JPH0674678A - Lamination type heat exchanger and manufacture thereof - Google Patents

Lamination type heat exchanger and manufacture thereof

Info

Publication number
JPH0674678A
JPH0674678A JP22391892A JP22391892A JPH0674678A JP H0674678 A JPH0674678 A JP H0674678A JP 22391892 A JP22391892 A JP 22391892A JP 22391892 A JP22391892 A JP 22391892A JP H0674678 A JPH0674678 A JP H0674678A
Authority
JP
Japan
Prior art keywords
rib
ribs
flat
flat tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22391892A
Other languages
Japanese (ja)
Other versions
JP2932846B2 (en
Inventor
Toshihiro Yamamoto
敏博 山本
Yoshiyuki Yamauchi
山内  芳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4223918A priority Critical patent/JP2932846B2/en
Publication of JPH0674678A publication Critical patent/JPH0674678A/en
Application granted granted Critical
Publication of JP2932846B2 publication Critical patent/JP2932846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Abstract

PURPOSE:To achieve a higher heat transfer rate on the side of a fluid by forming such a narrow rib that is not made available by the present pressing technique. CONSTITUTION:Inner fins 10 arranged in a flat pipe 9 is made up of a lamination of one pair of rib bodies which comprise two vertical ribs 11a arranged parallel at a fixed interval and slant ribs 11b arranged askew parallel at a fixed interval between the two vertical ribs 11a. The rib bodies are made by working such as cutting or blanking so that the ribs 11a and 11b become rectangular in the shape of the cross section thereof, that is, planar parts exist on the head parts of ribs 11a and 11b on the surface and rear sides of the rib bodies.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏平チューブとフィン
とを交互に積層して成る積層型熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger in which flat tubes and fins are alternately laminated.

【0002】[0002]

【従来の技術】従来より、車両用冷凍サイクルでは、冷
媒凝縮器あるいは冷媒蒸発器として、冷媒流路を成す偏
平チューブと空気側の伝熱向上を図るフィンとを交互に
積層して成る積層型熱交換器が多く使用されている。こ
の積層型熱交換器では、冷媒側の伝熱促進を図るため
に、図10に示すように、多数のリブ101がプレス加
工された一対の金属成形プレート102、103を対向
して重ね合わせ、ろう付けによって接合した偏平チュー
ブ100が用いられている。
2. Description of the Related Art Conventionally, in a vehicle refrigeration cycle, as a refrigerant condenser or evaporator, a laminated type in which flat tubes forming a refrigerant flow path and fins for improving heat transfer on the air side are alternately laminated. Heat exchangers are often used. In this laminated heat exchanger, in order to promote heat transfer on the refrigerant side, as shown in FIG. 10, a pair of metal forming plates 102 and 103 on which a large number of ribs 101 are pressed are stacked so as to face each other. A flat tube 100 joined by brazing is used.

【0003】[0003]

【発明が解決しようとする課題】上記のリブ付き偏平チ
ューブ100は、その内部を気液二相の冷媒が流れる時
には、リブ101を設けることによって偏平チューブ1
00の基底面(リブ101が設けられてない平面部)で
の伝熱促進には大きな効果を発揮するが、リブ101の
表面自体の熱伝達率は低く、拡大伝熱面としての効果は
小さい。また、リブ101面上での熱伝達率は基底面よ
り小さく、特に冷媒の乾き度が高い時には、リブ101
面上での熱伝達率が基底面に対して著しく低下すること
が明らかになっている(「リブ付き偏平流路内の冷媒の
流動と蒸発熱伝達」:日本機械学会論文No.90−0
983B[1991,4]、および「カーエアコン用プ
レートフィンエバポレータの冷媒側伝熱促進」:日本機
械学会講演論文No.910−62−1537[199
1,10,17名古屋]参照)。
The above flat tube with ribs 100 is provided with the ribs 101 when the gas-liquid two-phase refrigerant flows through the inside of the flat tube 1 with the ribs.
00 has a large effect in promoting heat transfer at the base surface (a flat surface portion where the rib 101 is not provided), but the heat transfer coefficient of the surface itself of the rib 101 is low and the effect as an enlarged heat transfer surface is small. . Further, the heat transfer coefficient on the surface of the rib 101 is smaller than that of the base surface, and especially when the dryness of the refrigerant is high, the rib 101
It has been clarified that the heat transfer coefficient on the surface is remarkably reduced with respect to the basal surface ("Refrigerant flow and evaporation heat transfer in a ribbed flat flow path": Japan Society of Mechanical Engineers paper No. 90-0.
983B [1991, 4], and "Promotion of heat transfer on refrigerant side of plate fin evaporator for car air conditioner": Paper No. 910-62-1537 [199
1, 10, 17 Nagoya])).

【0004】従って、リブ101による基底面での伝熱
促進効果を維持したまま、リブ101の幅bを小さくし
てリブ101の表面積を減らすことにより、全体の熱伝
達率向上を図ることが考えられる。ところが、リブ10
1の幅を小さくした場合、現在のプレス加工技術では、
ろう付け性の良いリブ形状を作成するには限界があり、
リブ101の頭部に平面部を形成することが困難であ
る。その結果、対向するリブ101間のろう付け性が悪
化するという課題を生じる。本発明は、上記事情に基づ
いて成されたもので、その目的は、現在のプレス加工技
術では出来ない幅の狭いリブを形成することで、流体側
の熱伝達率向上を図った積層型熱交換器の提供にある。
Therefore, it is considered to improve the overall heat transfer coefficient by reducing the width b of the rib 101 to reduce the surface area of the rib 101 while maintaining the heat transfer promotion effect on the base surface by the rib 101. To be However, rib 10
When the width of 1 is reduced, the current pressing technology
There is a limit to creating a rib shape with good brazing,
It is difficult to form a flat surface on the head of the rib 101. As a result, there arises a problem that the brazing property between the facing ribs 101 is deteriorated. The present invention has been made based on the above circumstances, and an object thereof is to form a narrow rib that cannot be formed by the current press working technology, thereby improving the heat transfer coefficient on the fluid side. In the provision of exchangers.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、熱交換用の流体通路を構成する偏平チュ
ーブと伝熱用のフィンとを交互に積層して成る積層型熱
交換器において、前記偏平チューブは、断面形状が偏平
に設けられて、その内部を長手方向に流体が流れる偏平
管と、この偏平管内に挿入されて、前記偏平管内を流れ
る流体の流れを攪乱するインナフィンより成り、このイ
ンナフィンは、前記偏平管の長手方向に対して斜め平行
に配された複数本のリブから成る一対のリブ体を、前記
各リブが互いに交差するように重ね合わせて構成され、
前記各リブ体の両面側で、前記各リブに平面部が形成さ
れたことを技術的手段とする。また、前記インナフィン
は、金属製の平板を切削あるいは打抜き等の加工によっ
て前記一対のリブ体を形成し、このリブ体を前記各リブ
が互いに交差するように重ね合わせて仮付けした後、前
記偏平管内に挿入して一体ろう付けにより製造されるも
のである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a laminated heat exchange system in which flat tubes forming fluid passages for heat exchange and fins for heat transfer are alternately laminated. In the container, the flat tube is provided with a flat cross-sectional shape, and a flat tube in which a fluid flows in the longitudinal direction, and an inner fin that is inserted into the flat tube to disturb the flow of the fluid in the flat tube The inner fin comprises a pair of rib bodies composed of a plurality of ribs arranged obliquely parallel to the longitudinal direction of the flat tube, and the ribs are superposed so that the ribs intersect each other,
Technical means is that a flat surface portion is formed on each rib on both sides of each rib body. Further, the inner fin is formed by cutting or punching a metal flat plate to form the pair of rib bodies, and temporarily stacking the rib bodies so that the ribs intersect each other, and then the flat plate It is manufactured by inserting into a pipe and brazing.

【0006】[0006]

【作用】上記構成より成る本発明の積層型熱交換器は、
偏平管内に挿入されるインナフィンは、各リブ体の両面
側で各リブに平面部が形成されていることから、各リブ
体を重ね合わせてインナフィンを形成する際に、互いに
交差するリブ同志の接合が容易になる。例えば、各リブ
体をろう付け接合する場合には、互いに交差するリブの
平面部同志がろう付け面とされることにより、良好なろ
う付け性を得ることができる。
The laminated heat exchanger of the present invention having the above structure is
The inner fin inserted into the flat tube has a flat surface on each rib on both sides of each rib body. Therefore, when the inner fins are formed by stacking the rib bodies, ribs that intersect with each other are joined together. Will be easier. For example, in the case of brazing and joining each rib body, good brazing properties can be obtained by using the plane portions of the ribs that intersect with each other as brazing surfaces.

【0007】[0007]

【実施例】次に、本発明の積層型熱交換器を冷媒蒸発器
として使用した一実施例を図1ないし図6を基に説明す
る。本実施例の冷媒蒸発器1は、図6に示すように、多
数の偏平チューブ2と伝熱用のフィン3とを交互に積層
して成るドロンカップタイプで、冷媒と送風空気との熱
交換を行う熱交換部4、この熱交換部4の上下に設けら
れた一対の冷媒タンク5、6、上側の冷媒タンク5に連
通する入口パイプ7、および下側の冷媒タンク6に連通
する出口パイプ8を有する。偏平チューブ2は、一対の
偏平な金属成形プレート9a、9bを向かい合わせに接
合して成る偏平管9(図2参照)と、この偏平管9内に
配されるインナフィン10(図3参照)より構成され
る。偏平管9は、内部を長手方向(図6の上下方向)に
冷媒が流れる冷媒流路を形成するとともに、この冷媒流
路と連通して、冷媒タンク5、6の一部を成す上側タン
ク部5aおよび下側タンク部6aを一体に形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment in which the laminated heat exchanger of the present invention is used as a refrigerant evaporator will be described with reference to FIGS. As shown in FIG. 6, the refrigerant evaporator 1 of the present embodiment is a drone cup type in which a large number of flat tubes 2 and fins 3 for heat transfer are alternately laminated, and heat exchange between the refrigerant and blown air. Heat exchange section 4, a pair of refrigerant tanks 5 and 6 provided above and below the heat exchange section 4, an inlet pipe 7 communicating with the upper refrigerant tank 5, and an outlet pipe communicating with the lower refrigerant tank 6. Have eight. The flat tube 2 includes a flat tube 9 (see FIG. 2) formed by joining a pair of flat metal forming plates 9a and 9b to each other, and an inner fin 10 (see FIG. 3) arranged in the flat tube 9. Composed. The flat tube 9 forms a refrigerant flow path through which the refrigerant flows in the longitudinal direction (vertical direction in FIG. 6), and communicates with the refrigerant flow path to form an upper tank portion that forms part of the refrigerant tanks 5 and 6. 5a and the lower tank portion 6a are integrally formed.

【0008】インナフィン10は、図4および図5に示
すように、所定の間隔(偏平管9内に隙間なく挿入でき
る幅)で平行に配された2本の縦リブ11aと、この2
本の縦リブ11aの間でそれぞれ一定の間隔を有して斜
め平行に配された複数本の斜めリブ11bより成る一対
のリブ体11で構成され、このリブ体11を各斜めリブ
11bが互いに交差するように重ね合わせて形成されて
いる(図3参照)。このリブ体11は、アルミニウムの
クラッド材を使用して、各リブ11a、11bの断面形
状が矩形状(図4および図5参照)を成すように、つま
り、リブ体11の表側および裏側で各リブ11a、11
bに平面部が存在するように、切削あるいは打抜き等の
加工により製作されている。
As shown in FIGS. 4 and 5, the inner fin 10 has two vertical ribs 11a arranged in parallel with each other at a predetermined interval (a width that allows the flat tube 9 to be inserted into the flat tube 9 without any gap), and these two ribs.
Each of the vertical ribs 11a is formed of a pair of rib bodies 11 composed of a plurality of diagonal ribs 11b which are diagonally arranged in parallel with each other at a fixed interval. They are formed so as to overlap each other (see FIG. 3). The rib body 11 is made of aluminum clad material so that the ribs 11a and 11b have a rectangular cross-sectional shape (see FIGS. 4 and 5), that is, on the front side and the back side of the rib body 11. Ribs 11a, 11
It is manufactured by processing such as cutting or punching so that a flat portion exists on b.

【0009】ここで、偏平チューブ2の製造方法につい
て説明する。まず、ろう材がクラッドされた一対の金属
成形プレート9a、9bを向かい合わせて偏平管9を組
み立てる。つぎに、上述のように切削あるいは打抜き等
の加工により一対のリブ体11を形成した後、図3に示
すように、リブ体11の各斜めリブ11bが互いに交差
するようにリブ体11を重ね合わせ、適宜な箇所を溶接
等により仮付けする。そして、仮付けされたインナフィ
ン10を偏平管9内に挿入し、一体ろう付けによって各
リブ体11のろう付け、およびインナフィン10と偏平
管9とのろう付けが行われる。
Now, a method of manufacturing the flat tube 2 will be described. First, the flat tube 9 is assembled by facing a pair of metal forming plates 9a and 9b clad with a brazing material. Next, after forming the pair of rib bodies 11 by processing such as cutting or punching as described above, as shown in FIG. 3, the rib bodies 11 are stacked so that the diagonal ribs 11b of the rib body 11 intersect with each other. In addition, the appropriate places are temporarily attached by welding or the like. Then, the temporarily attached inner fins 10 are inserted into the flat tubes 9, and the rib bodies 11 are brazed by integral brazing, and the inner fins 10 and the flat tubes 9 are brazed.

【0010】この偏平管9内にインナフィン10を配し
てなる偏平チューブ2は、偏平管9内を流れる液冷媒が
インナフィン10の各斜めリブ11bに沿って流れるこ
とで、偏平管9の内壁面上に薄い液膜が均等に拡がり、
その結果、冷媒側の熱伝達率が向上する。この斜めリブ
11bによる伝熱促進効果は、偏平管9の基底面(リブ
のない平面部)では大きいが、斜めリブ11bの表面上
での熱伝達率が基底面より小さくなる。また、斜めリブ
11bの表面自体の熱伝達率が低いことから、斜めリブ
11bを設けることによる拡大伝熱面としての効果は小
さい。従って、斜めリブ11bの表面積を減らす、つま
りリブ幅a(図4および図5参照)を小さくすること
で、冷媒側の熱伝達率をより大きくすることができる。
そこで、本実施例では、偏平管9とインナフィン10と
を別体で形成することで、インナフィン10を切削ある
いは打抜きによって製作することができ、その結果、リ
ブ幅aを小さく(例えば2mm以下)することが可能で
ある。また、リブ幅aを小さくしても、ろう付け面とな
る各リブ11a、11bの頭部に平面部を残すことがで
きるため、リブ幅aが小さくても良好なろう付け性を確
保することができる。このように、ろう付け性を悪化さ
せることなくリブ幅aを小さくすることで、斜めリブ1
1a、11bの表面積を減らすことができるため、イン
ナフィン10による偏平管9の基底面での伝熱促進効果
を維持したまま、冷媒側の熱伝達率をより向上させるこ
とができる。
In the flat tube 2 in which the inner fins 10 are arranged in the flat tubes 9, the liquid refrigerant flowing in the flat tubes 9 flows along the respective oblique ribs 11b of the inner fins 10, so that the inner wall surface of the flat tubes 9 is made. A thin liquid film spreads evenly on top,
As a result, the heat transfer coefficient on the refrigerant side is improved. The effect of promoting heat transfer by the oblique ribs 11b is great on the base surface (flat surface portion without ribs) of the flat tube 9, but the heat transfer coefficient on the surface of the oblique ribs 11b is smaller than that on the base surface. Further, since the heat transfer coefficient of the surface itself of the oblique rib 11b is low, the effect as an enlarged heat transfer surface by providing the oblique rib 11b is small. Therefore, the heat transfer coefficient on the refrigerant side can be further increased by reducing the surface area of the oblique rib 11b, that is, by reducing the rib width a (see FIGS. 4 and 5).
In view of this, in this embodiment, the flat tube 9 and the inner fin 10 are formed separately, so that the inner fin 10 can be manufactured by cutting or punching, and as a result, the rib width a is reduced (for example, 2 mm or less). It is possible. Further, even if the rib width a is reduced, a flat portion can be left on the heads of the ribs 11a and 11b to be the brazing surface, so that good brazing performance can be secured even if the rib width a is small. You can In this way, by reducing the rib width a without deteriorating the brazing property, the diagonal rib 1
Since the surface areas of 1a and 11b can be reduced, the heat transfer coefficient on the refrigerant side can be further improved while the effect of promoting heat transfer at the base bottom surface of the flat tube 9 by the inner fins 10 is maintained.

【0011】また、図10に示した従来の偏平チューブ
100では、リブ101によって攪乱された乱れの大き
な流れ(図10の破線Aで示す)と、偏平チューブ10
0内の両端側に沿う乱れの小さな流れ(図10の破線B
で示す)とが生じ、乱れの小さい両端側では伝熱性能が
低下する。これに対し、本実施例では、縦リブ11aと
斜めリブ11bとが一体で形成されるとともに、縦リブ
11aが偏平管9内の両端部に対して隙間なくろう付け
されることにより、偏平管9内を流れる冷媒はすべて乱
れの大きな流れとなり、伝熱性能の低下を招くことはな
い。なお、従来の偏平チューブ100においても、偏平
チューブ100内の両端部にリブ101を繋げてリブ1
01との隙間を無くすことは可能であるが、このように
リブ101を形成すると、金属成形プレート102、1
03に反りが生じてろう付け不能となる虞があるため、
実際には、上述のように、乱れの大きな流れと乱れの小
さな流れとが生じる。さらに、プレス加工によって金属
成形プレート102、103にリブ101を設けた場合
には、偏平チューブ100の外壁面にリブ101の窪み
が生じるため、伝熱用フィン3との接触面積が減少する
のに対し、本実施例では、偏平管9の外壁面に窪みが生
じることなく平面であることから、空気側の伝熱面積を
保持する上で有利である。そして、本実施例のように、
偏平管9とインナフィン10とを別体で形成することに
より、従来使用していた各種のプレス型も不要となる。
Further, in the conventional flat tube 100 shown in FIG. 10, a large flow of turbulence disturbed by the ribs 101 (shown by a broken line A in FIG. 10) and the flat tube 10 are shown.
Flow with little turbulence along both ends in 0 (broken line B in FIG. 10)
, And the heat transfer performance deteriorates on both end sides with little turbulence. On the other hand, in the present embodiment, the vertical ribs 11a and the slanted ribs 11b are integrally formed, and the vertical ribs 11a are brazed to both ends of the flat tube 9 without any gaps, whereby the flat tube All of the refrigerant flowing in 9 becomes a turbulent flow, and the heat transfer performance is not deteriorated. Even in the conventional flat tube 100, the rib 1 is formed by connecting the ribs 101 to both ends of the flat tube 100.
It is possible to eliminate the gap with 01, but when the rib 101 is formed in this way, the metal forming plates 102, 1
Since there is a possibility that warp will occur in 03 and it will be impossible to braze,
In reality, as described above, a large turbulence flow and a small turbulence flow occur. Further, when the ribs 101 are provided on the metal forming plates 102 and 103 by press working, the depressions of the ribs 101 are formed on the outer wall surface of the flat tube 100, so that the contact area with the heat transfer fins 3 is reduced. On the other hand, in the present embodiment, since the outer wall surface of the flat tube 9 is a flat surface without any depression, it is advantageous in maintaining the heat transfer area on the air side. Then, as in this embodiment,
By forming the flat tube 9 and the inner fin 10 as separate bodies, various pressing dies that have been used conventionally are not required.

【0012】図7に本発明の第2実施例を示す。図7は
インナフィン10の平面図である。本実施例のインナフ
ィン10は、斜めリブ11bのみで構成されたもので
(第1実施例で示したインナフィン10の左右の縦リブ
11aを削り取った形)、このインナフィン10を使用
することにより、偏平チューブ2の冷媒流路断面積を増
加することができる。 〔変形例〕上述の実施例では、リブ11a、11bの断
面形状が矩形状を成すように形成したが、図8に示すよ
うな台形状、あるいは図9に示すように、側面が曲面で
形成された断面形状でも良い。また、偏平管9と上下の
タンク部5a、5bが一体を成すドロンカップタイプの
冷媒蒸発器1を示したが、偏平チューブ2と別体で設け
られた一対のタンクを各偏平チューブ2の両端部に配置
したマルチフロータイプでも良い。
FIG. 7 shows a second embodiment of the present invention. FIG. 7 is a plan view of the inner fin 10. The inner fin 10 of this embodiment is composed of only the diagonal ribs 11b (a shape in which the left and right vertical ribs 11a of the inner fin 10 shown in the first embodiment are scraped off). The cross-sectional area of the refrigerant flow path of the tube 2 can be increased. [Modification] In the above-described embodiment, the ribs 11a and 11b are formed so that the cross-sectional shape is rectangular. However, the ribs 11a and 11b are trapezoidal as shown in FIG. 8 or the side surfaces are curved as shown in FIG. It may be a cross-sectional shape. Further, although the refrigerant evaporator 1 of the drone cup type in which the flat tube 9 and the upper and lower tank portions 5a and 5b are integrated is shown, a pair of tanks provided separately from the flat tube 2 are provided at both ends of each flat tube 2. It may be a multi-flow type arranged in the section.

【0013】[0013]

【発明の効果】本発明の積層型熱交換器は、偏平管とイ
ンナフィンとを別体で形成することで、インナフィンを
構成するリブの幅を、リブ頭部に平面部を有する状態で
小さくすることが可能となる。これにより、ろう付け性
を悪化させることなく、リブの表面積を減らして、流体
側の熱伝達率をより向上させることができる。
In the laminated heat exchanger of the present invention, the flat tubes and the inner fins are formed as separate members, so that the width of the ribs forming the inner fins can be reduced in the state where the rib head has a flat portion. It becomes possible. As a result, the surface area of the rib can be reduced and the heat transfer coefficient on the fluid side can be further improved without deteriorating the brazing property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る偏平チューブの斜視
図である。
FIG. 1 is a perspective view of a flat tube according to a first embodiment of the present invention.

【図2】図1の偏平チューブを構成する偏平管の斜視図
である。
2 is a perspective view of a flat tube forming the flat tube of FIG. 1. FIG.

【図3】図2の偏平管とともに偏平チューブを構成する
インナフィンの斜視図である。
FIG. 3 is a perspective view of inner fins forming a flat tube together with the flat tube of FIG.

【図4】図3のインナフィンを形成するリブ体の平面図
である。
FIG. 4 is a plan view of a rib body forming the inner fin of FIG.

【図5】図3のインナフィンを形成するリブ体の平面図
である。
5 is a plan view of a rib body forming the inner fin of FIG. 3. FIG.

【図6】第1実施例に係る冷媒蒸発器の正面図である。FIG. 6 is a front view of the refrigerant evaporator according to the first embodiment.

【図7】本発明の第2実施例に係るインナフィンの平面
図である。
FIG. 7 is a plan view of an inner fin according to a second embodiment of the present invention.

【図8】本実施例の変形例に係るリブの断面図である。FIG. 8 is a cross-sectional view of a rib according to a modified example of this embodiment.

【図9】本実施例の変形例に係るリブの断面図である。FIG. 9 is a cross-sectional view of a rib according to a modified example of this embodiment.

【図10】従来技術に係る偏平チューブの斜視図であ
る。
FIG. 10 is a perspective view of a flat tube according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 冷媒蒸発器(積層型熱交換器) 2 偏平チューブ 3 フィン 9 偏平管 10 インナフィン 11 リブ体 11a縦リブ(リブ) 11b斜めリブ(リブ) 1 Refrigerant evaporator (laminated heat exchanger) 2 Flat tube 3 Fin 9 Flat tube 10 Inner fin 11 Rib body 11a Vertical rib (rib) 11b Oblique rib (rib)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱交換用の流体通路を構成する偏平チュー
ブと伝熱用のフィンとを交互に積層して成る積層型熱交
換器において、 前記偏平チューブは、断面形状が偏平に設けられて、そ
の内部を長手方向に流体が流れる偏平管と、この偏平管
内に挿入されて、前記偏平管内を流れる流体の流れを攪
乱するインナフィンより成り、 このインナフィンは、前記偏平管の長手方向に対して斜
め平行に配された複数本のリブから成る一対のリブ体
を、前記各リブが互いに交差するように重ね合わせて構
成され、前記各リブ体の両面側で、前記各リブに平面部
が形成されたことを特徴とする積層型熱交換器。
1. A laminated heat exchanger in which flat tubes forming heat exchange fluid passages and fins for heat transfer are alternately laminated, wherein the flat tubes have a flat cross-sectional shape. , A flat tube in which a fluid flows in the longitudinal direction, and an inner fin inserted in the flat tube to disturb the flow of the fluid in the flat tube, the inner fin being in the longitudinal direction of the flat tube. A pair of rib bodies, each of which is composed of a plurality of ribs arranged diagonally parallel to each other, are stacked so that the ribs intersect each other, and a flat surface portion is formed on each rib on both surface sides of the rib body. The laminated heat exchanger characterized in that
【請求項2】前記インナフィンは、金属製の平板を切削
あるいは打抜き等の加工によって前記一対のリブ体を形
成し、このリブ体を前記各リブが互いに交差するように
重ね合わせて仮付けした後、前記偏平管内に挿入して一
体ろう付けにより製造されたことを特徴とする請求項1
記載の積層型熱交換器の製造方法。
2. The inner fin is formed by cutting or punching a metal flat plate to form the pair of rib bodies, and the rib bodies are superposed and temporarily attached so that the ribs intersect each other. 2. The flat tube is manufactured by being integrally brazed by being inserted into the flat tube.
A method for manufacturing the laminated heat exchanger described.
JP4223918A 1992-08-24 1992-08-24 Stacked heat exchanger and method of manufacturing the same Expired - Fee Related JP2932846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223918A JP2932846B2 (en) 1992-08-24 1992-08-24 Stacked heat exchanger and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223918A JP2932846B2 (en) 1992-08-24 1992-08-24 Stacked heat exchanger and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0674678A true JPH0674678A (en) 1994-03-18
JP2932846B2 JP2932846B2 (en) 1999-08-09

Family

ID=16805757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223918A Expired - Fee Related JP2932846B2 (en) 1992-08-24 1992-08-24 Stacked heat exchanger and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2932846B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170851A (en) * 1995-12-20 1997-06-30 Denso Corp Refrigerant evaporator
DE19636553C2 (en) * 1995-09-11 2001-02-08 Sharp Kk Integrated semiconductor circuit with thyristor
JP2006038304A (en) * 2004-07-23 2006-02-09 Usui Kokusai Sangyo Kaisha Ltd Fin for fluid agitation, its manufacturing method, heat transfer tube internally provided with fin, and heat exchanger or heat exchange type gas cooling device
JP2007212120A (en) * 2006-01-13 2007-08-23 T Rad Co Ltd Inner fin, and heat sink provided with the inner fin
WO2007093231A1 (en) * 2006-02-15 2007-08-23 Angelo Rigamonti Heat exchanger for hot air generator and boiler
JP2008039337A (en) * 2006-08-09 2008-02-21 T Rad Co Ltd Heat exchanger
JP2008170060A (en) * 2007-01-11 2008-07-24 T Rad Co Ltd Herringbone type liquid cooled heat sink
JP2008202740A (en) * 2007-02-22 2008-09-04 Japan Steel Works Ltd:The Method for manufacturing pressure container
DE102007024379A1 (en) * 2007-05-23 2008-11-27 Mingatec Gmbh Plate apparatus for heat transfer operations
EP1486749A3 (en) * 2003-06-12 2009-03-25 Peter Jähn Turbulator
JP2010190515A (en) * 2009-02-19 2010-09-02 T Rad Co Ltd Heat sink
JP2018165614A (en) * 2016-11-14 2018-10-25 三菱電機株式会社 Heat pump device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636553C2 (en) * 1995-09-11 2001-02-08 Sharp Kk Integrated semiconductor circuit with thyristor
JPH09170851A (en) * 1995-12-20 1997-06-30 Denso Corp Refrigerant evaporator
EP1486749A3 (en) * 2003-06-12 2009-03-25 Peter Jähn Turbulator
JP4614266B2 (en) * 2004-07-23 2011-01-19 臼井国際産業株式会社 Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
JP2006038304A (en) * 2004-07-23 2006-02-09 Usui Kokusai Sangyo Kaisha Ltd Fin for fluid agitation, its manufacturing method, heat transfer tube internally provided with fin, and heat exchanger or heat exchange type gas cooling device
JP2007212120A (en) * 2006-01-13 2007-08-23 T Rad Co Ltd Inner fin, and heat sink provided with the inner fin
WO2007093231A1 (en) * 2006-02-15 2007-08-23 Angelo Rigamonti Heat exchanger for hot air generator and boiler
US8091515B2 (en) 2006-02-15 2012-01-10 Angelo Rigamonti Heat exchanger for hot air generator and boiler
EA012500B1 (en) * 2006-02-15 2009-10-30 Анджело Ригамонти Heat exchanger for hot air generator and boiler
JP2008039337A (en) * 2006-08-09 2008-02-21 T Rad Co Ltd Heat exchanger
JP2008170060A (en) * 2007-01-11 2008-07-24 T Rad Co Ltd Herringbone type liquid cooled heat sink
JP2008202740A (en) * 2007-02-22 2008-09-04 Japan Steel Works Ltd:The Method for manufacturing pressure container
DE102007024379A1 (en) * 2007-05-23 2008-11-27 Mingatec Gmbh Plate apparatus for heat transfer operations
EP1995545A3 (en) * 2007-05-23 2009-03-25 Mingatec GmbH Plate heater for heat transfer processes
JP2010190515A (en) * 2009-02-19 2010-09-02 T Rad Co Ltd Heat sink
JP2018165614A (en) * 2016-11-14 2018-10-25 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
JP2932846B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
JP4065781B2 (en) Heat exchanger, car air conditioner using the same, and automobile equipped with heat exchanger
JP3814917B2 (en) Stacked evaporator
JP5096134B2 (en) Heat exchanger cross rib plate pair
JP2004530092A5 (en)
JP2932846B2 (en) Stacked heat exchanger and method of manufacturing the same
JP4190289B2 (en) Heat exchanger
JP4157768B2 (en) Evaporator
JP4122670B2 (en) Heat exchanger
JP2005506505A5 (en)
JPS6287792A (en) Lamination type heat exchanger
JP2887442B2 (en) Stacked heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JP3403544B2 (en) Heat exchanger
JPS6273095A (en) Lamination type heat exchanger
JPH0894274A (en) Accumulated type heat exchanger
JPH1071463A (en) Manufacture of flat heat exchanger tube
JPH08291992A (en) Laminate type heat exchanger
JP3000188B2 (en) Stacked heat exchanger
JPH0630680U (en) Stacked evaporator element
JPH10170101A (en) Lamination type heat exchanger
JP3756641B2 (en) Tube for heat exchanger and manufacturing method thereof
KR100528997B1 (en) Multilayer Heat Exchanger
JP2605021Y2 (en) Stacked heat exchanger
JP2001027488A (en) Lamination type heat-exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110528

LAPS Cancellation because of no payment of annual fees