u′と測定により求めた差圧ΔPとをCM3
に入力すれば、粘度ηが算出される。そして、上記ずり
速度Dおよび粘度ηはCMRに入力されて記録されると
ともに、電気信号として所定の信号処理が施されたの
ち、図示しない燃焼制御系に送信されて燃焼制御に供さ
れる。このように、粘度ηおよびずり速度Dの算出と記
録は上記計算制御系によって直ちにオンラインで計算さ
れ、この計算結果に基づいて所要の燃焼制御信号を得
る。そして、この燃焼制御信号を上記燃焼制御系に帰還
供給することによって、例えば噴射バルブからの噴霧状
態を燃焼に最適なように制御している。
FIG. 3 is a diagram showing a basic calculation control system block diagram relating to viscosity calculation. In the figure, double boxes indicate input data, and CM1 to CM3 and CM
R indicates a calculation control system. The CM 1 calculates and outputs the average flow velocity u ′ when the radius r 0 of the pipe, which is known data, and the fluid flow rate V obtained by the measurement are input. Further, if this average flow velocity u'is input to CM2, the shear velocity D is calculated. On the other hand, the radius r 0 of the pipe, its length l 0 , and the average flow velocity u ′ and the differential pressure ΔP obtained by measurement are CM3.
If input to, the viscosity η is calculated. The shear rate D and the viscosity η are input to the CMR and recorded, and after being subjected to predetermined signal processing as electric signals, they are transmitted to a combustion control system (not shown) for combustion control. Thus, the calculation and recording of the viscosity η and the shear rate D are immediately calculated online by the calculation control system, and the required combustion control signal is obtained based on the calculation result. Then, by feeding back this combustion control signal to the combustion control system, for example, the spray state from the injection valve is controlled to be optimal for combustion.

【0017】このように本実施例であれば、管径が互い
に異なる3種類の差圧測定用配管13a,13b,13
cを直列に設け、これらの配管内で生じる黒液の差圧を
各々の差圧計14a,14b,14cで測定するととも
に、この時の流体流量を黒液流量計16で測定するよう
にしているので、各配管ごとに異なるずり速度でのプロ
セス粘度を求めることができる。そして、この求めたず
り速度とプロセス粘度との関係を用いて、非ニュートン
流体である黒液の任意のずり速度での粘度推定が可能と
なり、これにより回収ボイラにおける炉内の燃料状態を
常に最適な状態に制御することができる。
As described above, in this embodiment, three types of differential pressure measuring pipes 13a, 13b, 13 having different pipe diameters are used.
c is provided in series, and the differential pressure of the black liquor generated in these pipes is measured by each of the differential pressure gauges 14a, 14b, 14c, and the fluid flow rate at this time is measured by the black liquor flow meter 16. Therefore, the process viscosity at a different shear rate can be obtained for each pipe. Then, using the relationship between the calculated shear rate and process viscosity, it is possible to estimate the viscosity of black liquor, which is a non-Newtonian fluid, at any shear rate. It can be controlled in various states.

【0018】また、各差圧測定用配管13a〜13cを
その管径の大きい順に直列に接続するとともに、管径が
最も大きい配管13aを流体の上流側に配置するように
したので、ずり速度の低いものから順に粘度測定が実行
されることになり、これにより各差圧測定用配管13a
〜13cにおけるプロセス粘度をそれぞれ精度よく測定
することが可能となる。
Further, since the respective differential pressure measuring pipes 13a to 13c are connected in series in the order of the largest pipe diameter and the pipe 13a having the largest pipe diameter is arranged on the upstream side of the fluid, the shear rate Viscosity measurement will be executed in order from the lowest one, whereby each differential pressure measuring pipe 13a is measured.
It is possible to accurately measure the process viscosities in each of 13c.

【0019】さらに、被測定流体である黒液を流動させ
るための黒液噴射ポンプ2を差圧測定用配管13a〜1
3cの下流側に設けたことにより、この黒液噴射ポンプ
2を黒液が通過する際に生じるポンプ内での高いずり速
度の影響は回避される。また粘度測定時の黒液の温度を
一定とするための黒液温度調整器12を備えたことによ
り、黒液の温度変化による粘度変化を効果的に抑制でき
る。以上により、各差圧測定用配管13a〜13cにお
けるプロセス粘度を精度よく測定することが可能とな
る。
Further, the black liquor injection pump 2 for flowing the black liquor, which is the fluid to be measured, is provided with the differential pressure measuring pipes 13a-1.
By being provided on the downstream side of 3c, the influence of a high shear rate in the black liquor injection pump 2 that occurs when the black liquor passes through the pump is avoided. Further, by providing the black liquor temperature controller 12 for keeping the temperature of the black liquor at the time of viscosity measurement constant, it is possible to effectively suppress the viscosity change due to the temperature change of the black liquor. As described above, the process viscosity in each of the differential pressure measuring pipes 13a to 13c can be accurately measured.

【0020】なお本発明は上記実施例に限定されるもの
ではない。例えば上記実施例では、測定に用いる差圧測
定用配管の数やそれらの管径、および各配管の長さを前
述した諸条件の下で行なったが、これを被測定流体の粘
度特性や含有される固体粒子径などに応じて任意に変更
して実施してもよい。その他、本発明の要旨を逸脱しな
い範囲で種々変形して実施可能である。
The present invention is not limited to the above embodiment. For example, in the above examples, the number of differential pressure measuring pipes used for measurement and their pipe diameters, and the length of each pipe were performed under the above-mentioned conditions. It may be carried out by arbitrarily changing it according to the solid particle diameter and the like. In addition, various modifications can be made without departing from the scope of the present invention.

【0021】[0021]

【発明の効果】以上詳述したように本発明によれば、管
径が互いに異なる複数の差圧測定用配管を直列に設け、
且つこれらの差圧測定用配管内で生じる被測定流体の圧
力損失を各差圧測定用配管ごとに測定するとともに、こ
の時の流体流量を流量計で測定するようにしたので、非
ニュートン流体の異なるずり速度でのプロセス粘度の測
定が可能となり、これにより炉内の燃料状態を常に最適
な状態に制御することができるプロセス粘度測定装置を
提供できる。
As described in detail above, according to the present invention, a plurality of differential pressure measuring pipes having different pipe diameters are provided in series,
And the pressure loss of the fluid to be measured that occurs in these differential pressure measurement pipes is measured for each differential pressure measurement pipe, and the fluid flow rate at this time is measured with a flow meter. It is possible to measure the process viscosity at different shear rates, and thus it is possible to provide a process viscosity measuring device that can always control the fuel state in the furnace to an optimum state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わるプロセス粘度計をそ
の周辺装置とともに示す概略構成図。
FIG. 1 is a schematic configuration diagram showing a process viscometer according to an embodiment of the present invention together with peripheral devices thereof.

【図2】図1に示した装置および回転式(ハーケ)粘度
計により求めたずり速度と粘度との関係を示す図。
FIG. 2 is a diagram showing a relationship between shear rate and viscosity obtained by the apparatus shown in FIG. 1 and a rotary (Haake) viscometer.

【図3】粘度計算に係わる計算制御系ブロックダイヤグ
ラムを示す図。
FIG. 3 is a diagram showing a block diagram of a calculation control system related to viscosity calculation.

【符号の説明】[Explanation of symbols]

1…黒液タンク、2…黒液噴射ポンプ、3…黒液ヒー
タ、4…黒液メイン配管、5…回収ボイラ、10…プロ
セス粘度計、11…測定用配管、12…黒液温度調節
器、13a,13b,13c…差圧測定用配管、14
a,14b,14c…差圧計、15…定量ポンプ、16
…黒液流量計。
1 ... Black liquor tank, 2 ... Black liquor injection pump, 3 ... Black liquor heater, 4 ... Black liquor main pipe, 5 ... Recovery boiler, 10 ... Process viscometer, 11 ... Measuring pipe, 12 ... Black liquor temperature controller , 13a, 13b, 13c ... Piping for differential pressure measurement, 14
a, 14b, 14c ... Differential pressure gauge, 15 ... Metering pump, 16
… Black liquor flow meter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管径が異なると共に、管径の大きい順に
直列に接続される複数の差圧測定用配管と、この差圧測
定用配管のうち管径の大きい側が上流となるように当該
差圧測定用配管内に被測定流体を流動させるための手段
と、この手段により流動される前記被測定流体の流量を
測定する流量計と、前記差圧測定用配管内で生じる圧力
損失を各差圧測定用配管ごとに測定する差圧計と、前記
被測定流体の温度を一定とするための流体温度調整器と
を備えたことを特徴とするプロセス粘度測定装置。
1. A plurality of differential pressure measuring pipes, which are different in pipe diameter and are connected in series in order of increasing pipe diameter, and the differential pressure measuring pipes are arranged so that the pipe having the larger pipe diameter is upstream. A means for causing the fluid to be measured to flow in the pressure measuring pipe, a flow meter for measuring the flow rate of the fluid to be measured flowing by this means, and a pressure loss generated in the differential pressure measuring piping for each difference. A process viscosity measuring device comprising: a differential pressure gauge for measuring each pressure measuring pipe; and a fluid temperature controller for keeping the temperature of the fluid to be measured constant.
JP22708892A 1992-08-26 1992-08-26 Process viscosity measuring device Withdrawn JPH0674887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22708892A JPH0674887A (en) 1992-08-26 1992-08-26 Process viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22708892A JPH0674887A (en) 1992-08-26 1992-08-26 Process viscosity measuring device

Publications (1)

Publication Number Publication Date
JPH0674887A true JPH0674887A (en) 1994-03-18

Family

ID=16855312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22708892A Withdrawn JPH0674887A (en) 1992-08-26 1992-08-26 Process viscosity measuring device

Country Status (1)

Country Link
JP (1) JPH0674887A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203241A (en) * 2006-11-30 2008-09-04 Chevron Oronite Sa Method for using pressure alternating viscometer
JP2011512538A (en) * 2008-02-21 2011-04-21 ジルソン エス.アー.エス. Pipette system and method for measuring viscosity
WO2012059982A1 (en) 2010-11-02 2012-05-10 トヨタ自動車株式会社 Coating method and coating apparatus
WO2014004166A1 (en) * 2012-06-29 2014-01-03 Rosemount Inc. Viscometer for newtonian and non-newtonian fluids
CN107727533A (en) * 2017-10-31 2018-02-23 中国海洋大学 Become the identification of caliber water-oil emulsion fluidised form and composition detection experimental system
WO2019118431A1 (en) * 2017-12-12 2019-06-20 Baker Hughes, A Ge Company, Llc Methods and systems for monitoring drilling fluid rheological characteristics
NO20200215A1 (en) * 2020-02-24 2021-08-25 Norce Innovation As Determining rheological properties of fluids
JP2022032136A (en) * 2020-08-11 2022-02-25 靜甲株式会社 Liquid viscosity calculation system and liquid product manufacturing device
US11988064B2 (en) 2016-12-12 2024-05-21 Weatherford Technology Holdings, Llc Managed pressure drilling control system with continuously variable transmission

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203241A (en) * 2006-11-30 2008-09-04 Chevron Oronite Sa Method for using pressure alternating viscometer
JP2011512538A (en) * 2008-02-21 2011-04-21 ジルソン エス.アー.エス. Pipette system and method for measuring viscosity
WO2012059982A1 (en) 2010-11-02 2012-05-10 トヨタ自動車株式会社 Coating method and coating apparatus
WO2014004166A1 (en) * 2012-06-29 2014-01-03 Rosemount Inc. Viscometer for newtonian and non-newtonian fluids
JP2015522162A (en) * 2012-06-29 2015-08-03 ローズマウント インコーポレイテッド Viscometer for Newtonian and non-Newtonian fluids
US11988064B2 (en) 2016-12-12 2024-05-21 Weatherford Technology Holdings, Llc Managed pressure drilling control system with continuously variable transmission
CN107727533A (en) * 2017-10-31 2018-02-23 中国海洋大学 Become the identification of caliber water-oil emulsion fluidised form and composition detection experimental system
WO2019118431A1 (en) * 2017-12-12 2019-06-20 Baker Hughes, A Ge Company, Llc Methods and systems for monitoring drilling fluid rheological characteristics
GB2583275B (en) * 2017-12-12 2022-04-27 Baker Hughes Holdings Llc Methods and systems for monitoring drilling fluid rheological characteristics
US11378506B2 (en) 2017-12-12 2022-07-05 Baker Hughes, A Ge Company, Llc Methods and systems for monitoring drilling fluid rheological characteristics
GB2583275A (en) * 2017-12-12 2020-10-21 Baker Hughes Holdings Llc Methods and systems for monitoring drilling fluid rheological characteristics
NO20200215A1 (en) * 2020-02-24 2021-08-25 Norce Innovation As Determining rheological properties of fluids
NO347449B1 (en) * 2020-02-24 2023-11-06 Norce Innovation As Determining rheological properties of fluids
JP2022032136A (en) * 2020-08-11 2022-02-25 靜甲株式会社 Liquid viscosity calculation system and liquid product manufacturing device

Similar Documents

Publication Publication Date Title
Escudier et al. Drag reduction in the turbulent pipe flow of polymers
Hoogendoorn Gas-liquid flow in horizontal pipes
EP3066499B1 (en) Inline rheology/viscosity, density, and flow rate measurement
US4384792A (en) Process and apparatus for the combustionless measurement and/or control of the amount of heat fed to gas consumption devices
CN101696925B (en) Device and method for testing performance of two-phase flow drag reducer
JPH0674887A (en) Process viscosity measuring device
DE102007023840A1 (en) Thermal mass flow meter and method of operation
EP3296704A1 (en) Flowmeter
CN109827640A (en) A kind of metal floater flowmeter viscosity correction device and bearing calibration
EP3390984A1 (en) Method for reynolds number correction of a throughflow measurement of a coriolis throughflow measurement unit
US6196058B1 (en) On-line viscosity measurement system
CN109932283B (en) Device and method for measuring apparent viscosity of non-Newtonian fluid at high shear rate
Scott et al. Transport of solids by gas‐liquid mixtures in horizontal pipes
CN110737877A (en) flow rate correction method and system based on medium viscosity
CN204085644U (en) A kind of flow calibrating device
CN207050788U (en) A kind of new online throttling flow meter
CN110908414A (en) System and method for controlling temperature of pipeline confluence liquid
CN105181049B (en) Measurement method, measuring system and the auxiliary measurement system of fluids within pipes flow
CN210321868U (en) Crude oil flow on-line detection system
Samanta et al. Pressure losses in orifices for the flow of gas-non-Newtonian liquids
CN209040823U (en) The measuring equipment of equal flows branch path metering oil gas water well yield
CN207457230U (en) Conductance type non newtonian water-oil emulsion viscosity and ingredient prediction experimental system
CN207976785U (en) A kind of oil product on-line mixing system
Stewart et al. Derivation of an expansibility factor for the V-Cone meter
US1944339A (en) Proporational gas meter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102