JPH0674570B2 - Seismic isolation rubber support device - Google Patents

Seismic isolation rubber support device

Info

Publication number
JPH0674570B2
JPH0674570B2 JP8754590A JP8754590A JPH0674570B2 JP H0674570 B2 JPH0674570 B2 JP H0674570B2 JP 8754590 A JP8754590 A JP 8754590A JP 8754590 A JP8754590 A JP 8754590A JP H0674570 B2 JPH0674570 B2 JP H0674570B2
Authority
JP
Japan
Prior art keywords
metal plate
bridge
plate
bridge axis
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8754590A
Other languages
Japanese (ja)
Other versions
JPH03287905A (en
Inventor
堯 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaimon KK
Original Assignee
Kaimon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaimon KK filed Critical Kaimon KK
Priority to JP8754590A priority Critical patent/JPH0674570B2/en
Publication of JPH03287905A publication Critical patent/JPH03287905A/en
Publication of JPH0674570B2 publication Critical patent/JPH0674570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はゴム支承体を利用して橋桁に免震機能を発揮さ
せることができる免震ゴム支承装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a seismic isolation rubber bearing device that allows a bridge girder to exhibit a seismic isolation function by using a rubber bearing.

(従来の技術) 従来、滑り移動式ゴム支承装置として、第12図に示すよ
うに、ゴム層1の下面に合成樹脂の可動滑り板26を固着
すると共に、前記ゴム層1の上部に雌ねじ金具27を埋込
み固定してゴム支承体28を構成し、そのゴム支承体28を
鋼製橋桁29の下面に当接して、前記雌ねじ金具27に螺合
したボルト30によりゴム支承体28を橋桁29に固定し、下
部構造物5に固定された金属製受台31の上面に合成樹脂
の固定滑り板32を固着し、その固定滑り板32に前記可動
滑り板26を載置した構造の滑り移動式ゴム支承装置が知
られている。
(Prior Art) Conventionally, as a sliding movement type rubber bearing device, as shown in FIG. 12, a movable sliding plate 26 of synthetic resin is fixed to the lower surface of the rubber layer 1, and a female screw metal fitting is provided on the upper portion of the rubber layer 1. 27 is embedded and fixed to form a rubber support 28, the rubber support 28 is brought into contact with the lower surface of the steel bridge girder 29, and the rubber support 28 is fixed to the bridge girder 29 by the bolt 30 screwed into the female screw fitting 27. A sliding movement type of a structure in which a fixed slide plate 32 made of synthetic resin is fixed to the upper surface of a metal pedestal 31 fixed and fixed to the lower structure 5, and the movable slide plate 26 is mounted on the fixed slide plate 32. Rubber bearing devices are known.

(発明が解決しようとする課題) 前記従来の滑り移動式ゴム支承装置の場合は、橋桁に橋
軸方向の地震力が作用して橋桁が振動するとき、ゴム支
承装置の滑り面が1箇所だけであるので滑り抵抗が小さ
く、かつゴム層が滑り抵抗を受けながらせん断変形され
るのでゴム層のせん断変形量が小さく、そのためゴム層
のせん断抵抗も小さく、したがって、前記従来の滑り移
動式ゴム支承装置の場合は、橋軸方向の地震力に対する
免震効果が少なく、橋桁に対し橋軸方向の地震力が作用
したとき、橋桁が大振巾で長時間振動するという問題が
ある。
(Problems to be solved by the invention) In the case of the conventional sliding movement type rubber bearing device, when the bridge girder vibrates due to the seismic force in the bridge axis direction acting on the bridge girder, the rubber bearing device has only one sliding surface. Therefore, the sliding resistance is small, and the rubber layer undergoes shear deformation while undergoing sliding resistance, so the amount of shear deformation of the rubber layer is small, and therefore the shear resistance of the rubber layer is also small. In the case of the device, the seismic isolation effect against the seismic force in the bridge axis direction is small, and when the seismic force in the bridge axis direction acts on the bridge girder, the girder vibrates with a large amplitude for a long time.

また橋桁が橋軸方向の地震力を受けたとき、ゴム層が滑
り抵抗を受けながらせん断変形されるので、地震力によ
る橋桁の振動が停止したとき、ゴム支承体におけるゴム
層がせん断変形したままの状態で停止するという問題が
ある。
In addition, when the bridge girder receives a seismic force in the bridge axis direction, the rubber layer undergoes shear deformation while receiving slip resistance, so when the vibration of the bridge girder stops due to seismic force, the rubber layer in the rubber bearing remains shear deformed. There is a problem that it stops in the state of.

本発明は、ゴム支承体を利用して橋梁の免震効果を有効
に発揮させることができ、かつ地震力による振動が停止
したとき、ゴム支承体におけるゴム層をせん断変形させ
ない状態で停止させることができる免震ゴム支承装置を
提供することを目的とするものである。
INDUSTRIAL APPLICABILITY The present invention can effectively exert the seismic isolation effect of a bridge by using a rubber bearing, and when the vibration due to the seismic force is stopped, stop the rubber layer in the rubber bearing without causing shear deformation. The purpose of the present invention is to provide a seismic isolation rubber bearing device that can be used.

(課題を解決するための手段) 前記目的を達成するために、本発明の免震ゴム支承装置
においては、ゴム層1とこれに一体に結合された下部金
属板2および上部金属板3とからなるゴム支承体4が、
下部構造物5に固定されるベースプレート6と橋桁7に
固定されるソールプレート8との間に摺動自在に介在さ
れ、前記下部金属板2とソールプレート8とは橋軸方向
に相対的に移動しないように係合され、前記上部金属板
3とベースプレート6とは橋軸方向に相対的に移動しな
いように係合されている。
(Means for Solving the Problem) In order to achieve the above object, in the seismic isolation rubber bearing device of the present invention, a rubber layer 1 and a lower metal plate 2 and an upper metal plate 3 integrally connected to the rubber layer 1 are provided. The rubber support 4 is
A base plate 6 fixed to the lower structure 5 and a sole plate 8 fixed to the bridge girder 7 are slidably interposed, and the lower metal plate 2 and the sole plate 8 relatively move in the bridge axial direction. The upper metal plate 3 and the base plate 6 are engaged so as not to move relative to each other in the bridge axis direction.

またゴム層1とこれに一体に結合された下部金属板2お
よび上部金属板3とからなるゴム支承体4が、下部構造
物5に固定されるベースプレート6と橋桁7に固定され
るソールプレート8との間に摺動自在に介在され、前記
下部金属板2における橋軸直角方向の両側に、橋軸方向
に間隔をおいて配置された複数の被押圧突起9が一体に
設けられ、前記ソールプレート8の橋軸直角方向の両側
における橋軸方向の両端部に、前記被押圧突起9の橋軸
方向外端面に係合する押圧突起10が設けられ、前記ベー
スプレート6の橋軸直角方向の両側における橋軸方向中
央部と、前記上部金属板3の橋軸直角方向の両側におけ
る橋軸方向中央部とは、上部金属板移動防止用係合部材
11を介して橋軸方向に相対的に移動しないように係合さ
れることによっても前記目的を達成することができる。
In addition, a rubber support 4 including a rubber layer 1 and a lower metal plate 2 and an upper metal plate 3 integrally connected to the rubber layer 1 includes a base plate 6 fixed to a lower structure 5 and a sole plate 8 fixed to a bridge girder 7. A plurality of pressed projections 9 which are slidably interposed between the lower metal plate 2 and both sides of the lower metal plate 2 in the direction perpendicular to the bridge axis and which are arranged at intervals in the bridge axis direction. At both ends of the plate 8 in the direction of the bridge axis in the direction perpendicular to the bridge axis, pressing projections 10 that engage with the outer end surfaces of the pressed projections 9 in the direction of the bridge axis are provided, and both sides of the base plate 6 in the direction perpendicular to the bridge axis are provided. In the bridge axis direction and the bridge shaft direction center portions on both sides of the upper metal plate 3 in the direction perpendicular to the bridge axis are the upper metal plate movement preventing engagement members.
The above object can also be achieved by engaging through 11 so as not to move relatively in the axial direction of the bridge.

さらにまた、ゴム層1とこれに一体に結合された下部金
属板2および上部金属板3とからなるゴム支承体4が、
下部構造物5に固定されるベースプレート6と橋桁7に
固定されるソールプレート8との間に摺動自在に介在さ
れ、前記ソールプレート8の橋軸直角方向の両側におけ
る橋軸方向中央部に押圧突起12が一体に設けられ、前記
下部金属板2の橋軸直角方向の両側における橋軸方向中
間部に、前記押圧突起12における橋軸方向の両側に係合
される被押圧突起13が一体に設けられ、前記上部金属板
3の橋軸直角方向の両側に、橋軸方向に間隔をおいて配
置された複数の係合突起14が一体に設けられ、前記ベー
スプレート6の橋軸直角方向の両側における橋軸方向の
両端部に、前記係合突起14の橋軸方向外端面に係合する
上部金属板移動防止用係止突起15が一体に設けられるこ
とによっても、前記目的を達成することができる。
Furthermore, a rubber bearing 4 including a rubber layer 1 and a lower metal plate 2 and an upper metal plate 3 integrally connected to the rubber layer 1,
It is slidably interposed between a base plate 6 fixed to the lower structure 5 and a sole plate 8 fixed to the bridge girder 7, and is pressed to the center portion of the sole plate 8 on both sides in the direction perpendicular to the bridge axis in the direction perpendicular to the bridge axis. The protrusions 12 are integrally provided, and the pressed protrusions 13 engaged with both sides of the pressing protrusions 12 in the bridge axis direction are integrally formed at intermediate portions in the bridge axis direction of the lower metal plate 2 on both sides in the direction perpendicular to the bridge axis. A plurality of engaging projections 14 are provided integrally on both sides of the upper metal plate 3 in the direction perpendicular to the bridge axis, and are provided integrally with each other at a distance in the bridge axis direction. It is also possible to achieve the above object by integrally providing the upper metal plate movement preventing locking projections 15 that engage with the bridge axial direction outer end surfaces of the engaging projections 14 at both ends in the bridge axial direction. it can.

(作 用) 地震力により橋桁7が橋軸方向に移動すると、その橋桁
7に固定されているソールプレート8がゴム支承体4に
おける上部金属板3に対し滑り移動すると共に、前記ソ
ールプレート8に係合しているゴム支承体4の下部金属
板2がベースプレート6に対し滑り移動し、かつゴム支
承体4における上部金属板3は橋軸方向に移動しないよ
うにベースプレート6に係合され、ゴム支承体4におけ
る下部金属板2は、ソールプレート8に係合されて、そ
のソールプレート8と同一量移動されるので、ゴム支承
体4におけるゴム層1はソールプレート8の移動量と等
しい量だけせん断変形される。
(Operation) When the bridge girder 7 moves in the bridge axis direction due to the seismic force, the sole plate 8 fixed to the bridge girder 7 slides with respect to the upper metal plate 3 of the rubber support 4 and also moves to the sole plate 8. The lower metal plate 2 of the engaged rubber bearing 4 slides with respect to the base plate 6, and the upper metal plate 3 of the rubber bearing 4 is engaged with the base plate 6 so as not to move in the bridge axis direction, Since the lower metal plate 2 of the support 4 is engaged with the sole plate 8 and moved by the same amount as the sole plate 8, the rubber layer 1 of the rubber support 4 is equal to the amount of movement of the sole plate 8. Sheared.

(実施例) 次に本発明を図面に示した例に基づいて詳細に説明す
る。
(Example) Next, the present invention will be described in detail based on an example shown in the drawings.

第1図ないし第6図は本発明の第1実施例を示すもので
あって、ゴム層1の下面に下部金属板2が一体に固着さ
れると共に、前記ゴム層1の上面に上部金属板3が一体
に固着されて、ゴム支承体4が構成され、そのゴム支承
体4における上部金属板3の上面に、橋軸直角方向(橋
桁巾方向)の中央において橋軸方向(橋桁長手方向)に
延長する突条16が一体に連設され、かつ前記上部金属板
3の橋軸直角方向の両側における橋軸方向中間部に、橋
軸方向に間隔をおいて配置された一対の係合突起17が一
体に連設され、さらに前記下部金属板2の橋軸直角方向
の両側における橋軸方向の両端部に、被押圧突起9が一
体に設けられ、また前記下部金属板2の下面に、四フッ
化エチレン等の合成樹脂からなる下部可動滑り板18が、
接着剤等により固着され、かつ前記上部金属板3の上面
に、四フッ化エチレン等の合成樹脂からなる上部固定滑
り板19が、接着剤等により固着されている。
1 to 6 show a first embodiment of the present invention, in which a lower metal plate 2 is integrally fixed to a lower surface of a rubber layer 1 and an upper metal plate is attached to an upper surface of the rubber layer 1. 3 are integrally fixed to each other to form a rubber support 4, and the rubber support 4 has an upper surface of the upper metal plate 3 at the center in the direction perpendicular to the bridge axis (width direction of the bridge girder) in the bridge axis direction (longitudinal direction of the bridge girder). A pair of engaging projections, which are integrally connected to each other, and which are arranged in the bridge axial direction intermediate portions on both sides of the upper metal plate 3 in the direction perpendicular to the bridge axial direction at intervals in the bridge axial direction. 17 are integrally connected to each other, and further, pressed projections 9 are integrally provided at both ends in the bridge axis direction on both sides of the lower metal plate 2 in the direction perpendicular to the bridge axis, and on the lower surface of the lower metal plate 2, The lower movable sliding plate 18 made of synthetic resin such as tetrafluoroethylene,
An upper fixing slide plate 19 made of a synthetic resin such as ethylene tetrafluoride is fixed to the upper surface of the upper metal plate 3 by an adhesive or the like.

鋼製ベースプレート6の橋軸直角方向の両側における橋
軸方向中央部に係止突起20の下部が一体に連設され、か
つベースプレート6の上面にステンレス鋼板からなる下
部固定滑り板21が溶接等により固着され、さらにベース
プレート6の下部に複数のアカー部材22の上部が連結さ
れ、そのアンカー部材22がコンクリート製橋台または橋
脚等の下部構造物5に埋込み固定されると共に、ベース
プレート6が下部構造物5の上面に載置される。
The lower part of the locking projection 20 is integrally connected to the central portion of the steel base plate 6 in the direction of the bridge axis on both sides in the direction perpendicular to the bridge axis, and the lower fixed sliding plate 21 made of a stainless steel plate is welded to the upper surface of the base plate 6 by welding or the like. The anchor members 22 are fixed to each other, and the upper portions of the plurality of acre members 22 are connected to the lower portion of the base plate 6, and the anchor members 22 are embedded and fixed in the lower structure 5 such as a concrete abutment or bridge pier, and the base plate 6 is fixed to the lower structure 5. Placed on the upper surface of.

鋼製ソールプレート8の橋軸直角方向の両側における橋
軸方向の両端部に、押圧突起10の上端部が一体に連設さ
れ、かつソールプレート8の下面における橋軸直角方向
の中央に、橋軸方向に延長する係合溝23が設けられ、前
記ソールプレート8の下面にステンレス鋼板からなる上
部可動滑り板24が溶接等により固着され、さらにソール
プレート8の上部に複数のアンカー棒25の下部が連結さ
れ、そのアンカー棒25がコンクリート製橋桁7に埋込み
固定されると共に、ソールプレート8が橋桁7の下面に
当接される。
The upper ends of the pressing projections 10 are integrally connected to both ends of the steel sole plate 8 on both sides in the direction perpendicular to the bridge axis in the bridge axial direction, and at the center of the lower surface of the sole plate 8 in the direction perpendicular to the bridge axis. An engaging groove 23 extending in the axial direction is provided, an upper movable slide plate 24 made of a stainless steel plate is fixed to the lower surface of the sole plate 8 by welding or the like. The anchor bar 25 is embedded and fixed in the concrete bridge girder 7, and the sole plate 8 is brought into contact with the lower surface of the bridge girder 7.

前記ゴム支承体4がベースプレート6とソールプレート
8との間に介在され、かつソールプレート8の下部の上
部可動滑り板24は、ゴム支承体4の上部の上部固定滑り
板19に橋軸方向摺動自在に載置され、ゴム支承体4の下
部の下部可動滑り板18は、ベースプレート6の上部の下
部固定滑り板21に橋軸方向摺動自在に載置され、さらに
ソールプレート8における橋軸方向の両端部の押圧突起
10は、下部金属板2の橋軸方向の両端部に設けられた被
押圧突起9における橋軸方向外端面に接触または近接し
て配置され、また係止突起20の上端部は一対の係合突起
17の間に挿入され、その一対の係合突起17と係止突起20
とにより上部金属板移動防止用係合部材11が構成されて
いる。
The rubber support 4 is interposed between the base plate 6 and the sole plate 8, and the upper movable slide plate 24 below the sole plate 8 slides in the bridge axial direction on the upper fixed slide plate 19 above the rubber support 4. The lower movable sliding plate 18 at the lower part of the rubber support 4 is movably mounted on the lower fixed sliding plate 21 at the upper part of the base plate 6 so as to be slidable in the bridge axis direction. Projections at both ends in the direction
10 is arranged in contact with or close to the bridge axis direction outer end surface of the pressed projections 9 provided at both ends of the lower metal plate 2 in the bridge axis direction, and the upper ends of the locking projections 20 are paired with each other. Protrusion
The pair of engaging projections 17 and the locking projections 20 are inserted between the two.
The above constitutes an engagement member 11 for preventing movement of the upper metal plate.

地震力により橋桁7およびこれに固定されたソールプレ
ート8が橋軸方向に移動した場合、ゴム支承体4におけ
る上部金属板3とベースプレート6とは、上部金属板移
動防止用係合部材11を介して橋軸方向に相対的に移動し
ないように係合されているので、ソールプレート8がゴ
ム支承体4の上部金属板3に対し滑り移動し、かつソー
ルプレート8に設けられた押圧突起10により、被押圧突
起9を介してゴム支承体4の下部金属板2が橋軸方向に
押圧移動されるので、下部金属板2がソールプレート8
と等しい量だけ橋軸方向に滑り移動し、ゴム支承体4の
ゴム層1もソールプレート8の移動量と等しい量だけせ
ん断変形される。
When the bridge girder 7 and the sole plate 8 fixed to the bridge girder 7 are moved in the bridge axis direction by the seismic force, the upper metal plate 3 and the base plate 6 in the rubber support 4 are intervened by the upper metal plate movement preventing engagement member 11. Since it is engaged so as not to move relatively in the bridge axis direction, the sole plate 8 slides with respect to the upper metal plate 3 of the rubber bearing 4, and the pressing projection 10 provided on the sole plate 8 Since the lower metal plate 2 of the rubber support 4 is pressed and moved in the bridge axis direction via the pressed projection 9, the lower metal plate 2 is attached to the sole plate 8
The rubber layer 1 of the rubber support 4 is also shear-deformed by an amount equal to the amount of movement of the sole plate 8 by sliding in the bridge axial direction by an amount equal to.

したがって、橋桁7に作用する橋軸方向の地震力に対し
ては、ゴム支承体4の下部金属板2およびベースプレー
ト6の滑り抵抗と、ゴム支承体4の上部金属板3および
ソールプレート8の滑り抵抗と、ソールプレート8の移
動量に等しいゴム層1の大きなせん断変形量に基づく大
きなせん断抵抗とによって、橋桁7の振動が有効に減衰
される。
Therefore, against the seismic force acting on the bridge girder 7 in the axial direction of the bridge, the sliding resistance of the lower metal plate 2 and the base plate 6 of the rubber support 4 and the sliding of the upper metal plate 3 and the sole plate 8 of the rubber support 4 are prevented. The vibration of the bridge girder 7 is effectively damped by the resistance and the large shear resistance based on the large shear deformation amount of the rubber layer 1 which is equal to the movement amount of the sole plate 8.

第7図ないし第11図は本発明の第2実施例を示すもので
あって、ゴム支承体4における下部金属板2の下面に、
橋軸直角方向の中央において橋軸方向に延長する突条16
が一体に設けられ、下部金属板2の橋軸直角方向の両側
における橋軸方向中間部には、橋軸方向に間隔をおいて
配置された一対の被押圧突起13が一体に設けられ、前記
ゴム支承体4における上部金属板3の橋軸直角方向の両
側には、橋軸方向の両端において係合突起14が一体に設
けられ、前記下部金属板2の下面に下部可動滑り板18が
固着され、かつ前記上部金属板3の上面に上部固定滑り
板19が固着されている。
7 to 11 show a second embodiment of the present invention, in which the lower surface of the lower metal plate 2 in the rubber bearing 4 is
A ridge 16 extending in the bridge axis direction at the center in the direction perpendicular to the bridge axis
Are integrally provided, and a pair of pressed projections 13 arranged at intervals in the bridge axis direction are integrally provided at intermediate portions in the bridge axis direction on both sides of the lower metal plate 2 in the direction perpendicular to the bridge axis. Engagement protrusions 14 are integrally provided at both ends in the direction of the bridge axis of the upper metal plate 3 in the rubber support 4 in the direction perpendicular to the bridge axis, and a lower movable slide plate 18 is fixed to the lower surface of the lower metal plate 2. The upper fixed slide plate 19 is fixed to the upper surface of the upper metal plate 3.

鋼製ベースプレート6の橋軸直角方向の両側における橋
軸方向の両端部に、上部金属板移動防止用係止突起15の
下部が一体に設けられ、かつベースプレート6の上面の
橋軸直角方向中央部には、橋軸方向に延長する係合溝23
が設けられ、ベースプレート6の上面に下部固定滑り板
21が固着され、さらにベースプレート6の下部に複数の
アンカー部材22の上部が連結され、そのアンカー部材22
が下部構造物5に埋込み固定されると共に、ベースプレ
ート6が下部構造物5の上面に載置されている。
Lower portions of the upper metal plate movement preventing locking projections 15 are integrally provided at both ends in the bridge axis direction on both sides of the steel base plate 6 in the bridge axis perpendicular direction, and the upper surface of the base plate 6 is centered in the bridge axis perpendicular direction. The engaging groove 23 extending in the bridge axial direction.
And a lower fixed sliding plate on the upper surface of the base plate 6.
21 is fixed, and the upper part of the plurality of anchor members 22 is connected to the lower part of the base plate 6, and the anchor members 22
Is embedded in and fixed to the lower structure 5, and the base plate 6 is placed on the upper surface of the lower structure 5.

鋼製ソールプレート8の橋軸直角方向の両側における橋
軸方向中央部に、押圧突起12の上部が一体に連設され、
かつソールプレート8の下面に上部可動滑り板24が固着
されている。
Upper portions of the pressing protrusions 12 are integrally provided at the central portions of the steel sole plate 8 on both sides in the direction perpendicular to the bridge axis in the bridge axis direction,
Moreover, an upper movable slide plate 24 is fixed to the lower surface of the sole plate 8.

前記ゴム支承体4がベースプレート6とソールプレート
8との間に介在され、かつソールプレート8の下部の上
部可動滑り板24は、ゴム支承体4の上部の上部固定滑り
板19に橋軸方向摺動自在に載置され、ゴム支承体4の下
部の下部可動滑り板18は、ベースプレート6の上部の下
部固定滑り板21に橋軸方向摺動自在に載置され、さらに
ソールプレート8における押圧突起12の下部は一対の被
押圧突起13の間に挿入され、ベースプレート6における
橋軸方向の両端部の上部金属板移動防止用係止突起15
は、上部金属板3の橋軸方向の両端に設けられた係合突
起14における橋軸方向外端面に接触または近接して配置
されている。
The rubber support 4 is interposed between the base plate 6 and the sole plate 8, and the upper movable slide plate 24 below the sole plate 8 slides in the bridge axial direction on the upper fixed slide plate 19 above the rubber support 4. The lower movable sliding plate 18 at the lower part of the rubber support 4 is movably mounted on the lower fixed sliding plate 21 at the upper part of the base plate 6 so as to be slidable in the bridge axial direction, and further, the pressing projection on the sole plate 8 is placed. The lower part of 12 is inserted between a pair of pressed projections 13, and locking projections 15 for preventing movement of the upper metal plate at both ends of the base plate 6 in the bridge axis direction.
Are arranged in contact with or close to the outer end faces in the bridge axis direction of the engagement protrusions 14 provided at both ends of the upper metal plate 3 in the bridge axis direction.

第2実施例の場合も、橋桁7に作用する橋軸方向の地震
力に対しては、ゴム支承体4の下部金属板2およびベー
スプレート6の滑り抵抗と、ゴム支承体4の上部金属板
3およびソールプレート8の滑り抵抗と、ソールプレー
ト8の移動量に等しいゴム層1の大きなせん断変形量に
基づく大きなせん断抵抗とによって、橋桁7の振動が有
効に減衰される。
Also in the case of the second embodiment, with respect to the seismic force acting on the bridge girder 7 in the bridge axial direction, the slip resistance of the lower metal plate 2 and the base plate 6 of the rubber support 4 and the upper metal plate 3 of the rubber support 4 are increased. The vibration of the bridge girder 7 is effectively damped by the slip resistance of the sole plate 8 and the large shear resistance based on the large shear deformation amount of the rubber layer 1 which is equal to the movement amount of the sole plate 8.

本発明を実施する場合、下部金属板2,上部金属板3,ベー
スプレート6およびソールプレート8として耐食性金属
を使用する場合は、滑り板を省略してもよい。またソー
ルプレート8の鋼製橋桁に固定する場合は、アンカー棒
25を省略して、ソールプレート8の上面を平面状に形成
し、そのソールプレート8を鋼製橋桁に対し溶接等によ
り固定する。
In the case of implementing the present invention, when using a corrosion-resistant metal as the lower metal plate 2, the upper metal plate 3, the base plate 6 and the sole plate 8, the sliding plate may be omitted. Also, when fixing to the steel bridge girder of the sole plate 8, an anchor rod
25 is omitted, the upper surface of the sole plate 8 is formed into a flat shape, and the sole plate 8 is fixed to the steel bridge girder by welding or the like.

(発明の効果) 本発明は前述のように構成されているので、以下に記載
するような効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it has the effects described below.

地震力により橋桁7およびこれに固定されたソールプレ
ート8が橋軸方向に移動した場合、ゴム支承体4におけ
る上部金属板3とベースプレート6とは、橋軸方向に相
対的に移動しないように係合されているので、ソールプ
レート8がゴム支承体4の上部金属板3に対し滑り移動
し、かつソールプレート8とゴム支承体4の下部金属板
2との係合により、ゴム支承体4の下部金属板2が橋軸
方向に押圧移動されるので、下部金属板2がソールプレ
ート8と等しい量だけ橋軸方向に滑り移動し、ゴム支承
体4のゴム層1もソールプレート8の移動量と等しい量
だけせん断変形され、そのため橋桁7に作用する橋軸方
向の地震力に対しては、ゴム支承体4の下部金属板2お
よびベースプレート6の滑り抵抗と、ゴム支承体4の上
部金属板3およびソールプレート8の滑り抵抗と、ソー
ルプレート8の移動量に等しいゴム層1の大きなせん断
変形量に基づく大きなせん断抵抗とによって、橋桁7の
振動を有効に減衰させることができる。またゴム支承体
4における上部金属板3は、ベースプレート6に対し橋
軸方向に移動しないように保持され、かつゴム支承体4
における下部金属板2は、ソールプレート8の橋軸方向
移動量と等しい量だけ橋軸方向に強制的に移動されるの
で、地震による振動が終了したのちは、ゴム支承体4に
おけるゴム層1のせん断変形を自動的に消滅させること
ができる。
When the bridge girder 7 and the sole plate 8 fixed to the bridge girder 7 are moved in the bridge axis direction by the seismic force, the upper metal plate 3 and the base plate 6 in the rubber support 4 are engaged so as not to move relatively in the bridge axis direction. Since the sole plate 8 is slid with respect to the upper metal plate 3 of the rubber bearing 4, and the engagement between the sole plate 8 and the lower metal plate 2 of the rubber bearing 4 causes the rubber bearing 4 to move. Since the lower metal plate 2 is pressed and moved in the bridge axis direction, the lower metal plate 2 slides and moves in the bridge axis direction by an amount equal to that of the sole plate 8, and the rubber layer 1 of the rubber support 4 also moves by the sole plate 8. The shear resistance of the lower metal plate 2 and the base plate 6 of the rubber bearing 4 and the upper metal plate of the rubber bearing 4 are sheared by an amount equal to 3 and And the sliding resistance of Rupureto 8, by a large shearing resistance based on large shearing deformation amount of the movement amount equal to the rubber layer 1 of the sole plate 8, it is possible to effectively damp vibrations of the girder 7. The upper metal plate 3 of the rubber bearing 4 is held so as not to move in the bridge axis direction with respect to the base plate 6, and the rubber bearing 4 is held.
Since the lower metal plate 2 in is forcedly moved in the bridge axis direction by an amount equal to the amount of movement of the sole plate 8 in the bridge axis direction, after the vibration due to the earthquake ends, the rubber layer 1 of the rubber support 4 is Shear deformation can be eliminated automatically.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第6図は本発明の第1実施例を示すもので
あって、第1図は免震ゴム支承装置の側面図、第2図は
その正面図、第3図は第1図のA−A線断面図、第4図
は免震ゴム支承装置の斜視図、第5図はゴム支承体およ
びこれに付属する各部分を示す斜視図、第6図は免震ゴ
ム支承装置の使用状態を示す側面図である。第7図ない
し第11図は本発明の第2実施例を示すものであって、第
7図は免震ゴム支承装置の側面図、第8図はその正面
図、第9図は第7図のB−B線断面図、第10図は免震ゴ
ム支承装置の斜視図、第11図はゴム支承体およびこれに
付属する各部分を示す斜視図である。第12図は従来の滑
り移動式ゴム支承装置を示す一部縦断側面図である。 図中、1:ゴム層、2:下部金属板、3:上部金属板、4:ゴム
支承体、5:下部構造物、6:ベースプレート、7:橋桁、8:
ソールプレート、9:被押圧突起、10:押圧突起、11:上部
金属板移動防止用係合部材、12:押圧突起、13:被押圧突
起、14:係合突起、15:上部金属板移動防止用係止突起、
16:突条、17:係合突起、18:下部可動滑り板、19:上部固
定滑り板、20:係止突起、21:下部固定滑り板、22:アン
カー部材、23:係合溝、24:上部可動滑り板、25:アンカ
ー棒である。
1 to 6 show a first embodiment of the present invention. FIG. 1 is a side view of a seismic isolation rubber bearing device, FIG. 2 is a front view thereof, and FIG. 3 is FIG. Fig. 4 is a perspective view of the seismic isolation rubber bearing device, Fig. 5 is a perspective view showing the rubber bearing body and each part attached thereto, and Fig. 6 is a perspective view of the seismic isolation rubber bearing device. It is a side view which shows a use condition. 7 to 11 show a second embodiment of the present invention. FIG. 7 is a side view of the seismic isolation rubber bearing device, FIG. 8 is its front view, and FIG. 9 is FIG. FIG. 10 is a perspective view of the seismic isolation rubber bearing device, and FIG. 11 is a perspective view showing the rubber bearing body and each part attached thereto. FIG. 12 is a partially longitudinal side view showing a conventional sliding movement type rubber bearing device. In the figure, 1: rubber layer, 2: lower metal plate, 3: upper metal plate, 4: rubber support, 5: lower structure, 6: base plate, 7: bridge girder, 8:
Sole plate, 9: Pressed protrusion, 10: Pressed protrusion, 11: Upper metal plate movement prevention engagement member, 12: Pressed protrusion, 13: Pressed protrusion, 14: Engagement protrusion, 15: Upper metal plate movement prevention For locking protrusion,
16: ridge, 17: engaging protrusion, 18: lower movable sliding plate, 19: upper fixed sliding plate, 20: locking protrusion, 21: lower fixed sliding plate, 22: anchor member, 23: engaging groove, 24 : Upper movable sliding plate, 25: Anchor rod.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ゴム層1とこれに一体に結合された下部金
属板2および上部金属板3とからなるゴム支承体4が、
下部構造物5に固定されるベースプレート6と橋桁7に
固定されるソールプレート8との間に摺動自在に介在さ
れ、前記下部金属板2とソールプレート8とは橋軸方向
に相対的に移動しないように係合され、前記上部金属板
3とベースプレート6とは橋軸方向に相対的に移動しな
いように係合されている免震ゴム支承装置。
1. A rubber bearing 4 comprising a rubber layer 1 and a lower metal plate 2 and an upper metal plate 3 integrally connected to the rubber layer 1.
A base plate 6 fixed to the lower structure 5 and a sole plate 8 fixed to the bridge girder 7 are slidably interposed, and the lower metal plate 2 and the sole plate 8 relatively move in the bridge axial direction. 1. A seismic isolation rubber bearing device in which the upper metal plate 3 and the base plate 6 are engaged with each other so as not to move relative to each other in the bridge axis direction.
【請求項2】ゴム層1とこれに一体に結合された下部金
属板2および上部金属板3とからなるゴム支承体4が、
下部構造物5に固定されるベースプレート6と橋桁7に
固定されるソールプレート8との間に摺動自在に介在さ
れ、前記下部金属板2における橋軸直角方向の両側に、
橋軸方向に間隔をおいて配置された複数の被押圧突起9
が一体に設けられ、前記ソールプレート8の橋軸直角方
向の両側における橋軸方向の両端部に、前記被押圧突起
9の橋軸方向外端面に係合する押圧突起10が設けられ、
前記ベースプレート6の橋軸直角方向の両側における橋
軸方向中央部と、前記上部金属板3の橋軸直角方向の両
側における橋軸方向中央部とは、上部金属板移動防止用
係合部材11を介して橋軸方向に相対的に移動しないよう
に係合されている免震ゴム支承装置。
2. A rubber bearing 4 comprising a rubber layer 1 and a lower metal plate 2 and an upper metal plate 3 integrally connected to the rubber layer 1.
Slidingly interposed between a base plate 6 fixed to the lower structure 5 and a sole plate 8 fixed to the bridge girder 7, on both sides of the lower metal plate 2 in the direction perpendicular to the bridge axis,
Plural pressed protrusions 9 arranged at intervals in the bridge axis direction
Are integrally provided, and at both ends in the bridge axis direction on both sides of the sole plate 8 in the direction perpendicular to the bridge axis, there are provided pressing protrusions 10 that engage with the outer end surfaces of the pressed protrusions 9 in the bridge axial direction,
The central portion of the base plate 6 on both sides in the direction perpendicular to the bridge axis and the central portion of the upper metal plate 3 on both sides in the direction perpendicular to the bridge axis are provided with upper metal plate movement preventing engagement members 11. A seismic isolation rubber bearing device which is engaged so as not to move relatively in the axial direction of the bridge.
【請求項3】ゴム層1とこれに一体に結合された下部金
属板2および上部金属板3とからなるゴム支承体4が、
下部構造物5に固定されるベースプレート6と橋桁7に
固定されるソールプレート8との間に摺動自在に介在さ
れ、前記ソールプレート8の橋軸直角方向の両側におけ
る橋軸方向中央部に押圧突起12が一体に設けられ、前記
下部金属板2の橋軸直角方向の両側における橋軸方向中
間部に、前記押圧突起12における橋軸方向の両側に係合
される被押圧突起13が一体に設けられ、前記上部金属板
3の橋軸直角方向の両側に、橋軸方向に間隔をおいて配
置された複数の係合突起14が一体に設けられ、前記ベー
スプレート6の橋軸直角方向の両側における橋軸方向の
両端部に、前記係合突起14の橋軸方向外端面に係合する
上部金属板移動防止用係止突起15が一体に設けられてい
る免震ゴム支承装置。
3. A rubber bearing 4 comprising a rubber layer 1 and a lower metal plate 2 and an upper metal plate 3 integrally connected to the rubber layer 1,
It is slidably interposed between a base plate 6 fixed to the lower structure 5 and a sole plate 8 fixed to the bridge girder 7, and is pressed to the center portion of the sole plate 8 on both sides in the direction perpendicular to the bridge axis in the direction perpendicular to the bridge axis. The protrusions 12 are integrally provided, and the pressed protrusions 13 engaged with both sides of the pressing protrusions 12 in the bridge axis direction are integrally formed at intermediate portions in the bridge axis direction of the lower metal plate 2 on both sides in the direction perpendicular to the bridge axis. A plurality of engaging projections 14 are provided integrally on both sides of the upper metal plate 3 in the direction perpendicular to the bridge axis, and are provided integrally with each other at a distance in the bridge axis direction. 2. A seismic isolation rubber bearing device in which locking projections (15) for preventing movement of an upper metal plate that engage with the outer end surfaces of the engaging projections (14) in the bridge axis direction are integrally provided at both ends in the bridge axis direction.
JP8754590A 1990-04-03 1990-04-03 Seismic isolation rubber support device Expired - Fee Related JPH0674570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8754590A JPH0674570B2 (en) 1990-04-03 1990-04-03 Seismic isolation rubber support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8754590A JPH0674570B2 (en) 1990-04-03 1990-04-03 Seismic isolation rubber support device

Publications (2)

Publication Number Publication Date
JPH03287905A JPH03287905A (en) 1991-12-18
JPH0674570B2 true JPH0674570B2 (en) 1994-09-21

Family

ID=13917956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8754590A Expired - Fee Related JPH0674570B2 (en) 1990-04-03 1990-04-03 Seismic isolation rubber support device

Country Status (1)

Country Link
JP (1) JPH0674570B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918643B2 (en) * 2012-07-11 2016-05-18 株式会社ビービーエム Double-sided slide support device for structures
JP6148045B2 (en) * 2013-03-21 2017-06-14 株式会社ビービーエム Double-sided slide support device for structures

Also Published As

Publication number Publication date
JPH03287905A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
JPH0674570B2 (en) Seismic isolation rubber support device
JP3018286B2 (en) Seismic isolation rubber bearing device
JPH11210826A (en) Base isolation slide support
JP2660828B2 (en) Elastic bearing device for cross girder bearing and method of installing the same
JPH09310409A (en) Sphere slidable supporting device
JPH0512329Y2 (en)
JP2515451Y2 (en) Joint structure of steel members
KR200222439Y1 (en) Bridge Bearing equipped with deck restrainer
JPH01263306A (en) Shearing deformation preventing slide installation method for rubber support for supporting structure
JPS6035601Y2 (en) road expansion joint
JPS6221908A (en) Steel girder support apparatus for bridge
JPH0348973B2 (en)
JPH033725Y2 (en)
JPH0449209Y2 (en)
JP2704489B2 (en) Road expansion connection device
JPH0752165Y2 (en) Lateral movement restriction rubber bearing device for bridge girder
JP2662774B2 (en) Seismic isolation bearing structure for structures
JPS6321640Y2 (en)
JP2000274484A (en) Stopper device for limiting movement of structure
JPS64415Y2 (en)
JPH047766B2 (en)
JPS6214269Y2 (en)
JPH041126B2 (en)
JPH0676402U (en) Orbital pad
JPS5838812Y2 (en) Load-bearing wall structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20080921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20090921

LAPS Cancellation because of no payment of annual fees